

ABOUT THE AUTHOR

Soumitra Kumar Mandal holds a BE (Electrical Engineering) from Bengal Engineering College, Shibpur,

Calcutta University, and an MTech (Electrical Engineering) with specialization in Power Electronics from

the Institute of Technology, Banaras Hindu University, Varanasi. He obtained a PhD from Panjab University,

Chandigarh. Prof. Mandal started his career as a lecturer of Electrical Engineering at SSGM College of

Engineering, Shegaon. Thereafter, he joined as a lecturer at Panjab Engineering College, Chandigarh, and

served there from March 1999 to January 2004. Then he joined National Institute of Technical Teachers’

Training and Research, Kolkata, as Assistant Professor in Electrical Engineering in February 2004 and is

presently working as Associate Professor.

Prof. Mandal is a life member of ISTE and a member of IE. Throughout his academic career, he has pub-

lished about twenty-five research papers in national and international journals and presented many papers in

national and international conferences. His research interests are in computer-controlled drives, microproces-

sor- and microcontroller-based system design, embedded system design and neuro-fuzzy computing.

The author can be contacted at his email id: mandal_soumitra@yahoo.com.

Soumitra Kumar Mandal

Associate Professor
Department of Electrical Engineering

National Institute of Technical Teachers’ Training and Research
Kolkata

Tata McGraw Hill Education Private Limited
NEW DELHI

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Published by Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008

Microprocessors and Microcontrollers

Copyright © 2011, Tata McGraw Hill Publishing Company Limited No part of this publication can be reproduced or

distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a

database or retrieval system without the prior written permission of the publishers. The program listings (if any) may be

entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited

ISBN (13 digits) : 978-0-07-1329200

ISBN (10 digits) : 0-071-32920X

Vice President and Managing Director—McGraw-Hill Education–Asia Pacific Region: Ajay Shukla

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Publishing Manager—(SEM & Tech. Ed.): Shalini Jha

Editorial Executive: Smruti Snigdha

Editorial Researcher: Noaman Khan

Executive—Editorial Services: Sohini Mukherjee

Sr Production Manager: Satinder S Baveja

Production Executive: Anuj K Shriwastava

Marketing Manager—Higher Education: Vijay S Jagannathan

Senior Product Specialist (SEM & Tech Ed.): John Mathews

General Manager—Production: Rajender P Ghansela

Assistant General Manager—Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.
However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information
published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or
damages arising out of use of this information. This work is published with the understanding that Tata McGraw-
Hill and its authors are supplying information but are not attempting to render engineering or other professional
services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Print-O-World, 2579, Mandir Lane, Shadipur, New Delhi 110 008, and printed at Adarsh Printers, C-50-51,

Mohan Park, Naveen Shahdara, Delhi 110 032

Cover : A. P. OFFSET

RAXYYDAGDCQYA

CONTENTS

Preface xiii

 1. Introduction to Microprocessors and Microcontrollers 1

 1.1 Introduction 1

 1.2 Microprocessor 3

 1.3 Microcomputer 4

 1.4 Architecture of Microprocessors 6

 1.5 History of Microprocessors 8

 1.6 Evolution of Microprocessors 9

 1.7 Microprocessor Applications 12

 1.8 Evolution of Microcontrollers 13

 1.9 Applications of Microcontrollers 15

 Summary 16

 Multiple-Choice Questions 16

 Short-Answer-Type Questions 17

 Review Questions 17

 Answers to Multiple-Choice Questions 17

 2. Architecture of the 8085 Microprocessor 18

 2.1 Introduction 18

 2.2 Block Diagram of the 8085 Microprocessor 18

 2.3 Pin Diagram of 8085 Microprocessor 28

 Summary 33

 Multiple-Choice Questions 34

 Short-Answer-Type Questions 35

 Review Questions 35

 Answers to Multiple-Choice Questions 36

 3. Instruction Set and Addressing Modes of 8085 Microprocessor 37

 3.1 Introduction 37

 3.2 Addressing Modes 37

 3.3 Instruction Set 40

 3.4 Instruction and Data Formats 43

 3.4 Symbols and Abbreviations 45

 3.5 8085 Instructions 46

 3.6 Instruction Timing Diagram 63

 3.7 Timing Diagram 66

 Summary 77

 Multiple-Choice Questions 77

 Short-Answer-Type Questions 79

 Review Questions 79

 Answers to Multiple-Choice Questions 80

 4. Assembly – Language Programs of the 8085 Microprocessor 81

 4.1 Introduction 81

 4.2 Machine Language 82

 4.3 Assembly Language 82

 4.4 High-Level Language 83

 4.5 Stack 87

 4.6 Subroutines 89

 4.7 Time-Delay Loops 91

 4.8 Modular Programming 94

 4.9 Macro 95

 4.10 Instruction Format 96

 4.11 Assembly-Language Programs 97

 Summary 142

 Multiple-Choice Questions 142

 Short-Answer-Type Questions 144

 Review Questions 145

 Answers to Multiple-Choice Questions 146

 5. Architecture of 8086 and 8088 Microprocessors 147

 5.1 Introduction 147

 5.2 Architecture of 8086 149

 5.3 Registers 152

 5.4 Logical And Physical Address 156

 5.5 Address Bus, Data Bus, Control Bus 158

 5.6 Memory Segmentation 158

 5.7 8086 Memory Addressing 160

 5.8 Pin Description of 8086 164

 5.9 Memory Read and Write Bus Cycle of 8086 170

 5.10 Intel 8088 Processor 176

 5.11 Demultiplexing of the System Bus in 8086 and 8088 Microprocessors 180

 5.12 Some Important ICs: 8284A, 8286/8287, 8282/8283, and 8288 183

 Summary 189

 Multiple-Choice Questions 190

 Short-Answer-Type Questions 190

 Review Questions 191

 Answers to Multiple-Choice Questions 191

Contentsviii

 6. Instruction Set and Addressing Modes of the 8086 Microprocessor 192

 6.1 Introduction 192

 6.2 Addressing Modes 192

 6.3 8086 Instruction Set 203

 Summary 239

 Multiple-Choice Questions 240

 Short-Answer-Type Questions 241

 Review Questions 241

 Answers to Multiple-Choice Questions 242

 7. Assembly-Language Programs of the 8086 Microprocessor and 8087, 80287

 and 80387 Numeric Data Processors 243

 7.1 Introduction 243

 7.2 Assembly-Language Commands 246

 7.3 Assembly Language Programs 255

 7.4 8087, 80287 And 80387 Numeric Data Processors 289

 7.5 8087 Numeric Data Processor 289

 7.6 80287 Numeric Data Processor 303

 7.7 80387 Numeric Data Processor 307

 Summary 308

 Multiple-Choice Questions 308

 Short-Answer-Type Questions 310

 Review Questions 310

 Answers to Multiple-Choice Questions 312

 8. I/O and Memory Interfacing Using 8085/8086 313

 8.1 Introduction 313

 8.2 Memory Interfacing 313

 8.3 Interrupts of the 8085 Microprocessor 335

 8.4 Interrupts of 8086/8088 Microprocessor 348

 8.5 8259A Programmable Interrupt Controller 355

 8.6 Programmable Peripheral Interface, 8255 368

 8.7 8253 Programmable Counter/Interval Timer 382

 Summary 397

 Multiple-Choice Questions 398

 Short-Answer Type Questions 399

 Review Questions 400

 Answers to Multiple-Choice Questions 403

 9. Communication and Bus Interfacing with the 8085/8086 Microprocessor 404

 9.1 Introduction 404

 9.2 Serial Communication Interface 8251 404

 9.3 Direct Memory Access (Dma) Controller 8257 417

 9.4 8279—Programmable Keyboard And Display I/O Interface 430

ixContents

 9.5 8275 Crt Controller 441

 9.6 Analog-to-Digital Converter Interfacing 445

 9.7 Digital-to-Analog Converter Interfacing 458

 9.8 Bus Interface 467

 9.9 8250 Uart 480

 9.10 16550 Uart 485

 9.11 8089 I/O Processor 487

 Summary 493

 Multiple Choice Questions 493

 Short-Answer Type Questions 495

 Review Questions 496

 Answers to Multiple-Choice Questions 498

 10. Applications of 8085/8086 Microprocessors 499

 10.1 Introduction 499

 10.2 Seven-Segment Display 500

 10.3 Measurement of Electrical Quantities 504

 10.4 Measurement of Physical Quantities 528

 10.5 Microprocessor-Based Protection 549

 10.6 Microprocessor-Based Traffic Control 552

 10.7 Microprocessor-Based Firing Circuit of A Thyristor 558

 10.8 Speed Control of DC Motor 562

 10.9 Stepper Motor 569

 Summary 575

 Multiple-Choice Questions 575

 Short Answer Questions 576

 Review Questions 576

 Answers to Multiple-Choice Questions 578

 11. 80186, 80286, 80386 and 80486 Microprocessors 579

 11.1 Introduction 579

 11.2 80186 Microprocessor Architecture 579

 11.3 Pin Description of 80186 594

 11.4 Addressing Modes of 80186 598

 11.5 Data Types of 80186 598

 11.6 Instruction Set of 80186 599

 11.7 Comparison Between 8086 and 80186 601

 11.8 Introduction to 80286 601

 11.9 Architecture of 80286 602

 11.10 Pin Diagram of 80286 606

 11.11 Addressing Modes of 80286 609

 11.12 Data Types of 80286 610

 11.13 80286 Instruction Set 610

Contentsx

 11.14 80286 Addressing Mode 614

 11.15 Comparison Between 8086 and 80286 620

 11.16 Comparison Between 80186 and 80286 621

 11.17 Introduction to 80386 622

 11.18 Architecture of 80386 623

 11.19 Registers of 80386 624

 11.20 Pin Functions of 80386 628

 11.21 Addressing Modes of 80386 630

 11.22 Data Types of 80386 631

 11.23 Operating Mode of 80386 631

 11.24 Instruction Set 638

 11.25 Comparison Between 80286 And 80386 639

 11.26 Introduction to 80486 640

 11.27 Architecture of 80486 640

 11.28 Pin Descriptions of 80486 643

 11.29 Comparison Between 80386 And 80486 648

 Summary 648

 Multiple-Choice Questions 649

 Short-Answer Questions 650

 Review Questions 650

 Answers to Multiple-Choice Questions 652

 12. Pentium and RISC Processors 653

 12.1 Introduction 653

 12.2 Pentium Internal Architecture 653

 12.3 Pentium Operating Modes 662

 12.4 Segmentation 665

 12.5 Physical, Linear and Logical Address 666

 12.6 Virtual 8086 Mode 670

 12.7 Pin Description of Pentium Processor 673

 12.8 Addressing Modes of The Pentium Processor 676

 12.9 Pentium Bus Interfacing 677

 12.10 System Management Mode (SMM) of the Pentium Processor 684

 12.11 Cache Memories 686

 12.12 Pentium MMX 697

 12.13 Pentium Pro, Pentium II, and Pentium III: P6 Family Processors 698

 12.14 Comparison of Pentium and Pentium-Pro Processor 704

 12.15 Pentium 4 Processor 705

 12.15 Comparison of Pentium III and Pentium 4 Processors 713

 12.16 Risc Processors 713

 12.17 Core Processor 717

 Summary 718

xiContents

 Multiple-Choice Questions 719

 Short-Answer Questions 720

 Review Questions 720

 Answers to Multiple-Choice Questions 721

 13. Introduction to 8051 Microcontroller 722

 13.1 Introduction 722

 13.2 Architecture of 8051 Microcontroller

 13.3 Memory Organization 730

 13.4 Pin Diagram of 8051 Microcontroller 735

 13.5 Timers/Counters 744

 13.6 Serial Communication 749

 13.7 Interrupts 756

 Summary 760

 Multiple-Choice Questions 760

 Short-Answer Questions 761

 Review Questions 761

 Answers to Multiple-Choice Questions 762

 14. Instruction Set and Programming of the 8051 Microcontroller 763

 14.1 Introduction 763

 14.2 Addressing Modes 763

 14.3 8051 Instruction Set 767

 14.4 Simple Examples in Assembly-Language Programs of 8051 Microcontroller 792

 14.5 Assembly-Language Programs 795

 14.6 Applications of Microcontrollers 807

 Summary 827

 Multiple-Choice Questions 827

 Short-Answer/Viva-Voce Questions 828

 Review Questions 828

 Answers to Multiple-Choice Questions 829

Appendix A - OPCODE of the 8085 Instruction Set 830

Appendix B - Some Important Tables for 8051 833

Appendix C - Some Important Tables for 8085 838

Appendix D - Some Important Tables for 8086 842

Model Question Paper - 1 856

Model Question Paper - 2 860

Model Question Paper - 3 863

Index 867

PREFACE

Overview

Though progress and advancement in microprocessor technology has been very fast, the study of the

basic principles, e.g. the digital building blocks of 8085 and 8086 microprocessors and 8051 microcon-

trollers are continuing. Nowadays, this subject forms a part of undergraduate courses, namely Electrical,

Instrumentation, Electronics, Electronics and Communication, Computer Science and Engineering, and

Information Technology. The present book, thus, aims to be of use to students of EE, CS & E, ECE, IN, IT

and engineers working in automation industries.

Aim

Although a large number of books on microprocessors are available in the market, most cover either the 8085

microprocessor or its interfacing or advanced microprocessors like the 8086 to Pentium processors or the

8051 microcontroller. Consequently, there is no book that covers all the theory starting from the 8085 and

8086 microprocessors, 80186, 80286, 80386 and 80486 to Pentium processors and the 8051 microcontroller.

Since almost none of the reference books have syllabus compatibility and right pedagogy, many students find

it difficult to conceptualize the subject. As per feedback from students and teachers, there is need for a single

book that can cover all the topics as per university curricula. This book is an outcome of my decade-long

teaching experience of Microprocessors and Microcontrollers at SSGM College of Engineering, Shegaon;

Panjab Engineering College, Chandigarh; and NITTTR, Kolkata. The content of this book covers the syl-

labi of microprocessors and microcontrollers of major Indian universities like WBUT, UPTU, PTU, RGTU,

Mumbai University, Pune University, Anna University, JNTU, VTU, and many more.

 I have written this book attempting to cover all the important topics of 8085 and 8086 microprocessors,

80186 to 80486 microprocessors, Pentium processors and the 8051 microcontroller. The examples of assem-

bly-language programs and a variety of theoretical and multiple-choice questions at the end of each chapter

give students a chance to check and enhance their conceptual understanding. Though this book is written to

help students develop basic concepts of microprocessor and microcontroller architecture, programming and

their applications, this course will also mitigate a definite percentage of every competitive examination of

engineering professionals, namely IES, UPSC, GATE, etc.

Salient Features

Some salient features of this book are

 Complete coverage of the syllabi on Microprocessors and Microcontrollers of major Indian

universities

 Large number of assembly-language programs incorporated from examination papers of different

universities and competitive examinations like IES, UPSC, and GATE

 Architecture, Programming, Interfacing of Microprocessors and Microcontrollers explained in lucid

language

 Detailed coverage of Advanced Microprocessors

 Hands-on approach through applications such as Traffic Control, Keyboard Interfacing, Stepper

Motor Control, Seven Segment Display, Control of Firing Circuit of a Thyristor

Prefacexiv

Feature Description Benefit

Brief Introduction A brief description of the Student gets a subjective overview

 chapter topics is given. of the contents of the chapter.

Diagrams Over 550 diagrams are given Diagrams are an important tool in

 in the text. the presentation of text material in a

clear and lucid manner. These enable the

reader to effectively understand the vari-

ous microprocessor concepts discussed

in a chapter.

Definitions Wherever appropriate, useful These will help the students to quickly

 definitions related to the topic revise the definitions before an exam.

 being described have been

 inserted.

Solved Examples/ Close to 100 Solved Examples/ A stepwise approach for solving prob-

Programs Programs are present in the text. lems is used throughout the book,

thereby making it easier for the reader to

apply the learnt concepts.

Summary A concise Summary is provided It underlines the important concepts

 at the end of each chapter. learnt in the chapter.

Multiple-Choice More than 250 Multiple-Choice These help readers have a quick revision

Questions Questions are present in the text. of the concepts discussed in the chapter.

Review Questions Almost 400 Review Questions These are set to develop confidence in

 are given in the text to test the the principles discussed and check the

 theoretical grasp of the students. understanding of the student.

Short-Answer/ 130 Short-Answer/Viva-Voce These will be helpful in revising the

Viva-Voce Questions Questions are present as concepts and preparing for competitive

 chapter-end pedagogy. exams.

Model Question Papers 3 Model Question Papers are Essentially, these Model Question

 provided at the end of the text Papers make the reader realize the

 which focus on university pattern of questions in university

 patterned questions. examinations.

Chapter Organization

This book has 14 chapters. Chapter 1 covers the evolution of microprocessors and their applications in

detail. Chapters 2 to 4 are devoted to the 8085 microprocessor architecture, addressing modes, instruction

set and assembly-language programs; whereas chapters 5 to 7 cover architecture of 8086 and 8088 micro-

processors, addressing modes, instruction set, assembly-language programs and 8087, 80287 and 80387

numeric data processors. Chapters 8 and 9 incorporate the interfacing devices of 8085 and 8086 micropro-

cessors. Chapter 10 deals with the applications of 8085 and 8086 microprocessors. Chapters 11 and 12

cover advanced microprocessors. Finally, chapters 13 and 14 discuss the architecture, addressing modes,

instruction set, assembly-language programs and applications of 8051 microcontroller.

Given below is a detailed chapter synopsis.

Chapter 1 presents the basic concept of microprocessors and microcontrollers, history of microproces-

sors, evolution of microprocessors and its applications, evolution of microcontrollers and their applications.

Chapter 2 deals with the architecture of the 8085 microprocessor in a generalized way. This chapter cov-

ers the block diagram of the 8085 microprocessor and its operating principles. It also elaborately explains the

pin diagrams of 8085 microprocessors and functions of pins.

Chapter 3 describes the different addressing modes and instruction sets of the 8085 microprocessor. There

is detailed discussion on instruction timing diagrams of 8085µP, fetch cycle, execute cycle and machine

cycles, timing diagram of memory read, memory write, I/O read and write operations.

Chapter 4 deals with machine-level languages, assembly-level languages, and high-level languages with

detailed coverage of operation of stacks, subroutines and time delay loops. This chapter also incorporates

modular programming, macro, instruction formats and assembly-language programs.

Chapter 5 introduces the architecture of 8086 and 8088 microprocessors. It also covers minimum-mode

and maximum-mode configurations, memory addressing, pin descriptions of 8086 and 8088, and other sup-

porting ICs such as 8284A, 8286/8287, 8282/8283 and 8288.

Chapter 6 covers the different addressing modes and instruction set of the 8086 in detail.

Chapter 7 introduces assembly-language commands and assembly-language programs of 8086. This

chapter also includes the architecture of the 8087 numeric data processor, pin descriptions, interfacing with

8086, instruction set and assembly-language programs of 8087 with explanation on the architectures of

numeric data processors 80287 and 80387.

Programmable peripheral chips are equipment that support any interfacing devices with microprocessors.

There are many such devices available in the market. Chapter 8 covers memory ICs and their interfac-

ing, interrupts of 8085, 8086 and 8088 microprocessors, 8259 Programmable Interrupt Controller, 8255A

Programmable Peripheral Interface, and the 8253 Programmable timer/counters.

Chapter 9 presents the 8251 Serial Communication Interface, 8279 Programmable Keyboard and Display

Interface, 8257 Direct Memory Access (DMA) Controller, 8275 CRT controller, ADC as well as DAC ICs

and their interfacing, Bus interface, RS232C, IEEE-488, Parallel printer interface, 8250 UART, 16550 UART

and 8089 I/O processor.

In industries, there are varieties of microprocessor applications such as instrumentation, industrial auto-

mation and aerospace, etc. The applications of microprocessors in display systems; measurement of electri-

cal quantities such as voltage, current, frequency and phase angle; measurement physical quantities like

displacement, strain, force, temperature, water level and speed; microprocessor-based protection, traffic light

control, and speed control of motors are incorporated in Chapter 10.

Chapter 11 describes the 80186 microprocessor architecture, pin description, addressing modes, data

types and instruction sets. It also covers the architecture, pin description, addressing modes (real addressing

modes and protected virtual address mode), data types and instruction sets of the 80286 microprocessor, and

the operations of 808386 and 80486.

Chapter 12 presents Pentium architecture, Pentium operating modes, segmentation, physical, linear and

logical address, virtual 8086 mode, pin descriptions of Pentium processors, cache memories, Pentium MMX

processor, Pentium Pro, Pentium II, Pentium III and Pentium 4 processors, RISC and CISC processors in detail.

Chapter 13 describes the architecture of the 8051 microcontroller. This chapter also describes the special

function registers and memory organization, timer/counters, interrupts and serial communication of the 8051

microcontroller.

xvPreface

Chapter 14 deals with the addressing modes and instruction set of the 8051 microcontroller with elabo-

rate emphasis on assembly-language programs for the 8051 microcontroller, and applications of microcon-

trollers for keyboard interfacing, A/D converter interfacing, traffic light control, stepper motor control and

washing machine control.

Appendix A covers opcodes of the 8085 instruction set.

Appendix B provides the instruction-set summary for 8051.

Appendix C contains the instruction-set summary for 8085

Appendix D includes the instruction-set summary for 8086.

Finally, there are Model Question Papers at the end of the book.

Web Supplements

This book also has an exhaustive Online Learning Centre, which can be accessed at https://www.mhhe.com/

mandal/ designed to provide valuable resources for instructors and students.

 For Instructors

 For Students

Acknowledgements

I have received cooperation and inspiration for this book from Dr Gurnam Singh, PEC, Chandigrah; Dr S

Chatterjee, NITTTR, Chandigarh; Dr S K Bhattachariya, Former Director, NITTTR, Kolkata; Prof. Amitabha

Sinha, Director School of IT, WBUT; Dr C K Chanda and Dr P Shyam, Bengal Engineering College, Shibpur;

Dr P Sarkar, Professor and Head Electrical, Dr S Chattopadhay, Associate Professor, and Dr S Pal, Asst.

Professor, NITTTR, Kolkata. I am also thankful to other staff of Electrical Engineering—Mr A K Das, Mr N K

Sarkar, Mr S Roy Choudhury and Mr Surojit Mallick—who helped me complete the manuscript of this book.

At this juncture, I would also like to express my gratitude to the numerous reviewers who took out time to

review the manuscript. Their names are given below.

Madan Mohan Agarwal Birla Institute of Technology, Jaipur, Rajasthan

P K Mukherjee Institute of Technology—Banaras Hindu University (IT—BHU), Varanasi,

Uttar Pradesh

Siddharth Chauhan National Institute of Technology (NIT), Hamirpur, Himachal Pradesh

Vishal Nimbork Ajay Kumar Garg College of Engineering, Ghaziabad, Uttar Pradesh

Sampath Kumar V Jagadguru Sri Shivarathreeshwara (JSS) Academy of Technical Education,

Noida, Uttar Pradesh

Prefacexvi

Agamani Chakraborty Asansol Engineering College, Asansol, West Bengal

Pinaki Ranjan Ghosh ADAMAS Institute of Technology, Kolkata, West Bengal

Jaydip Nath Future Institute of Engineering and Management (FIEM), Kolkata,

West Bengal

A G Keskar Visvesvaraya National Institute of Technology, Nagpur, Maharashtra

C A Ghuge PE Society's Modern College of Engineering, Pune, Maharashtra

Sunil N Kore Walchand College of Engineering, Sangli, Maharashtra

Vikas J Dongre Government Polytechnic, Nagpur, Maharashtra

Lyla B Das National Institute of Technology (NIT), Calicut, Kerala

S Solai Manohar College of Engineering, Anna University, Chennai, Tamil Nadu

Jayakumar Vijayaraghavan Rajalakshmi Engineering College, Chennai, Tamil Nadu

S R Malathi Sri Venkateshwara College of Engineering, Chennai, Tamil Nadu

Sri Subramanya College of Engineering and Technology, Udumalpet,

Tamil Nadu

Kakatiya Institute of Technology and Science, Warangal, Andhra Pradesh

JNTU College of Engineering, Kakinada, Andhra Pradesh

College of Engineering, (Andhra University), Visakhapatnam,

Andhra Pradesh

Feedback

Any suggestions for improving the contents of the text are always welcome. Please give suggestions or feed-

back to the publisher’s email id mentioned below.

Soumitra Kumar Mandal

Do you have a feature request? A suggestion? We are always open to new ideas (the best ideas come from

you!). You may send your comments to tmh.csefeedback@gmail.com (kindly mention the title and author

name in the subject line).

Piracy-related issues may also be reported.

xviiPreface

The computer is a machine that processes data to generate information with speed and accuracy. Electronic

and electromechanical devices, and software make this programmable machine The basic block diagram of a

computer is shown in Fig. 1.1. The computer comprises four basic units, namely, input (I/P), memory, output

(O/P), and central processing unit.

An input device accepts data from the environ-

ment, converts it into digital form and sends it to

the memory of the computer for storing. Commonly

used input devices are punched cards, paper tapes,

magnetic tapes, floppy disks, and magnetic disks.

Card readers, paper tape readers, magnetic tape readers, disk drives read data transmitted by input devices. A

keyboard terminal can be used as input to the computer. Optical mark readers and optical character readers,

are input devices that are scanned by an array of photocells. The input is then converted into machine code

and transmitted into the memory of the computer for processing. On identical principles, bar-code readers

read the information prepared in bar code for application by computers. In magnetic ink readers, information

written or printed in magnetic ink is read and transmitted directly to the memory for processing. Electronic

mouse, touchscreens, and light pens are also used

as input devices. Figure 1.2 shows the different

input devices.

A computer system also has storage areas, often

referred to as memory. The memory unit stores

the information to be processed by the CPU. This

information consists of the program as well as

data. The memory can receive data, hold them

and deliver them when instructed to do so. The

Central Processing Unit
(CPU)

Memory Output Devices
(O/P)

Input Devices
(I/P)

Keyboard SpeechPointing
Devices

Source
Data

Input Devices

OCR MICR

Mouse Light Pen Touch-
screen

Remote
Control Unit

storage available in the memory is also known as

main storage or primary storage as in Fig. 1.3.

The data can be processed only when it is avail-

able in the main memory, which is finite. It may be

increased by adding auxiliary or secondary stor-

age, such as magnetic tapes or magnetic disks as

shown in Fig. 1.4. The information stored in the

auxiliary storage can be transferred to the main

memory for processing at a high speed.

When a program is executed in the computer,

the result will be computed and readily available

for display. The computer needs output devices

to display the information to the user. The most

commonly used output devices are monitor

screens, printers, graphics plotters, speech and

microfilm as depicted in Fig. 1.5.

Primary Memory

Read Only
Memory
(ROM)

Random
Axis Memory

(RAM)

Cache Memory Registers

Secondary Memory

Magnetic Tape Magnetic Disk CD ROM

Hard Disk Floppy Disk

Display Devices
Monitor

Printed Output Devices
Line Printer
Character Printer
Page Printer

Plotter Speech Microfilm

Output Devices

The central processing unit is the brain of the computer. It executes the programmer’s software and controls

the memory, input and output devices. Programs are stored in the memory. The CPU fetches instructions

of a program sequentially from the memory. It fetches one

instruction at a time, decodes it and then executes it. After

decoding an instruction, the CPU comes to know what oper-

ations are to be performed. It also comes to know whether

the data to be processed are in the memory, general-purpose

registers of the microprocessor or at input/output ports. If

data are in the general-purpose registers, the CPU executes

the program. The CPU controls memory, input and output

devices to receive, store and send data/result of the pro-

gram under execution. Under its control programs, data and

results are displayed on the CRT, stored in the memory or

printed by the printer. The major components of a CPU are

ALU, timing and control unit and registers as depicted in

Fig. 1.6.

Arithmetic Logic Unit (ALU)

Registers

Accumulator
General-Purpose

Registers

Timing and Control Unit

The ALU performs the actual processing of data including

addition, subtraction, multiplication and also division. This unit also performs certain logical operations

such as comparing two numbers to see if one is larger than the other or if they are equal. Arithmetic or logic

operations are performed by bringing the required operands into the ALU. Suppose two numbers located in

the main memory are to be added. They are brought into the arithmetic unit and temporarily stored in registers

or in accumulators associated with this unit where the actual addition is carried out. The result is placed in

one of the registers and subsequently transferred to the memory.

The control unit directs and coordinates all activities of the computer system

including the following:

 Control of input and output devices

 Entry and retrieval of information from storage

 Routing of information between storage and arithmetic logic unit

 Direction of arithmetic and logical operations

Although the control section does not process data, it acts as a central nervous system for the other data

manipulating components of the computer. At the beginning of the processing, the first program instruction is

selected and fed into the control section from the program storage area. Thus it is interpreted, and from there

signals are sent to other components to execute the

necessary action.

The central processing unit built on a single IC

is called a microprocessor. In a microcomputer, the

microprocessor acts as the central processing unit.

Figure 1.7 shows the block diagram of microcom-

puter. Architecture of microprocessors is explained

in this chapter.

The microprocessor is a multipurpose, programmable, and clock-driven integrated circuit. This IC can read

binary instructions from any storage device called memory. It also accepts binary data as input, processes data

according to instructions, and provides results as output.

The microprocessor is the Central Processing Unit (CPU) of digital com-

puters and it is constructed with IC technology. Figure 1.8 shows the block

diagram of a microprocessor. The microprocessor has a digital circuit for data

handling and computation under program control. The microprocessor is a

data-processing unit. Data processing includes both computation and data

handling. Computation is performed by logic circuits called the Arithmetic

Logic Unit (ALU). The ALU is used to perform Add, Subtract, AND, OR,

XOR, Compare, Increment, and Decrement functions. The ALU cannot

perform any functions without control signals. In order to process data, the

microprocessor must have control logic which instructs the microprocessor

how to decode and execute the program. A program is a set of instructions

required by a computer to perform any task.

Microprocessor

Memory Output Devices
(O/P)

Input Devices
(I/P)

Microprocessor

ALU Registers

Timing
and Control Unit

The control logic sends signals to the microprocessor and instructs how to operate the stored instructions

in memory. Figure 1.9 shows the operation technique of a microprocessor. There are four steps of operation.

In Step 1, the microprocessor fetches an instruction and in the next step, the control logic decodes what the

instruction has to do. Then decoding is done in the third step and in the last step, the microprocessor executes

the instruction.

The microprocessor always operates in binary digits 0 and 1, known as bits. Bit is an abbreviation

for ‘binary digit’ which can be represented in terms of voltages. The microprocessor recognizes and

processes a group of bits called word. Microprocessors are classified according to their word length such

as 8-bit, 16-bit, 32-bit and 64-bit microprocessors. Microprocessor ICs are programmable so that instruc-

tions can be executed by a microprocessor to perform given tasks within its capability. The instructions are

stored in a storage device which is called the memory, and the microprocessor can read instructions from the

memory.

Step_1: Microprocessor fetches an instruction from memory

Step_2: Control logic decodes what the instruction has to do

Step_3: Decoding

Step_4: Microprocessor executes the instruction and sends result at output

Generally, the words ‘microprocessor’ and ‘micro-

computer’ are used to correspond to the same thing,

but in fact these words have different meanings.

The microprocessor is an Integrated Circuit (IC)

developed on LSI or VLSI technology. It is the core

of any computer system, but a microprocessor by

itself is completely useless, until external peripheral

devices are connected with it to enable it to inter-

act with the outside world. The microcomputer is

a complete computing system and it is built with a

microprocessor, input/output devices and memory

(RAM and ROM). The schematic block diagram

of a microcomputer is shown in Fig. 1.10. The

detailed architecture of a microcomputer is illus-

trated in Fig. 1.11.

Microprocessor

Input Devices

Output Devices

Memory (RAM and ROM)

Microprocessor

ALU Registers

Timing and Control Unit

Input
Devices

Output
Devices

Address Bus

Control Bus

Data Bus

S
y
s
te
m
B
u
s

ROM R/WM

Memory

The ALU performs arithmetic operations such as addition,

subtraction, multiplication and division, and logic operations, namely, AND, OR, XOR, Complement, Rotate

and Shift. After the operations, results must be stored either in a specified register or in the memory.

The microprocessor has various general-purpose registers such as B, C, D, E, H, L, and the

Accumulator (A). These registers are used to store data and addresses temporarily during the execution of a

program.

The timing and control unit provides the necessary timing and control

signals to perform any operation in the microcomputer. Actually, it controls the flow of data between the

microprocessor and memory/peripheral devices.

The input devices transfer data in binary from the outside world to the microprocessor.

The most commonly used input devices are the keyboard, switches, mouse, scanner, and analog-to-digital

converter.

The output devices transfer data from the microprocessor to the outside world,

e.g, printers, plotters, monitors, and magnetic tapes.

The memory unit stores the binary information such as instructions and data, and provides

that information to the microprocessor for processing. To execute any instruction, the microprocessor reads

instructions and data from memory. After the computational operations in the ALU, microprocessor again

stores results in memory for further use.

The microprocessor always

communicates with input/output devices and memory via some path called the system bus. The system bus

consists of address bus, data bus and control bus. Address bus is used to locate any input/output devices and

memory. Data bus is used to transfer data in binary form between the microprocessor and peripherals. The

microprocessor communicates with only one peripheral at a time. The timing signals are provided by the

control bus of the microprocessor.

Usually, the function of microprocessors is to process or manipulate data. Except data manipulations, the

processor is used to read data and instructions from the memory, read and write data to the memory, read data

from input devices and write data into output devices. To perform these operations, the processor communi-

cates with the memory and I/O devices through the address bus, data bus and control bus.

The address bus carries the address information from the processor to locate the memory as well as I/O

devices. This bus is unidirectional.

The data bus carries the data between the processor and peripheral devices. This bus is bi-directional.

The control bus is used to carry control/status information. This bus is bi-directional. Figure 1.12 shows

the interaction between processors and memory and I/O devices using address bus, data bus and control bus.

CPU
Address Bus

Microprocessor
Input/Output

Device

Data Bus

Control Bus

Memory

Depending upon the number of data buses and memory, there are three types of processor architecture

such as

 (i) Von Neumann architecture

 (ii) Harvard architecture

 (iii) Super Harvard architecture

Figure 1.13 shows the Von Neumann architecture of processors and this architecture is most commonly used

in processors. In this architecture, one memory chip is used to store both instructions and data. The processor

interacts with the memory through address and data buses to fetch instructions as well as data.

CPU

Address Bus

Data Bus

Memory
(Instruction
and Data)

Figure 1.14 shows the Harvard architecture of a processor. In this processor architecture, two separate mem-

ory blocks, namely, program memory and data memory are used. The program memory is used to store only

instructions and data memory is used to store data. The program memory address bus is used to locate the

program memory and through program memory data bus, the processor can write/read instructions to/from

memory. Similarly, the data memory address bus is used to locate data memory and the data memory data

bus can be used to access the data memory. Consequently, this architecture is efficient than Von Neumann

architecture as the instructions and data will be accessed very fast.

CPU

Address Bus

Data Bus

Address Bus

Data Bus

Data memory data bus

Program memory data bus

Program memory address bus Data memory address bus

Data Memory
(Data)Program Memory

(Instruction)

Figure 1.15 shows the super Harvard architecture which is the modified Harvard Architecture Generally, the

data memory is accessed more frequently than the program memory in Harvard architecture. In the super

Harvard architecture, the program memory can store secondary data to balance the load on both program

memory and data memory. The instruction cache is in-built within the processor. This architecture is most

commonly used in Digital Signal Processing (DSP).

The history of computation began with the abacus. The abacus is a manual device. In an abacus, numerical

information can be represented in physical form, and this information can also be manipulated in physical

form to produce the necessary output. Even a thousand years before Christ, the abacus was very well-known

and extensively used for arithmetical calculations. Consequently, it was known as the first actual machine

which was used to perform addition, subtraction, division and multiplication.

In 1643, Blaise Pascal, a French mathematician and philosopher, invented the first mechanical calculator

to perform addition as well as subtraction. In the 17th century, the multiplication and division facilities were

added by the German mathematician Gottfried Leibniz.

In 1832, the Difference Engine was developed by Charles Babbage, a professor of mathematics at

Cambridge University. This machine could add, subtract, multiply, divide and perform a sequence of steps

automatically. In 1887, Herman Hollerith invented a device for automatic census tabulation. The first large-

scale electronic digital computer was designed and constructed at the Moore school of Electrical Engineering

of the University of Pennsylvania. In 1943, JW Mauchly and J Presper Eckert prepared a proposal for the

US army to build an Electronic Numerical Integrator and Computer (ENIAC), and subsequently they started

construction of the ENIAC. In 1944, the ENIAC team members began work on stored program computers

Then ENIAC was finally ready in 1946. It occupied a room approximately of 12 m × 6 m. It contained nearly

18000 vacuum tubes and its power consumption was about150 kW. It operated on numbers with ten decimal

digits. Addition could be carried out at the rate of 5000 calculations per second, multiplication at 350 per

second and division at 166 per second. It was able to store upto 20 different numbers and recall them imme-

diately whenever required. After that, John Von Neumann developed an improved version of ENIAC with the

help of all ENIAC team members.

In 1949, the Electronic Delay Storage Automatic Calculator (EDSAC) was developed by Maurice Wilkes

at University Mathematical Laboratory, Cambridge University. In 1951,the Universal Automatic Computer

was built. In 1952, the Electronic Discrete Variable Automatic Computer (EDVAC) was developed by JW

Mauchly and J Presper Eckert. This was the first electronic machine to use binary arithmetic. It operated on

binary numbers of 43 digits and could store over 1000 numbers for immediate recall. This was also the first

machine to use an external store using magnetic recording.

After World War II, scientists made great achievements in solid-state technology development and

invented the transistor, i.e., a solidstate device, in 1948, at Bell Laboratories. Initially, germanium was the

chief material for making the early semiconductor devices such as transistors. The use of silicon lowered

CPU

Address Bus

Data Bus

Address Bus

Data Bus

Data memory data bus

Program memory data bus

Program memory address bus Data memory address bus

Data Memory
(Data)Program Memory

(Instruction and Data)

Instruction
Cache

costs, because silicon is much more plentiful than germanium. The mass-production methods made transis-

tors common and inexpensive. Then computer designers started to work on how to use transistors place of

vacuum tubes in the late 1950s.

In the early 1960s, the American firm International Business Machines (IBM) manufactured huge solid-

state scientific computers named IBM 7090 using solidstate technology. These systems required air-condi-

tioned rooms. Usually, these systems were used for commercial and scientific applications to process large

amounts of data. The cost of these computers was very high. So, the work on building small computers had

been started. In the 1960s, the semiconductor industry developed a way to integrate a number of transistors on

one silicon wafer. The transistors were connected together with small metal traces. When the transistors were

connected together, they became a circuit which performed different functions such as gate, flip-flop, register,

counter or adder. This new technology created the basic semiconductor building blocks. The building blocks

or circuit modules made this way were known as an Integrated Circuit (IC). From then on, integrated circuits

became feasible and the integration has been developed with time. There are three different stage of develop-

ment of ICs from the period 1961 to 1972, namely, Small Scale Integration (SSI), Medium Scale Integration

(MSI) and Large Scale Integration (LSI). In general, an SSI chip has dozens of transistors with their associated

circuit components, but an MSI chip has hundreds of transistors and an LSI chip has thousands of transistors.

Due to development of SSI, MSI and LSI ICs, desktop computers were built at the end of the 1960s.

These desktop computers were called minicomputers which were used in scientific applications. In the late

1960s and early 1970, Large Scale Integration (LSI) became common. Large-scale integration was making

it possible to produce more and more digital circuits on a single IC. In 1965, Gordon More noted that the

number of transistors on a chip doubled every 18 to 24 months. He made a prediction that semiconductor

technology will double its effectiveness every 18 months. After that the next stage of development was started

by the active research and development effort on solid-state technology. This stage of development was

called Very Large Scale Integration (VLSI). By the 1980s, VLSI gave us ICs with over 100,000 transistors.

The microprocessor is an integrated circuit and it is the combination of solid-state technology develop-

ment and the advancing computer technologies. It was developed in the early 1970s using LSI. It performs

both control and processing functions having the low cost of a device and the flexibility of a computer.

In 1971, the Intel Corporation introduced the first 4-bit microprocessor 4004 which was developed using

LSI technology. In 1972, the 8-bit microprocessor 8008 was produced by Intel. These microprocessors were

not able to survive as general-purpose microprocessors due to their limitations and low performances. The

first general-purpose 8-bit microprocessor 8080 was developed in 1974 by Intel. The microprocessor 8085

followed 8080 with some additional features. The limitations of 8-bit microprocessors were low operat-

ing speed, limited memory-addressing capability, less number of general-purpose registers and less number

of instructions. To overcome all limitations of the 8085 microprocessor, computer scientists and designers

worked to develop more powerful processors in terms of architecture, operating speed, memory and instruc-

tion set. As a result, a 16-bit microprocessor 8086 was developed in 1978.

Thereafter, the 80186 processor was designed with few more instructions and additional on-chip circuits

such as clock generators, timers, DMA controllers and interrupt controllers, but the addressing capability was

same as the 8086 microprocessor in 1982. But due to need of large memory in advance applications, proces-

sor designers put effort to design advanced microprocessors. The 80286 microprocessor is the first advanced

microprocessor with proper memory management and protection abilities. It was developed by Intel in 1982

and it has an address capability of 16 Mbyte and its operating frequency is 12.5 HMz. The semiconductor

technology could support the fabrication of a CPU with a 32-bit word size and higher operating frequency.

Hence, the 32-bit processor 80386 was developed. The first 32-bit processor was 80386. The numerical pro-
cessor 80387 is compatible with 80386. In 1989, the 80486 was developed by Intel which combines all the
features of 80386 after incorporating the math processor 80387 inside processor.

After the 80486 microprocessor, the Pentium family of processors was developed. The name Pentium
was derived from the Greek pente, meaning ‘five’, and the Latin ending -ium. The term ‘Pentium proces-
sor’ refers to a family of microprocessors that share a common architecture and instruction set. The original
Pentium processor was a 32-bit microprocessor produced by Intel. The first Pentium processors, P5, were
developed in 1993. The P5 processor operated at a clock frequency of either 60 MHz or 66 MHz. This pro-
cessor had 3.1 million transistors. The next version of the Pentium processor family, the P54C processor, was
introduced in 1994.

In 1996, the Pentium MMX was introduced with the same basic micro-architecture with MMX instruc-
tions, and larger caches. The P55C (or 80503) Pentium MMX was introduced by Intel in October 1996 and
it was based on the P5 core. It featured a new set of 57 MMX instructions intended to improve performance
on multimedia tasks.

The Pentium Pro is a sixth-generation x86 microprocessor developed and introduced by Intel in
November 1995. It was based on the P6 micro-architecture. While the Pentium and Pentium MMX had 3.1
and 4.5 million transistors, respectively, the Pentium Pro contained 5.5 million transistors.

The Pentium II processors refer to Intel’s sixth-generation micro-architecture called ‘Intel P6’, intro-
duced in May 1997. This processor consisted of 7.5 million transistors. The Pentium II was an improved ver-
sion of the first P6-generation core of the Pentium Pro CPUs, which contained about 5.5 million transistors.
In early 1999, the Pentium II was superseded by the Pentium III.

The Pentium III processors were based on the sixth-generation Intel P6 microarchitecture introduced
in February 1999. These processors were very similar to the earlier Pentium II microprocessors with the
addition of the SSE instruction set to accelerate floating point and parallel calculations. The first Pentium
III variant was the Katmai, Intel 80525. It was first released at speeds of 450 and 500 MHz. Two more ver-
sions were released: 550 MHz in May 1999 and 600 MHz in August 1999. It was built on a 0.18 μm process.
Pentium III Coppermines running at 500 to 733 MHz were first released in October 1999. From December
1999 to May 2000, Intel released Pentium IIIs running at speeds of 750, to 1000 MHz (1 GHz). The third
revision, Tualatin (80530), was a trial for Intel’s new 0.13 μm process. Pentium III Tualatins were introduced
during 2001 and these processors could operate at speeds of 1.0 to 1.4 GHz. Tualatin performed quite well,
especially in variations which had 512 KB L2 cache.

The Pentium III was eventually superseded by the Pentium 4. The Pentium 4 brand refers to Intel’s line
of single-core mainstream desktop and laptop central processing units developed in November 2000. This
processor had the 7th-generation micro-architecture, called NetBurst. The original Pentium 4, codenamed
‘Willamette’, ran at 1.4 and 1.5 GHz and was released in November 2000 on the Socket 423 platform. In
2004, the initial 32-bit x86 instruction set of the Pentium 4 microprocessors was extended by the 64-bit x86-
64 set. Pentium 4 CPUs introduced the SSE2 and, in later versions, SSE3 instruction sets were released to
accelerate calculations, transactions, media processing, 3D graphics, and games. In 2005, the Pentium 4 was
complemented by the Pentium D and Pentium Extreme Edition dual-core CPUs.

A dual-core processor is a CPU with two separate cores on the same die, each with its own cache. It is the
equivalent of getting two microprocessors in one. The dual core processor is the first double core technology
from Intel. It is a better performer than all previous processors in the Pentium series. A maximum of 2.33
GHz is available for model no. T2700 with a 2 MB L2 cache and a maximum of 667 MHz speed. The AMD
Athlon 64 X2 Dual-Core Processor was developed in 2007. This processor can support SSE, SSE2, SSE3,
MMX™, 3D technology and legacy x86 instructions.

Intel Core 2 Extreme Quad-Core Processor QX6000 was introduced by Intel in 2007. This processor is

designed to deliver performance across applications and usages in Internet, image processing, video content

creation, 3D, CAD, games, speech, multimedia and multitasking user environments. Intel 64 architecture

enables the processor to execute operating systems and applications written to take advantage of the Intel 64

architecture. Quad-core processors are available in the FC-LGA6 package with a 2x4 MB L2 cache.

The Intel Core 2 Duo processor uses architecture to create two cores on a single die or in other words,

there are two chips. It has better performance than dual-core processors in almost all benchmarking tests.

They can be easily overclocked up to 4.0 GHz with suitable coolers. The Intel Core 2 Duo processor E8000

and E7000 series are 64-bit processors that maintain compatibility with IA-32 software and are based on

the Enhanced Intel Core micro-architecture. These processors use Flip-Chip Land Grid Array (FC-LGA8)

package technology, and plug into a 775-land surface mount, Land Grid Array (LGA) socket. These proces-

sors are based on 45 nm process technology. The Intel Core 2 Duo processor E8000 series features a 1333

MHz Front Side Bus (FSB) and 6 MB of L2 cache. The Intel Core™2 Duo processor E8300 and E7200 were

released in April 2008. The Intel Core 2 Duo processor E7600 was developed in June 2009. These processors

are used in Internet audio and streaming video, image processing, multimedia, and multitasking user envi-

ronments. The differences between microprocessors are word length, size of the memory and speed at which

the microprocessor can execute instructions. The comparison between different microprocessors is shown in

Table 1.1. Figure 1.16 shows the evolution of processors with respect to the year of development and number

of transistors in the processor.

Microprocessor No. of Data bus/ Address Memory Clock Pin Year of

 Transistors Word bus address frequency development

 length range

4004 2300 4-bit 10-bit 640 B/1 KB 75 kHz 16 1971

8008 3500 8-bit 14-bit 16 KB 0.5–.8 MHz 18 1972

8080 6000 8-bit 16-bit 64 KB 2 MHz 40 1974

8085 6500 8-bit 16-bit 64 KB 3–6 MHz 40 1976

8088 29 K 8-bit/16-bit 20-bit 1 MB 5–10 MHz 40 1980

8086 29 K 16-bit 20-bit 1 MB 5–10 MHz 40 1978

80186 29 K 16-bit 20-bit 1 MB 5–16 MHz 68 1982

80286 134 K 16-bit 24-bit 16 MB real 6–12.5 MHz 68 1982
 4 GB virtual

80386 275 K 32-bit 24/32-bit 4 GB real 20–33 MHz 132 1985
 64 TB virtual

80486 3200 K 32-bit 32-bit 4 GB real 25–100 MHz 168 1989
 64 TB virtual

Pentium 3200 K 32-bit 32-bit 4 GB real 60–200 MHz 264 1993

Pentium Pro 5500 K 32-bit 36-bit 64 GB 150–200 MHz 387 1995

Pentium II 7500 K 32-bit 36-bit 64 GB 233–400 MHz 387 1997

Pentium III 9500 K 32-bit 36-bit 64 GB 600–1000 MHz 387 1999

Pentium 4 55000 K 32-bit 36-bit 64 GB 1.3–2 GHz 478 2001

Dual-Core 1.72 billion 64-bit 40-bit 1 TB 2.93 GHz 2007
Processor
(Athlon)

Core 2 Duo 410 million 64-bit 40-bits 1 TB 3.16 GHz 775 2008
processor E8500 transistors

200,000,000

100,000,000

10,000,000

100,000

10,000

1,000

N
o
.
o
f
T
ra
n
s
is
to
rs

Quad Core

Core 2 Duo
Core 2 Quad

Dual Core itanium 2

P - 4

P - III

P - II
Pentium Processor

Pentium

80486

80286

80386

80186

8086

8008
8085

8080

4004

1970 1975 1980 1985 1990 1995 2000 2005 2008

Year

1,000,000

The microprocessor started as a 4-bit device. It has progressed to an 8-bit, a 16-bit, a 32-bit and now a 64-bit

device. A microprocessor with a longer word length will solve more problems at a faster rate. Therefore, a

longer word length should give a better and faster solution to all problems. However, the consideration of

product cost is important and it has been increased by number of data bits. The applications of 4-bit, 8-bit and

other microprocessors are given below:

The 4-bit microprocessors are very suitable for

simple applications, namely, children’s toys, calculators, microwave ovens, telephone diallers, etc. The 4-bit

microprocessor based system cost is low. Generally, we will find the 4-bit microprocessor in

 Toys: Robots, remote-controlled cars, handheld games

 Calculators: Financial, scientific, database

 Power Tool Controllers: Speed controls, sequencers, measurement devices

 Computer Peripherals: Keyboard scanners, simple printers, clocks

 Other Simple Applications: Microwave ovens, telephone diallers, smart thermostats, shortwave

scanners, TV remote controls

The 8-bit microprocessor-based system is more

costly than a 4-bit microprocessor-based system. It is used where memory requirement is large and fast

operation is also required. The examples of 8-bit microprocessor applications are given below:

 Toys: Video games, programmable robots

 Complex Intelligent Product Controllers: VCR control and programming, security systems, and

lighting system controllers

 Computer Peripherals: Video display, higher-speed printers, modems, plotters, and communication

controllers

 Industrial Controllers: Robotics, processing control, sequence control and machine tool control

 Instruments: Logic analyzers, communication analyzers, disk-drive testers, digital oscilloscopes,

and smart voltmeters

The 16-bit, 32-bit

and 64-bit microprocessors are used in graphic oriented CAD and CAM systems. The 32-bit and 64-bit

microprocessors feature very fast operation, extreme computing power, and megabytes, or even gigabytes, of

main memory-addressing space. The list of applications where microprocessors have been already used are

illustrated below:

 Communications: Data, voice, mobile, electronic switching, routing

 Intelligent Instruments: CRT terminals, digital multimeters, synthesizers, oscilloscopes and coun-

ters. Microcontrollers are used in military equipment, radars, tanks, etc.

 Automatic Test Equipment: Automatic test equipment at all levels from development, fabrication,

component testing assembly, PCB, module and system testing

 Electrical Power System: Data acquisition, logging, protection, metering, control and processing,

automatic control of generators, voltage and fuel control of furnaces in a power plant

 Industrial Process Control: Instrumentation, monitoring and control, data acquisition, logging and

processing

 Traffic Control: Traffic light control for road crossing

 Electronic Games: Various games possible, quizzes and self-teaching

 Household Appliances: Cooking ovens, washing machines and other appliances have started using

microprocessors since they replace much electronic hardware at lower cost

 Medical Electronics: Quick patient check-up, diagnosis, blood analysis, ECG, etc.

 Database Management: Computers are used for word processing, database management, stor-

ing information, to connect any institution/organisation to other institutions/organisations through

Internet

A microcontroller is a small computer on a single Integrated Circuit (IC) containing a processor, memory, and

programmable input/output ports. The program memory, in the form of flash or ROM, is also incorporated on

a chip and a small amount of RAM is also included on a single chip. Microcontrollers are specially designed

for embedded applications.

After the innovation of 8080 microprocessors in 1975, Intel Corporation started research on developing

an IC which could be used as a microprocessor and should have on-chip data storage. Consequently, Intel

developed the first dedicated microcontroller (MCU) chip 8048 IC in 1976. The 8048 IC, was known as

MCS-48 microcontroller and it had only 1-byte instructions.

In 1980, Intel had developed an 8-bit microcontroller named the 8051 microcontroller. It had 128 bytes

of RAM, 4 K bytes of on-chip ROM, two timers, four parallel ports with each port 8-bits wide and a serial

port. This microcontroller had 2-byte instructions. Thereafter, the 8052 microcontroller was developed. This

microcontroller had all the standard features of 8051 with an extra 128 bytes of RAM, 4K bytes of ROM

and an extra timer. Therefore 8052 had 256 bytes of RAM, 8 K bytes of ROM and three timers. The 8031

microcontroller is also a member of the 8051 family. This microcontroller has all features of 8051 microcon-

troller except 0 K bytes on-chip ROM. Table 1.2 shows the salient features of 8051, 8052, 8031 and 8032

microcontrollers.

Microcontroller ROM RAM No. No. No. No. of Full

IC (on-chip (on chip of of pins of I/O vector duplex

 program data timers in DIP pins interrupts serial I/O

 memory) memory) port

8051 4K bytes 128 bytes 2 40 32 5 1

8052 8K bytes 256 bytes 3 40 32 6 1

8031 0K bytes 128 bytes 2 40 32 5 1

8032 0K bytes 256 bytes 3 40 32 6 1

The 8051 microcontroller was developed by incorporating different types of memory such as UV-EPROM,

NV-RAM and flash. The UV-EPROM version of the 8051 microcontroller is called the 8751 microcontroller

family. The NV-RAM version of the 8051 microcontroller was called DS500 and it was manufactured by

Dalas semiconductor. The flash ROM version is known as AT89C51 family microcontroller, and it is man-

ufactured by Atmel corporation. This microcontroller is called Amtel family microcontroller. The Atmel

microcontroller family such as AT89CXX, AT89CXX51 are most widely used in industry. The AT 89C51 has

4K bytes of flash ROM and it is extensively used in development of small projects. The most popular Atmel

microcontrollers are AT89C51, AT89C52, AT89C1051, AT89C2051, AT89C4051, and AT89LV52 and their

features are given in Table 1.3.

Microcontroller Flash (on- RAM (on- No. of No. of No. No. of Full duplex VCC

IC chip program chip data timers pins in of I/O interrupts serial I/O

 memory) memory) DIP pins port

AT89C51 4K bytes 128 bytes 2 40 32 6 1 5 V

AT89C52 8K bytes 256 bytes 3 40 32 6 1 5 V

AT89C1051 1K bytes 64 bytes 1 20 15 3 1 3 V

AT89C2051 2K bytes 128 bytes 2 20 15 6 1 3 V

AT89C4051 4K bytes 128 bytes 2 20 15 6 1 3 V

AT89LV52 8K bytes 256 bytes 3 40 32 8 1 3 V

The Peripheral Interface Controller (PIC) family of microcontrollers was developed by Microchip in

1985. PIC microcontrollers are based on Harvard architecture and Reduced Instruction Set (RISC). During

1997, 8-bit microcontrollers were introduced by Atmel, based on reduced instruction set. The 8-bit PIC

microcontrollers such as PIC16CXX, PIC17CXX were also developed by microchip and manufactured using

CMOS Technology. These microcontrollers are extensively used in industry due to their very good perfor-

mance, low cost and small size. The most commonly used PIC microcontrollers are PIC16C54, PIC16C55,

PIC16C56, PIC16C57, PIC16C71, PIC17C42A, PIC17C43, PIC17C44 and PIC17C752 and their features

are illustrated in Table 1.4.

Microcontroller EPROM RAM No. of No. of No. of No. of No. of ADC

IC (on-chip (on-chip instructions pins in I/O pins timers channels

 program data DIP

 memory) memory)

PIC16C54 512 bytes 25 bytes 33 single-word 18 12 1+ Watchdog -
 instructions timer(WDT)

PIC16C55 512 bytes 24 bytes 33 single-word 28 20 1+ Watchdog -
 instructions timer(WDT)

PIC16C56 1K bytes 25 bytes 33 single-word 18 12 1+ Watchdog -
 instructions timer(WDT)

PIC16C57 2K bytes 72 bytes 33 single-word 28 20 1+ Watchdog -
 instructions timer(WDT)

PIC16C71 1K×14 36 bytes 35 single-word 18 13 1+ Watchdog 4 channels
 bytes instructions timer(WDT) 8-bit ADC

PIC17C42A 2K bytes 232 bytes 58 single-word 40 33 4 -
 instructions

PIC17C43 4K bytes 454 bytes 58 single-word 40 33 4 -
 instructions

PIC17C44 8K bytes 454 bytes 58 single-word 40 33 4 -
 instructions

PIC17C752 8K×16 bytes 678 bytes 58 single-word 40 33 4 12-channels

 instructions 10-bit ADC

Nowadays microcontrollers are most commonly used in industrial and household applications. The major

areas of applications are as follows:

 Measurement of any physical quantity such as pressure, force, velocity, acceleration, displacement,

force, stress, strain, water level

 Microcontroller-based laboratory instruments to measure voltage, current, phase angle, power factor,

frequency, resistance, power, and energy, etc.

 Robot-arm position control

 Angular speed measurement

 Temperature measurement

 dc motor and stepper motor control

 Induction motor control

 Traffic light control system

 Automobile applications

 Household appliances such as washing machine, light control, camera, TV, VCR and video games,

etc.

 Office equipments such as photocopying machines, telephones, fax machines, printers, and security

system, etc.

 In this chapter, the microprocessor and microcontroller are properly defined.

 The basic microprocessor architecture and operation of its components are discussed.

 The genesis and evolution of microprocessors from 4004 processor to Pentium and Core 2 Duo proces-

sor E8500 are explained elaborately. The comparative study of different microprocessors: 4004, 8085,

8086, 80186-80486, Pentium and Core 2 Duo have been presented in tabular form.

 The evolution of microcontrollers are explained briefly and comparative studies of salient features of

8051 and its derivatives AT89C51, AT89C52, AT89C1051, AT89C2051, AT89C4051, and AT89LV52

microcontrollers and PIC family microcontrollers are presented in tabular form.

 The applications of microprocessors and microcontrollers are also discussed in this chapter.

1.1 The first microprocessor was

 (a) 4001 (b) 4002

 (c) 4003 (d) 4004

1.2 The 64-bit processor is

 (a) Pentium (b) Pentium II

 (c) Pentium III (d) Pentium 4

1.3 The memory capacity of 8085 microprocessor

is

 (a) 64K (b) 1 MB

 (c) 16 MB (d) 640 B

1.4 The address bus of 80186 microprocessor is

 (a) 16-bit (b) 20-bit

 (c) 24-bit (d) 32-bit

1.5 The operating frequency of 8086 microprocessor

is about

 (a) 750 KHz (b) 3–6 MHz

 (c) 5–10 MHz (d) 3-6 GHz

1.6 The data bus of Pentium II and Pentium III

processors is

 (a) 16-bit (b) 20-bit

 (c) 24-bit (d) 32-bit

1.7 The first electronic computer was

 (a) ENIAC (b) EDVAC

 (c) EDSAC (d) Difference Engine

1.8 More than ten thousand transistors are exist

in

 (a) LSI ICs (b) MSI ICs

 (c) SSI ICs (d) VLSI ICs

1.9 The memory capacity of a Pentium Pro

microprocessor is

 (a) 64 KB (b) 64 MB

 (c) 64 GB (d) 640 B

1.10 Which of the following processors has an in

built math processor?

 (a) 8086 (b) Pentium-4

 (c) 8085 (d) 8088

1.11 A microcontroller has

 (a) ROM (b) RAM

 (c) I/O ports (d) all of these

1.12 A general-purpose microprocessor requires

which of the following devices to operate

properly?

 (a) ROM (b) RAM

 (c) I/O ports (d) All of these

1.13 The 8051 microcontroller is a ____ bit processor

 (a) 4-bit (b) 8-bit

 (c) 16-bit (d) 32-bit

1.14 The 8052 microcontroller has

 (a) 20 pins for I/O (b) 32 pins for I/O

 (c) 35 pins for I/O (d) 40 pins for I/O

1.1 What is the first microprocessor? Which company built that microprocessor?

1.2 Define SSI, MSI, LSI and VLSI.

1.3 Define microprocessor, microcontroller and microcomputer.

1.4 Write the features of 8051 and 8052 microcontrollers.

1.5 List the components of a microprocessor and microcomputer.

1.1 Write the difference between microprocessor and microcomputer.

1.2 Explain briefly the genesis of microprocessors.

1.3 What is ALU? Explain the following terms: Registers, Control unit, and Input and Output devices.

1.4 Draw the architecture of a microcomputer and explain briefly.

1.5 Write the comparison between the following processors

 (i) 8085 and 8086 (ii) 80286 and 80486 (iii) Pentium II and Pentium 4

1.6 Give a list of applications of the following processors

 (i) 4-bit processors (ii) 8-bit processors (iii) 16-bit processors

1.7 Discuss the evaluation of microprocessors and microcontrollers.

1.8 What is the major difference between 8051 and 8052 microcontrollers?

1.9 List the applications of microcontrollers.

 1.1 (d) 1.2 (d) 1.3 (a) 1.4 (b) 1.5 (c) 1.6 (d) 1.7 (a) 1.8 (a) 1.9 (c)

 1.10 (b) 1.11 (d) 1.12 (d) 1.13 (b) 1.14 (b)

The Intel 8085/8085AH is a microprocessor, i.e., an 8-bit parallel central processing unit implemented in sili-
con gate NMOS/HMOS/C-MOS technology. It is available in a 40-pin IC package fabricated on a single LSI
chip. It is designed with higher processing speed, ranging from 3 MHz to 5 MHz Lower power consumption
and power-down mode is provided, thereby offering a high level of system integration. This processor uses
a multiplexed address/data bus. The address bus is split between the 8-bit address bus and the 8-bit data bus.
The on-chip address latch allows a direct interface with the processor. The features of 8085 microprocessors
are given below:

 Power-down mode (HALT-HOLD)

 Low power dissipation: about 50 mW

 Single +3 to +6 V power supply

 Operating temperature from –40 to + 85°C

 On-chip clock generator incorporating external crystal oscillators

 On-chip system controller

 Four-vectored interrupt including one non-maskable

 Serial input/Serial output port

 Addressing capability to 64K bytes of memory

 TTL compatible

 Available in 40-pin plastic DIP package

The functional block diagram of Intel 8085 is depicted in Fig. 2.1. It consists of three main sections: an arith-
metic and logic unit, timing and control unit and a set of registers. These important sections are described in
the subsequent pages.

S
ID

S
O
D

S
e
ri
a
l
I/
O

C
o
n
tr
o
l

8
-B

it
In
te
rn
a
l
D
a
ta

B
u
s

In
te
rr
u
p
t
C
o
n
tr
o
l

R
S
T

5
.5

6
.5

7
.5

T
R
A
P

IN
T
R

IN
T
A

A
c
c
u
m
u
la
to
r

T
e
m
p
o
ra
ry

R
e
g
is
te
r

F
la
g

F
lip

-F
lo
p
s

A
ri
th
m
e
ti
c

L
o
g
ic

U
n
it

(A
L
U
)

In
s
tr
u
c
ti
o
n

R
e
g
is
te
r

In
s
tr
u
c
ti
o
n

D
e
c
o
d
e
r

B
R
E
G

D
R
E
G

H
R
E
G

C
R
E
G

E
R
E
G

L
R
E
G

S
ta
c
k
P
o
in
te
r

P
ro
g
ra
m

C
o
u
n
te
r

In
c
re
m
e
n
te
r/
D
e
c
re
m
e
n
te
r

A
d
d
re
s
s
L
a
tc
h

R
e
g
is
te
r

A
rr
a
y

A
d
d
re
s
s
B
u
ff
e
r

D
a
ta
/A
d
d
re
s
s

B
u
ff
e
r

A
–
A

A
d
d
re
s
s
B
u
s

1
5

8
A
D

A
D

A
d
d
re
s
s
/D

a
ta

B
u
s

7
0

–

X
1

X
2

P
o
w
e
r
D
o
w
n

T
im

in
g
a
n
d
C
o
n
tr
o
l

C
o
n
tr
o
l

S
ta
tu
s

D
M
A

R
e
s
e
t

C
L
K

O
U
T

R
E
A
D
Y

R
D

W
R

A
L
E

S
0

S
1

IO
/M

H
O
L
D
H
L
D
A
R
E
S
E
T
IN

R
E
S
E
T
O
U
T

C
lo
c
k

G
e
n
e
ra
to
r

Generally, a microprocessor performs four different operations: memory read, memory write, input/output

read and input/output write. In the memory read operation, data will be read from memory and in the memory

write operation, data will be written in the memory. Data input from input devices are I/O read and data out-

put to output devices are I/O write operations.

The memory read/write and Input/Output read and write operations are performed as part of communica-

tion between the microprocessor and memory or Input/Output devices. Microprocessors communicate with

the memory, and I/O devices through address bus, data bus and control bus as depicted in Fig. 2.2. For this

communication, firstly the microprocessor identifies the peripheral devices by proper addressing. Then it

sends data and provides control signal for synchronization.

Control Bus

Address Bus

Memory
Output
Device

Data
Input

Data
output

Input
Device

Data Bus

8085
Microprocessor

Figure 2.3 shows the memory read operation. Initially, the microprocessor places a 16-bit address on

the address bus. Then the external decoder logic circuit decodes the 16-bit address on the address bus and

the memory location is identified. Thereafter, the microprocessor sends MEMR control signal which enables

the memory IC. After that, the content of the memory location is placed on the data bus and also sent to the

microprocessor. Figure 2.4 shows the data flow diagram for data transfer from the memory to microprocessor.

The step-by-step procedure of data flow is given below:

 The 16-bit memory address is stored in the program counter. Therefore, the program counter sends

the 16-bit address on the address bus. The memory address decoder is decoded and identifies the

specified memory location.

 The control unit sends the control signal RD in the next clock cycle and the memory IC is enabled.

RD is active for two clock periods.

 When the memory IC is enabled, the byte from the memory location is placed on the data bus AD7–

AD0. After that data is transferred to the microprocessor.

M
e
m
o
ry
D
e
c
o
d
e
r

Data 1
Data 2
Data 3

Data Bus

Internal Data Bus

ALU
Instruction
Decoder

Control
Signal

B

D

H

C

E

L

Stock
Pointer

Program
Counter

Address Bus

RD

Data Bus

8085
Microprocessor

Address Bus

16-bit
Memory
Address

Memory Read

A –A15 0

D –D7 0

MEMR

Memory
IC

M
e
m
o
ry

D
e
c
o
d
e
r

Data 1
Data 2
Data 3

All arithmetic and logical operations are performed in the Arithmetic Logic Unit (ALU). The functioning of
the ALU is given in Fig. 2.5. The ALU functioning consists of Accumulator (A), Temporary Register (TR),
Flag Register (FR) and arithmetic logic unit. The temporary register is not accessible to the user. Therefore,
the user cannot read the content of TR. Actually, this register is used to store or load the operand during

arithmetic and logical operations. Accumulator, TR and flag register are explained in Section 2 2.5 in detail.
The ALU always operates with one or two operands. Generally, operands are available in general-purpose
registers or memory locations. The results after arithmetic and logical operations are stored in the accumula-
tor. The sequence of operations in ALU are given below:

 (i) One operand is in the A register.

 (ii) The other operand may be in the general-purpose register or memory location, which will be trans-
ferred to the temporary register.

 (iii) Then contents of the accumulator and temporary registers are considered as inputs of ALU and the
specified operation is carried out in the ALU.

 (iv) The result of ALU operation is transferred in the A register through internal data bus.

 (v) The content of the flag register will be changed depending on the result.

The arithmetic logic unit (ALU) performs the following operations:

 Addition

 Subtraction

 Logical AND

 Logical OR

 Logical EXCLUSIVE OR

 Complement

 Increment by 1

 Decrement by 1

 Rotate Left, Rotate Right

 Clear

Internal Data Bus

Accumulator
Temporary
Register

Flag Flip-Flops

Arithmetic
Logic
Unit

The control unit controls the operations of different units while the CPU generates timing sequence signals
for the execution of instructions. This unit controls the data flow between CPU and memory and CPU and
peripheral devices. This unit provides control, status, DMA and reset signals to perform any memory and
input–output related operations. Actually, it controls the entire operation of microprocessors. Therefore, the
timing and control unit acts as the brain of the microprocessor.

The Intel 8085 has six general-purpose registers to store 8-bit data and these registers are identified as B, C,
D, E, H and L. When two registers are combined, 16-bit data can be stored in a register pair. The only possible
combinations of register pairs are BC, DE and HL. These register pairs are used to perform 16-bit opera-
tions. There is an accumulator register and one flag register. The accumulator is an 8-bit register. Arithmetic
and logical operations are performed in the accumulator and after operation, the result will be stored in the
accumulator. In addition with the above registers, there are two 16-bit registers, namely, the Stack Pointer
(SP) and Program Counter (PC).

 One 8-bit accumulator (ACC) known as register A

 Six 8-bit general-purpose registers: B, C, D, E, H and L

 One 16-bit Stack Pointer (SP)

 One 16-bit Program Counter (PC)

 Instruction register

 Temporary register

 Program Status Word (PSW) Register

The accumulator is an 8-bit register, which is part of the Arithmetic Logic Unit
(ALU). This is identified as register A or ACC. It is used to store 8-bit data and to perform arithmetic as well
as logic operations. The final result of an operation performed in the ALU is also stored in the accumulator.

The general-purpose registers of the 8085 microprocessor are B,
C, D, E, H and L registers as shown in Fig. 2.6. These
registers are used to store 8-bit operands. To hold a 16-
bit data or 16-bit memory address location, two 8-bit
registers can be combined. The combination of two 8-bit
registers is known as a register pair. The only possible
combination register pairs of the 8085 microprocessor
are B-C, D-E and H-L. The programmer cannot form a
register pair by selecting any two registers of his choice.
The H-L register pair can be used as the address of
memory location whereas B-C and D-E register pairs
are used to store 16-bit data. During the execution
of the program, all general-purpose registers can be
accessed by program instructions and also used for data
manipulation.

General-Purpose
Register

Control Registers

Stack Pointer

Program Counter

Decrementer
Incrementer/

Address Latch

B C

D E

H L

In addition to the above general-purpose registers, the 8085
microprocessor has special-purpose registers, namely, Program Counter (PC), Stack Pointer (SP), Flags/
Status Registers (SR), Instruction Register (IR), Memory Address Register (MAR), Temporary Register
(TR), and Memory Buffer Register (MBR).

The program counter is a 16-bit special-purpose register. This is used to
hold the memory address of the next instruction which will be executed. Actually, this register keeps track
of memory locations of the instructions during execution of program. The microprocessor uses this register
to execute instructions in sequence. For this, the microprocessor increments the content of the program
counter.

The stack pointer is a 16-bit register, which is used to point the memory
location called the stack. The stack is a sequence of memory locations in the R/W memory. The starting of the
stack is defined by loading a 16-bit address into the stack pointer. Generally, the programmers use this register
to store and retrieve the contents of the accumulator, flags, program counter as well as general-purpose
registers during the execution of a program. The organization and application of stacks are incorporated in
Chapter 4.

The Arithmetic Logic Unit (ALU) includes five flip-flops, which are
set or reset after an ALU operation according to data conditions of the result in the accumulator and other
general-purpose registers. The status of each flip-flop is known as a flag. Therefore, there are five flags,
namely, Carry flag (CY), Parity flag (P), Auxiliary Carry flag (AC), Zero flag (Z), and Sign (S) flags. The
most commonly used flags are Carry(CY), Zero(Z) and Sign(S). Generally, the microprocessor uses these
flags to test data conditions.

For example, after addition of two 8-bit numbers, if the sum in the accumulator is larger than eight bits,
the flip-flop, which is used to indicate a carry, is set to one. So the Carry flag (CY) is set to1. If the result is
zero after any arithmetic operation, the Zero (Z) flag is set to one.

Figure 2.7 shows an 8-bit register, which indicates bit positions of different flags. This register is known
as flag register and it is adjacent to the accumulator. Though it is an eight-bit register, only five bit positions
out of eight are used to store the outputs of the five flip-flops. The flags are stored in the 8-bit register so that
the programmer can check these flags through an instruction. These flags are used in the decision-making
process of the microprocessor.

S Z AC P CY

D7 D6 D5 D4 D3 D2 D1 D0
Bit Position

S — Sign Flag

Z Zero Flag

AC Auxiliary Carry Flag

P Parity Flag

CS Carry Flag

—

—

—

—

× × ×

The arithmetic operation generates a carry in case of addition or a borrow in case
of subtraction after execution of an arithmetic instruction and the carry flag is set to 1. When the two 8-bit

numbers are added and the sum is larger than 8 bits, a carry is produced and the carry flag is set to 1. During
subtraction, if borrow is generated, the carry flag is also set to 1. The position of carry flag is D0 as depicted
in Fig. 2.7.

After an arithmetic or logical operation, if the number of 1s in the result is even (even
parity), this parity status flag (P) is set, and if the number of 1s is odd (odd parity), this flag is reset. For
example, if the data byte is 1 1 1 1 1 1 1 1, the number of 1s in the data byte is eight (even parity) and the
parity flag (P) is set to 1. The position of the parity flag is D2 as shown in Fig. 2.7.

In arithmetic operations of numbers, if a carry is generated by bit D3 and
passed on to D4, the auxiliary carry flag (AC) is set. Actually this flag is used for internally Binary Coded
Decimal (BCD) operations and this is not available for the programmer to change the sequence of operations
through jump instructions. The position of auxiliary carry flag is D4 as given in Fig. 2.7.

When an 8-bit ALU operation results in zero, the Zero (Z) flag is set; otherwise it is
reset. This flag is affected by the results of the accumulator and general-purpose registers.

The sign flag has its importance only when a signed arithmetic operation is performed. In
arithmetic operations of signed numbers where the bit D7 is used to indicate a sign, this flag is set to indicate
the sign of a number.

The most significant bit of an 8-bit data is the sign bit. When a number is negative, the sign bit is 1. If the
number is positive, the sign bit is 0. For an 8-bit signed operation, the remaining 7 bits are used to represent
the magnitude of a number. After execution of a signed arithmetic operation, the MSB of the result also rep-
resents its sign. The position of the sign flag is D7 as depicted in Fig. 2.7.

In a flag register five bits (D7 D6 D4 D2 D0) indicate the five status flags and three bits D5 D3 and
D1 are undefined. The combination of these 8 bits is known as Program Status Word (PSW). The PSW and
the accumulator can be used as a 16-bit unit for stack operation.

Determine the status of different flags after addition of 07H and CFH.

When 07H and CFH are added, the result is non zero. The Z flag is set to 0. There is a carry from 3rd bit
to 4th bit. Therefore, the auxiliary carry (AC) flag is set to 1. As the MSB of the sum is 1, the S flag is set
to 1. Since there are five numbers of 1s in the result, the parity flag (P) is set to 0. Figure 2.8 shows the status
of different flags after addition of 07H and CFH.

ADD 07H and CFH

07H = 0 0 0 0 0 1 1 1

CFH = 1 1 0 0 1 1 1 1

1 1 0 1 0 1 1 0

Result is non-zero
Z is set to 0 (Z = 0)

There are five number of 1s
P is set to 0 (P = 0)

Carry from 3rd bit to 4th bit
AC is set to 1 (AC = 1)MSB of the SUM is 1

S is set to 1 (S = 1)

The instruction register holds the operation code (opcode) of the current
instruction of a program during an arithmetic/logical operation. The instruction is fetched from the memory
prior to execution. The decoder takes the instruction and decodes it. After that, the decoded instruction is
passed to the next stage for execution.

The Memory Address Register holds the address of the next
program instruction. Then MAR feeds the address bus with addresses of the memory location of the program
instruction which will be executed.

This is an 8-bit register, which is associated with ALU. This register holds
data during arithmetic and logical operation. This register can be used by the microprocessor but is not
accessible to the programmer.

The system bus is collection of wires which are used
to transfer binary numbers, one bit per wire. The
8085 microprocessor communicates with memory
and input and output devices using three buses,
namely, address bus, data bus and control bus, as
depicted in Fig. 2.10.

Each memory location has a
unique address. The address bus consists of 16 wires,
therefore address bus has 16 bits. Its ‘width’ is 16
bits. A 16-bit binary number allows 216 different

ADD CEH and 9BH

CEH = 1 1 0 0 1 1 1 0

9BH = 1 0 0 1 1 0 1 1

1 0 1 1 0 1 0 0 1

Result is non-zero
is set to 0 (= 0)Z Z

There are four number of 1s
is set to 1 (= 1)P P

Carry from 3rd bit to 4th bit
AC is set to 1 (AC = 1)

Carry is generated
CS is set to 1 (CS = 1)

MSB of the SUM is 0
S is set to 0 (S = 0)

Control Bus
(Timing Signals,
Ready Signals,
Interrupts)

Address Bus
-(16 bit)

Data Bus
-(8 bit)

8085
Microprocessor

Find out the status of different flags after addition of CEH and 9BH

If CEH and 9BH are added, the result is non zero. Hence, the Z flag is set to 0. There is a carry from 3rd bit
to 4th bit. As a result, the auxiliary carry (AC) flag is set to 1. Since the MSB of the sum is 0, the S flag is set
to 0. As there are four numbers of 1s in the result, the parity flag (P) is set to 1. The carry is generated after
addition of CEH and 9BH as the sum is greater than 8 bits. Therefore, CS is set to 1. Figure 2.9 shows the
status of different flags after addition of CEH and 9BH.

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

A7

A6

A5

A4

A3

A2

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

Data
Bus

Lower-order
Address Bus

Higher-order
Address Bus

74LS373

8085
Microprocessor

Higher - order Address Bus
A15

A8

ALE

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

numbers, or 65536 different numbers, i.e., 0000 0000 0000 0000 up to 1111 1111 1111 1111. Therefore,

the Intel 8085 microprocessor has 65536 = 64K, where 1K = 1024) memory for locations and each memory

location contains 1 byte of data. The address bus is unidirectional. That means numbers can only be sent from

microprocessor to memory, and not the other way. The 16-bit address bus consists of the 8 most significant

bits of the address A15–A8 and the 8 least significant bits of the address/data AD7–AD0. A7–A0 is multiplexed

with the data lines D0–D7. During the first clock period of the machine cycle, the microprocessor sends 8

MSBs of the address on the A bus and 8 LSBs of the address on the AD bus. If the data is sent during the first

clock period, it will be latched. After the first clock pulse, AD lines as data bus is shown in Fig. 2.11 and the

timing diagram is depicted in Fig. 2.12.

Data bus as 8-bit data is stored in each memory location. The data bus is used to move

or transfer data in binary form. The data is transferred between the microprocessor and external devices.

In the 8085 microprocessor, the data size is 8 bits. Consequently, the data bus typically consists of 8 wires.

Therefore, 28 combinations of binary digits are possible. Data bus is used to transmit ‘data’, i.e., information,

Machine Cycle (M)1

T1 T2 T3 T4

A –A8 15

AD –AD0 7

ALE

RD

D D0 7–PC LowerL

Lower Order
Address A A0 7–

PC (Higher Order Address Bus)H

Clock

results of arithmetic, etc, between the memory and the microprocessor. This bus is bi-directional. Size of the
data bus determines what arithmetic can be done. As a data bus is 8 bits wide, the largest number is 11111111
(255 in decimal).

The address/data bus sends data and addresses at different instant of time. Therefore, it transmits either
data or an address at a particular moment. The AD-bus always operates in the time-shared mode.

The control bus has various lines which have specific functions for coordinating and
controlling microprocessor operations. For example, the RD/WR line is a control signal and this is also a
single binary digit. This signal can differentiate the read and write operations. When RD is logically ‘1’,
memory and other input output devices are read. If WR is logically ‘0’, data can be written in memory
and any other devices. Various other control signals are used to control and coordinate the operation of the
system. Typically, 8085 microprocessor has 11 control lines, namely, S0, S1, IO/M, RD, WR, ALE, READY,
HOLD, HLDA, RESET IN and RESET OUT. The microprocessor cannot function correctly without these
vital control signals. The control bus carries control signals, partly unidirectional, partly bi-directional.

Figure 2.13 shows the schematic diagram of Intel 8085. The PIN diagram of the 8085 microprocessor is
illustrated in Fig. 2.14. The descriptions of various PINS are as follows:

Higher-order
Address Bus

Lower-order
Address/Data Bus

RESET IN

RESET OUT

CLK (Out)

SID

SOD

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

INTA

READY

HOLD

HLDA

ALE

RD

WR

IO/W

S1

S0

8085

x1

x0

A15

A8

AD7

AD0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

X1

X2

RESET OUT

SOD

SID

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

INTA

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

GND

VCC

HOLD

HLDA

CLK(OUT)

RESET IN

READY

IO/M

S1

RD

WR

ALE

S0

A15

A14

A13

A12

A11

A10

A9

A8

These are address buses. These are used for the most significant 8
bits of the memory address or 8 bits of I/O address, 3-stated during Hold and Halt modes and during RESET.

These are multiplexed address/data buses. These lines serve a
dual purpose. These are used for the least significant 8 bits of the memory address or I/O during the first clock
cycle (T state) of a machine cycle. After that it becomes the data bus during the second and third clock cycles.

The address on the higher-order bus remains on the bus for the entire machine cycle. But the lower-order
address is changed after the first clock cycle. Actually, this address is latched and used for identifying the
memory address. The AD7–AD0 is used to identify the memory location. Figure 2.9 shows the address bus
A15 to A0 after latching operation. When ALE signal is low, the data is latched till the next ALE signal. The
output of the latch represents the lower-order address bus A7–A0. If ALE is high, the latch is transparent. This
means that the output changes according to input data.

ALE stands for Address Latch Enable. During the
first clock state of a machine cycle, it becomes high and enables the address to get latched either into the
memory or external latch. The falling edge of ALE is set to guarantee set-up, can hold times for the address
information. The falling edge ALE can also be used to strobe the status information.

These are machine-cycle status signals sent by the microprocessor to
distinguish the various types of operations given in Table 2.1. IO/M, S0 and S1 become valid at the beginning
of a machine cycle and remain stable throughout the cycle. IO/M signals differentiate whether the address
is for memory or input–output devices. When IO/M becomes high, I/O operation is performed. It is low for
memory operations. When this signal is combined with RD and WR, this signal transfers the CPU data into
I/O or memory devices.

It is a READ control signal. When
RD is low level, the selected memory or I/O device to be read is available in the data bus for the data transfer.
It has 3-stated during Hold and Halt modes and during RESET.

The WR signal is used for WRITE
control operation. The low level on WR indicates the data on the data bus to be written into the selected
memory or I/O location. It has 3-stated during Hold and Halt modes and during RESET.

Figure 2.15 shows the generation of four different control signals by combining RD, WR and IO/ M
signals. The signal IO/ M is low for any memory-related operation. The IO/ M is logically ANDed with

 Machine cycle status States

 IO/M S
1 S

0
 0 0 1 Memory write

 0 1 0 Memory read

 1 0 1 I/O write

 1 1 0 I/O read

 0 1 1 Opcode fetch

 Machine cycle status States

 IO/M S
1 S

0

 1 1 1 Interrupt Acknowledge

 x 0 0 Halt

 x x x Hold

 x x x Reset

RD, WR signals and generates memory read MEMR and memory write MEMW control signals. If IO/ M
becomes high, then Input/Output peripheral operations. It is depicted in Fig. 2.15 that the signal is ANDed
with RD, WR signals and generate I/O read IOR and I/O write IOW control signals for any I/O related
operation.

When READY is high during a read or write operation, it indicates that the memory
or I/O device is ready to send or receive data. When READY is low, the CPU will wait for the number of
clock cycles until READY becomes high.

HOLD indicates that another
master is requesting the use of the address and data
buses. After receiving the hold request, the CPU will
relinquish the use of the bus as soon as the completion
of the current bus cycle.

The processor can regain the bus only after
the HOLD is removed. When the HOLD is acknowl-
edged, the address, data, RD, WR, and IO/M lines are
3-stated.

HLDA stands for HOLD
ACKNOWLEDGE. This signal indicates that the CPU
has received the Hold request and that it will relinquish
the bus in the next clock cycle. When the Hold request
is removed, HLDA goes low. The CPU takes the bus
one half-clock cycle after HLDA goes low.

INTR is the INTERRUPT REQUEST signal. It is used as general-purpose interrupt.
Among interrupts, it has the lowest priority. It is sampled only during the next to the last clock cycle of an
instruction. If it is active, the Program Counter (PC) will be inhibited from incrementing and an Interrupt
Acknowledge (INTA) signal will be issued. The microprocessor suspends its normal sequence of instructions.
During this cycle, a RESTART or CALL instruction can be inserted to jump to the interrupt service routine.
The INTR can be enabled and disabled by using software. It is disabled by RESET and immediately
after an interrupt is accepted. Generally, the interrupt signal is used by I/O devices to transfer data to the
microprocessor without wasting its time.

It is an interrupt acknowledge signal. This is used instead of RD during the
instruction cycle after an INTR is accepted. This signal is sent by the microprocessor after INTR is received.
It can be used to activate the 8259 interrupt IC.

RST 5.5, RST 6.5 and RST 7.5 are the restart interrupts.
These three inputs have the same timing as INTR except they cause an internal restart to be automatically
inserted. The priority order of these interrupts is given in Table 2.2. These interrupts have a higher priority
than INTR. These are vectored interrupts and during execution, transfer the program to the specified memory
location.

8085
Microprocessor

MEMR

MEMW

IOR

RD

WR

IO/M

IOW

Name Priority Address branched to memory location when interrupt occurs

TRAP 1 0024H

RST 7.5 2 003CH

RST 6.5 3 0034H

RST 5.5 4 002CH

INTR 5 The address branched depending on the instruction provided to the CPU when the inter-

rupt is acknowledged

Trap interrupt is a nonmaskable restart interrupt. It has the highest priority of any
interrupt as depicted in Table 2.2. It is recognized at the same timing as INTR or RST 5.5 or RST 6.5 or RST
7.5. It is unaffected by any mask or Interrupt enable.

The RESETIN signal resets the program counter to zero and it also resets the
Interrupt Enable and HLDA flip-flops. It does not affect any other flag or register except the instruction
register. The data and address buses and the control lines are 3-stated during RESETIN and because of the
asynchronous nature of RESETIN, the processor’s internal registers and flags may be altered by RESET
with unpredictable results. RESETIN is a Schmitt-triggered input, allowing connection to an RC network for
power-on RESET delay. The CPU is held in the reset condition as long as RESETIN is applied.

RESETOUT indicates that the CPU is in RESET condition. This can be
used as a system reset. This signal is also synchronized to the processor clock and lasts an integral number
of clock periods.

The X1 and X2 terminals are connected to a crystal or RC network or LC network to
drive the internal clock generator. X1 may be an external clock input from a logic gate. The input frequency is
divided by 2 to give the processor’s internal operating frequency. When 6 MHz clock frequency of a crystal
or RC network or LC network is applied to the processor, the microprocessor operates in 3 MHz.

The Clock output signal can be used as a system clock. The time period of CLK is
twice the X1, X2 input time period.

SID stands for Serial Input Data line. The data on this line is loaded into the accumulator
bit 7 whenever a RIM instruction is executed.

SOD stands for Serial Output Data line. The output SOD is set or reset as specified
by the SIM instruction.

The 8085 microprocessor operates on a 5 V supply, which is connected
with VCC terminal at PIN number 40.

Ground Reference.

The power supply ground is connected to GND at PIN number 20.

Table 2.3 shows the comparisons between 8085 and 8080A based on power supply, frequency and chip
count. The 8085 is much simpler than 8080A for generating status information and control signals. The 8085
include all 72 instructions of 8080A, but it has two more instructions such as serial I/O and additional inter-
rupt lines.

Parameters 8085 8080A

Power supply +5V +5V, –5V and +12V

Functional microprocessor One 8085 IC with latch and gates One 8080A, one 8224 and one 8228

Clock pulse One z Two z1 z2

Clock frequency 3 MHz 2 MHz

Address bus 16-bit address lines Lower-order address 16-bit address lines

 bus is multiplexed with data bus

Data bus 8-bit data lines 8-bit data lines Data and status

 information are multiplexed

Interrupt Five lines One line

Extra features Serial I/O lines

Status The lines S0, S1 and IO/M indicates Complex procedure to generate status

 operation status information

Instruction set 74 instructions 72 instructions

 In this chapter the architecture of 8085 microprocessor has been explained. The microprocessor
communicates with memory, input and output peripheral devices through an address bus, data bus and
control bus. An address bus is a group of lines that are used to locate a memory address or external
device.

 The 8085 microprocessor has 16-bit address lines A15 to A0. This bus is unidirectional. Data bus is a
group of bi-directional lines. These lines are used to transfer data between microprocessor and memory
or input and output peripheral devices. The 8085 microprocessor has 8-bit data lines D7 to D0, which is
time multiplexing of lower order address/data bus AD7–AD0.

 Generally, a microprocessor performs four operations: memory read, memory write, I/O read and I/O
write. The generation of read/write control signal MEMR, MEMW, IOR, IOW are incorporated in this
section.

 The PIN diagrams of 8085 and their functions are also explained in this chapter.

2.1 The microprocessor was introduced in the year

 (a) 1940 (b) 1971
 (c) 1973 (d) 1980

2.2 The first company to bring out the
microprocessor was

 (a) Intel (b) IBM
 (c) HP (d) Texas

2.3 Which semiconductor technology is used for
fabrication of 8085 microprocessor?

 (a) ECL (b) NMOS
 (c) NMOS and HMOS (d) NMOS and CMOS

2.4 Which of the following microprocessors is a
4-bit microprocessor?

 (a) 4004 (b) 8080
 (c) 8085 (d) Z80

2.5 Which of the following microprocessors is an
8-bit microprocessor?

 (a) 4004 (b) 8080
 (c) 8085 (d) Z80

2.6 Which of the following microprocessors has an
8-bit data bus ?

 (a) 4004 (b) 8080
 (c) 8085 (d) Z80

2.7 Which of the following microprocessors has a
16-bit address bus ?

 (a) 4004 (b) 8088
 (c) 8085 (d) 8086

2.8 An 8-bit microprocessor has an

 (a) 8-bit data bus (b) 8-bit address bus
(c) 8-bit control bus (d) 8 interrupt lines

2.9 If a microprocessor is capable of addressing
64K bytes of memory, its address-bus width is

 (a) 16 bits (b) 20 bits
 (c) 8 bits (d) none of these

2.10 If a microprocessor is capable of addressing 1
MB memory, I its address-bus width is

 (a) 16 bits (b) 20 bits
 (c) 8 bits (d) none of these

2.11 Flip-flops are used in a microprocessor to
indicate

 (a) shift register (b) latches
 (c) counters (d) flags

2.12 A microprocessor performs as a

 (a) CPU of a computer
 (b) memory of a computer
 (c) output device of a computer
 (d) input device of a computer

2.13 A microprocessor consists of

 (a) ALU
 (b) address bus
 (c) data bus
 (d) ALU, address bus and data bus

2.14 A microprocessor is a/an

 (a) SSI device (b) MSI device
 (c) LSI device (d) VLSI device

2.15 The program counter in a microprocessor

 (a) keeps the address of the next instruction to
be fetched

 (b) counts the number of instructions being
executed on the microprocessor

 (c) counts the number of programs being
executed on the microprocessor

 (d) counts the number of interrupts handled by
the microprocessor

2.16 For using a microprocessor-based system,

 (a) a program is required
 (b) the program must be stored in memory

before the system can be used
 (c) the program need not be stored in memory
 (d) the program is stored in the internal

resistors of the microprocessor

2.17 A microcomputer consists of

 (a) microprocessor (b) memory
 (c) output device (d) input device

2.18 A microprocessor is

 (a) an analog device
 (b) an digital device

 (c) an analog and digital device
 (d) none of these

2.19 The number of flags of the 8085 microprocessor
is

 (a) 6 (b) 5
 (c) 4 (c) 3

2.20 The word size of the 8085 microprocessor is

 (a) 8 bits (b) 16 bits
 (c) 20 bits (d) 4 bits

2.21 The 8085 microprocessor is a

 (a) 40-PIN IC (b) 32-PIN IC

 (c) 28-PIN IC (d) 24-PIN IC

2.22 The address bus of a microprocessor is

 (a) unidirectional
 (b) bi-directional
 (c) unidirectional as well as bi-directional
 (d) none of these

2.23 The data bus of a microprocessor is

 (a) unidirectional
 (b) bi-directional
 (c) unidirectional as well as bi-directional
 (d) none of these

2.1 What are the different registers of 8085 microprocessor?

2.2 Mention the purpose of SID and SOD lines.

2.3 Write the difference between 8085 and 8080 microprocessor.

2.4 What is the crystal frequency if 8085 microprocessor operates in 3.5 MHz frequency?

2.5 Discuss the function of the following signals of the 8085 microprocessor:

 RD, WR, ALE, S0 and S1

2.6 Explain the functions of following interrupt signal lines of 8085A:

 TRAP, RST 7.5, RST 6.5, RST 5.5

2.7 What are the different buses of the 8085 microprocessor?

2.8 Explain the need to de-multiplex the bus AD0–AD7.

2.1 Draw the schematic diagram of all the functional blocks of the 8085 microprocessor along with
 their necessary interconnection. Explain in brief this architecture.

2.2 Draw and explain the functional block diagram of Intel 8085.

2.3 List the various registers of 8085 and explain their function.

2.4 Discuss the function of the ALU of 8085 with functional diagram.

2.5 What are the flags in 8085? Discuss the flag register with some example.

2.6 Explain the need of a program counter, stack pointer and status flags in the architecture of the Intel 8085
microprocessor.

2.7 What is the clock frequency of 8085 microprocessor if the crystal frequency is 5 MHz?

2.8 An 8085 program adds the hex numbers 2FH and 32H and places the result in its accumulator. What
would be the status of the 8085 flags CY, P, AC, Z, S on completion of this addition?

2.9 An 8085 program subtracts the hex number 23H from FFH and places the result in its accumulator.
What would be the status of the 8085 flags CY, P, AC, Z, S on completion of this subtraction?

2.10 Draw the schematic diagram to generate Read/Write control signals (MEMR, MEMW, IOR, IOW) for
memory and I/O devices in the 8085 microprocessor.

2.11 Explain the control and status signals of the microprocessor in memory read and write operations.

2.13 Discuss the function of the following signals of the 8085 microprocessor:

 INTR, INTA, HOLD, HLDA and READY.

2.14 Draw and explain the time multiplexing of AD0–AD7.

2.15 What is the difference between a microprocessor and microcontroller ? Describe how data can flow
between the microprocessor, memory and I/O devices.

2.16 Findout the status of different flags after addition of CBH and E8H.

2.17 Determine the status of differ flags after subtraction 25 H from FFH.

2.18 What would be the status of the 8085 flags after addition of 69 H and 72 H?

 2.1 (b) 2.2 (a) 2.3 (b) 2.4 (a) 2.5 (b) and (c) 2.6 (b) and (c) 2.7 (c) 2.8 (a)

 2.9 (a) 2.10 (b) 2.11 (d) 2.12 (a) 2.13 (d) 2.14 (c) 2.15 (a) 2.16 (b)

 2.17 (a),(b), (c) and (d) 2.18 (b) 2.19 (b) 2.20 (a) 2.21 (a) 2.22 (a) 2.23 (b)

An instruction is any specified binary pattern which is placed inside the microprocessor to perform a specific

operation. The instructions of the 8085 microprocessor are classified into five different groups, namely, data

transfer group, arithmetic group, logical group, branch control group, I/O and machine control group. In

this chapter all types of instruction groups are explained. The instruction set is the collection of all groups

of instructions. Each instruction has two parts: the first part is the task to be performed. This is known as

operation code (opcode). The second part is data to be operated on, called operands. There are various

techniques to specify operand of instructions. These techniques are known as addressing modes. All types

of addressing modes are enlightened in this chapter. Generally, instructions are stored in the memory

devices. Before execution of any instruction, the microprocessor locates the memory location and fetches

the operational code through a data bus. Then the decoder decodes the instruction and performs the specified

function. Therefore, the opcode fetch and its execution are performed in sequence. The sequencing is done

by the control unit of the microprocessor and synchronized with the clock. The timing diagrams of read and

write operations of memory and other peripheral devices are incorporated in this chapter.

The instructions are used to copy or transfer data from a source into a destination. The source may be a reg-

ister, memory, an input port, or an 8-bit number (00H to FFH). In the same way, the destination may also be

a register, memory or an output port. The sources and destinations of data are known as operands. There are

various formats to specify operands for instructions. The different techniques of specifying data are called the

addressing modes. Generally, the following addressing modes are used in the 8085 microprocessor :

 1. Immediate addressing

 2. Register addressing

 3. Direct addressing

 4. Indirect addressing

In this addressing mode, the address of the operand always exists within the instruction. This mode can be

used to read data from output devices and store it in the accumulator or write the data, content of the accumu-

lator to the output devices. Examples of direct addressing are illustrated in Table 3.1.

Instruction Task

IN 00H Read data from Port 00H

OUT 01H Write data in Port 01H

LDA 8000H Load the content of the memory location 8000H in the accumulator

STA 9000H Store the content of the accumulator in the memory location 9000H

In the instruction IN 00H, the address of an I/O port is 00H where the data is available. From this

location, data is to be read and stored in the accumulator. Similarly, the content of the accumulator can be

sent to the output port address 01H using OUT 01H instruction.

In LDA 8000H instruction, 8000H is the memory location from where data is to be copied. Therefore,

the instruction itself specifies the source of data. After reading data from 8000H, it will be stored in the

accumulator.

In the register addressing mode, one of the registers A, B, C, D, E, H and L can be used as source of oper-

ands. Consequently, data is provided through the registers. In this mode, the accumulator is implied as a

second operand. For example, the instruction ADD C says that the contents of the C register will be added

with the contents of the accumulator. Most of the instructions using register-addressing mode have 8-bit data,

though, some instructions deal with 16-bit register pairs, for example, PCHL instruction. Examples of regis-

ter addressing are given in Table 3.2.

Instruction Task

MOV A,B Move the content of B register to the accumulator

ADD C The content of C register is added with the content of the accumulator

SUB B Subtract the content of B register from the accumulator

PCHL Exchanges the contents of the program counter with the contents of the H and L registers

In the register indirect mode, the contents of specified registers are used to specify the address of the operand.

Therefore, in register indirect instructions, the address is not explicitly specified. For example, the instruction

MOV A, M means that move the contents of the content of the memory location whose address is stored in

H and L register pair, in the accumulator. The instruction LDAX B is also another example. In this instruc-

tion, load the accumulator with the byte of data that is specified by the address in the B and C register pair.

The instruction ADD M is also an example of register indirect addressing. Table 3.3 shows the examples of

register indirect addressing.

Instruction Task

LDAX B Load the accumulator from address in register pair B-C

MOV A,M Move the content of the memory location whose address is given in H and L registers in the accumulator

MOV M,B Move the content of the accumulator in the memory location whose address is given in H and L registers

ADD M Addition of the content of the memory location whose address is given in H and L registers and the content of the

accumulator

In the immediate addressing mode, the operand or data is present within the instruction. Load the immedi-

ate data to the destination, which is given in the instruction. Examples of direct addressing are depicted in

Table 3.4.

Instruction Task

 MVI D,FFH Move FFH in Register D

LXI H,8050H Load H and L register pair with 8050H

ADI 44H Add 44H with the content of the accumulator

CPI B Compare the contents of the accumulator with the content of Register B

The immediate instructions use the accumulator as an implied operand. The MVI (move immediate)

instruction can move its immediate data to any of the working registers. For example, the instruction MVI D,

FFH moves the hexadecimal data FFH to the D register.

The LXI instruction (load register pair immediate) uses 16-bit immediate data. This instruction is gen-

erally used to load addresses into a register pair. In LXI H, 8050H load H and L register pair with 16-bit

immediate data 8050H.

The addressing mode of certain instructions can be implied by the instruction’s function. Actually, these

instructions work on the content of the accumulator and there is no need of the address of the operand.

Examples of implicit addressing are given below:

Instruction Task

DAA Decimal adjust accumulator

CMA Complement the content of accumulator

STC Set carry flag

RAL Rotate accumulator left

An instruction is a command applied to the microprocessor to perform a specific function. The instruction set

of a microprocessor means the entire group of instructions. Generally, instructions have been classified into

the following five functional groups.

 Data transfer group

 Arithmetic group

 Logical group

 Branch control group

 I/O and machine control group

 Data-Transfer Group

The data-transfer instructions copy data from a source to a destination without modifying the contents of the

source. The term data transfer has been used for copying data. The data transfer can be possible between

registers or between memories or between memory and registers or between I/O ports and the accumulator.

The various types of data transfer are shown in Table 3.6.

Types Examples

Between registers. Copy the contents of the register B into the register A.

Load a specific data byte to a register or a Load the register B with the specific data byte FFH.

memory location.

Between a memory location and a register. Move data from a memory location 9000H to the register B.

Between an I/O device and the accumulator. Move data from an input port to the accumulator.

Between registers pairs Exchange the content of two register pairs.

MOV Move

MVI Move immediate

LDA Load accumulator directly from memory

STA Store accumulator directly in memory

LHLD Load H and L registers directly from memory

SHLD Store H and L registers directly in memory

An ‘X’ in the name of a data-transfer instruction means that the data transfer operation is performed with a

register pair.

LXI Load register pair with 16-bit immediate data

LDAX Load accumulator from memory whose address is in a register pair

STAX Store the content of the accumulator in memory whose address is in the register pair

XCHG Exchange H and L with D and E

XTHL Exchange top of stack with H and L

The arithmetic instructions perform arithmetic operations such as addition, subtraction, increment, and decre-

ment data in registers or memory.

The contents of a register or the contents of a memory location or any 8-bit number can be

added to the contents of the accumulator. After addition, the sum is stored in the accumulator.

An 8-bit number or the contents of a register or the contents of a memory location can be

subtracted from the contents of the accumulator. After subtraction, the result will be stored in the accumulator.

The content of a register or a memory location, 8-bit data can be incremented

or decremented by 1.

 In the same way, the contents of a register pair H-L or B-C or D-E (16-bit data) can be incremented

or decremented by 1.

 The increment and decrement operations can also be performed in a memory location.

ADD Add to accumulator

ADI Add immediate 8-bit data to accumulator

ADC Add to accumulator using carry flag

ACI Add immediate data to accumulator with carry

SUB Subtract from accumulator

SUI Subtract immediate data from accumulator

SBB Subtract from accumulator with borrow (carry) flag

SBI Subtract immediate from accumulator with borrow (carry) flag

INR Increment specified 8-bit data or byte by one

DCR Decrement specified 8-bit data or byte by one

INX Increment register pair by one

DCX Decrement register pair by one

DAD Double register addition: Add content of register pair to H-L register pair

This group of instructions performs various logical operations such as AND, OR, Exclusive-OR, Rotate,

Compare, and Complement with the contents of the accumulator.

The content of a register or content of a memory location or content any 8-bit

data can be logically ANDed, Ored, or Exclusive-ORed with the contents of the accumulator. Then results

must be stored in the accumulator.

Each bit of the accumulator can be shifted either left or right by one bit.

An 8-bit number or the content of a register or content of a memory location be compared

with the contents of the accumulator to check greater than or equal or less than.

The contents of the accumulator can be complemented. Therefore, all 0’s are replaced by

1’s and all 1’s are replaced by 0’s.

ANA Logical AND with accumulator

ANI Logical AND with accumulator using immediate data

ORA Logical OR with accumulator

OR Logical OR with accumulator using immediate data

XRA Exclusive logical OR with accumulator

XRI Exclusive OR using immediate data

The Compare instructions compare the content of a register, or content of a memory location or an 8-bit data

with the contents of the accumulator;

CMP Compare

CPI Compare using immediate data

The Rotate instructions shift the contents of the accumulator one bit in the left or right:

RLC Rotate accumulator left

RRC Rotate accumulator right

RAL Rotate left through carry

RAR Rotate right through carry

Complement and Carry flag instructions are

CMA Complement accumulator

CMC Complement carry flag

STC Set carry flag

This group includes the instructions that change the sequence of program execution using conditional and

unconditional jumps, subroutine call and return, and restart.

Jump instructions are generally conditional jump and unconditional jump types. Conditional jump

instructions always test certain conditions such as Zero or Carry flag and then change the program execution

sequence once the condition arises. On the other hand, when conditions are not used in the instruction set, the

instruction is called unconditional jump.

These instructions can also change the sequence of a program execution by

calling a subroutine or returning from a subroutine. Like Jump instructions, Call instructions are conditional

call and unconditional call. Conditional call instructions test all condition flags.

The unconditional branch control instructions are as follows:

JMP Jump

CALL Call

RET Return

Conditional branching instructions always check the status of any one of the four condition flags to decide

the sequence of a program execution. The following conditions may be specified

NZ Not Zero (Z = 0)

Z Zero (Z = 1)

NC No Carry (C = 0)

C Carry (C = 1)

PO Parity Odd (P = 0)

PE Parity Even (P = 1)

P Plus (S = 0)

M Minus (S = 1)

Thus, the conditional branching instructions are specified as follows:

Jumps Calls Returns

C CC RC (Carry)

JNC CNC RNC (No Carry)

JZ CZ RZ (Zero)

JNZ CNZ RNZ (Not Zero)

JP CP RP (Plus)

JM CM RM (Minus)

JPE CPE RPE (Parity Even)

JPO CPO RPO (Parity Odd)

These instructions can perform various functions related to stack and input/output ports and machine control.

The following instructions are related with the Stack and/or Stack Pointer:

PUSH Push two bytes of data onto the stack

POP Pop two Bytes of data off the stack

XTHL Exchange top of stack with H and L

SPHL Move content of H and L to stack pointer

The I/O instructions are given below:

IN Initiate input operation

OUT Initiate output operation

The Machine Control instructions are as follows:

EI Enable interrupt system

DI Disable interrupt system

HLT Halt

NOP No operation

In the Intel 8085 microprocessor, instructions are used to perform specified functions. Each instruction con-

sists of two parts, namely, operation code (opcode) and operand. The opcode states the operation which will

be performed. Each operation is always performed with some data. These data are known as operand.

Instructions are performed operations with 8-bit data and 16-bit data. 8-bit data can be obtained from a

register or a memory location or input port. Similarly, 16-bit data may be available from a register pair or two

consequent memory locations. Therefore binary codes of instructions are different. Due to different ways of

specifying data for instructions, the machine or binary codes of all instructions are of different lengths. The

Intel 8085 instructions are classified into the following three groups as given below:

 One-byte or 1-word instructions

 Two-byte or 2-word instructions

 Three-byte or 3-word instructions

A one-byte instruction consists of the opcode and operand in the same byte. Operand(s) are internal register

and are coded into the instruction. For example,

Op Code Operand Binary code Hex code Operations

MOV B,A 0100 0111 47H Copy the contents of the accumulator in the register B

ADD C 1000 0001 81H Add the contents of the register C to the contents of the

accumulator

SUB B 1001 0000 90H Subtract the contents of the register B to the contents of the

accumulator

CMA 0010 1111 2FH Compliment each bit in the accumulator

RAR 0001 1111 1FH Rotate accumulator right

The above instructions are 1-byte instructions. In the first instruction, MOV B, A both operand registers

are specified in A and B registers. In the second instruction ADD C, one operand is specified in the C regis-

ter and the other operand is in the accumulator, which is assumed. In CMA instruction, the accumulator is

assumed to be the implicit operand. These instructions are one-byte long and each instruction requires only

one memory location.

In a two-byte instruction, the first byte specifies the operation code and the second byte states the operand.

The source operand is an 8-bit data immediately subsequently the opcode. For example,

Op Code Operand Binary code Hex code Operations

MVI B,55H 0100 1111 4FH First-byte operation code Load an 8-bit data byte (55H) in the

 0101 0101 55H Second-byte data register B.

ADI 85H 1100 0110 C6H First-byte operation code Add 85H to the contents of the

 1000 0101 85H Second-byte data accumulator

IN 01H 1101 1011 DBH First-byte operation code Copy data to accumulator from input

 0000 0001 01H Second-byte data port address 01H

OUT 02H 1101 0011 D3H First-byte operation code The content of accumulator transfer to

 0000 0010 02H Second-byte data port address 02H

The above instructions are 2-byte instructions. This instruction would require two consecutive memory

locations to store in memory.

In a three-byte instruction, the first byte specifies the operation code (opcode), and the following two bytes stand

for the 16-bit address. It may be noted that the second byte will be the lower-order address and the third

byte will be the higher-order address. These instructions are three-byte instructions which consist of one

opcode and two data bytes. Therefore, this instruction would require three memory locations to store in

memory.

Op Code Operand Binary code Hex code Operations

LXI H,8000H 0010 0001 21H First-byte operation code Load immediately 8000H in the

 0000 0000 00H Second-byte data HL registers pair

 1000 0000 80H Third byte data

JMP 8085H 1100 0011 C3H First-byte operation code Jump to the memory location 8085H

 1000 0101 85H Second-byte data

 1000 0000 80H Third-byte data

LDA 8000H 0011 0100 34H First-byte operation code The content of memory location 8000H

 0000 0000 00H Second-byte data is copied to the accumulator

 1000 0000 80H Third-byte data

The symbols and abbreviations which have been used while explaining Intel 8085 instructions, are as

follows:

Symbol/Abbreviations Meaning

16-bit address 16-bit address of the memory location

data 8-bit data

16-bit data 16-bit data

R, Rd, Rs One of the registers A, B, C, D, E, H , L

A, B, C, D, H, L 8-bit register

A Accumulator

H-L Register pair H-L

B-C Register pair B-C

D-E Register pair D-E

RP One of the register pairs. The representation of a register pair is given below:

 B represents B-C pair, B is higher-order register and C lower-order register

 D represents D-E pair, D is higher-order register and E is lower-order register

 H represents H-L pair, H is higher-order register and L lower-order register

Rh The higher-order register of a register pair

Rl The lower-order register of a register pair

SP, SPH, SPL SP represents 16-bit stack pointer. SPH is higher-order 8 bits and SPL lower-order 8 bits

 of register SP

(Contd.)

PC, PCH, PCL 16-bit program counter. PCH is higher-order 8 bits and PCL lower-order 8 bits of

 register PC

PSW Program Status Word

M Memory whose address is in H-L pair

CS Carry status

[] The content of the memory location

 Move data in the direction of arrow

 Exchange contents

 Logical AND operation

 Logical OR operation

 Logical EXCLUSIVE OR

– One’s complement

The 8085 instructions are classified into the following main types as given below:

 Data-transfer instructions

 Arithmetic instructions

 Logical instructions

 Branch instructions

Some of Intel 8085 instructions are frequently, some occasionally and some seldom used by the pro-

grammer. It is not necessary that one should learn all the instructions to understand simple programs. The

beginner can learn about 15 to 20 important instructions such as MOV, MVI, LXI, LDA, LHLD, STA, SHLD,

ADD, ADC, SUB, JMPJC, JNC, JZ, INZ, INX, DCR, CMP, etc., and start to understand simple programs

given in Chapter 4. While learning programs, the beginner can understand new instructions. The explanations

of the instructions are given below:

Data-transfer instructions are used to transfer data between registers, register pairs, memory and registers,

etc. In this section, all data-transfer instructions are described.

(Move the content of source register to destination register)

Rd Rs, Machine cycles: 1, States: 4, Flags: none, Register addressing mode, one-byte instruction. This

instruction copies the contents of the source register into the destination register but the contents of the source

register are not altered. For example, the instruction MOV B, C moves the content of Register C to Register

B. To execute this instruction, 4 clock periods are required and flags are not affected.

(Move the content of source register to memory)

[M] Rs, Machine cycles: 2, States: 7, Flags: none, Register indirect addressing, one-byte instruction. The

content of the source register moves to the memory location, its location is specified by the contents of the HL

registers. For example, the instruction MOV M, B will move the content of Register B to the memory location

8000H if the content of HL register pair is 8000H.

(Contd.)

(Move the content of memory to destination register)

Rd [M], Machine cycles: 2, States: 7, Flags: none, Register indirect addressing, one-byte instruction. The

content of memory location moves to a register. For example, the instruction MOV C, M will move the con-

tent of the memory location 8000H to Register C when the content of HL register pair is 8000H.

(Move immediate 8-bit data to register)

Rd data, Machine cycles: 2, States: 7, Flags: none, Immediate addressing modes, two-byte instruction

The 8-bit data is stored in the destination register. For example, the instruction MVI B, FFH moves FF to

Register B. The code of this instruction is 3E, FF. The first byte of the instruction is opcode, and the Second

byte of the instruction is operand, FFH that is to be moved to Register B.

(Move immediate data to memory)

[M] data, Machine cycles: 3, States: 10, Flags: none, Immediate addressing, two-byte instruction. The

data will be stored in the memory location which is specified by the contents of the H L register pair.

Example: MVI M, 22H.

In this instruction, MVI M, 22H, 22H data moves to memory location 8500H as the content of H L register

pair is 8500H. The opcode for MVI is 36 and 22H is the data. Therefore, instruction code is 36, 22.

(Load Accumulator Direct)

A [16-bit address], Machine cycles: 4, States: 13, Flags: none, Direct addressing register, three-byte

instructions. The content of a memory location, specified by a 16-bit address in the operand, is copied to the

accumulator and the contents of the source are not altered.

Example: LDA 9000H.

This instruction can load the content of the memory location 9000H into the accumulator. The instruction

code is 3A, 00, 90.

(Load Accumulator Indirect)

A [BC] or A [DE], Machine cycles: 2, States: 7, Flags; none. Register indirect addressing, three-byte

instructions.

The contents of the selected register pair locate a memory location. This instruction copies the contents of

that memory location into the accumulator. The contents of either the register pair or the memory location are

not altered. This instruction is only applicable for B–C and D–E register pairs.

Example: LDAX D.

The instruction LDAX D will load the content of the memory location whose address is in the DE register

pair.

(Load register pair immediate)

Register pair 16 bits data, Rh 8 MSBs, Rl 8 LSBs of data.

Machine cycles: 2, States: 10, Flags none, Immediate addressing, three-byte instructions

This instruction loads 16-bit immediate data in the register pair designated in the operand. For example,

LXI H, 9050H (16-bit data). In the code form it can be written as 3A, 50, 90. H 90H MSBs, L 50H LSBs

of data

(Load H and L registers direct)

L [address], H [address+1], Machine cycles: 5, States: 16, Flags: none, Direct addressing, three-byte

instructions.

The instruction copies the contents of the memory location located by the 16-bit address into Register

L and also copies the content of the next memory location into Register H. The contents of source memory

locations are not changed. For example, the instruction LHLD 80F0H will load the content of the memory

location 80F0 H into Register L and the content of the memory location 80F 1 H is loaded into Register H.

(Store accumulator direct)

16-bit address A, Machine cycles: 4, States: 13, Flags: none, Addressing direct, three-byte instructions.

The content of the accumulator is stored into the memory location specified by the operand. This is a 3-byte

instruction. The second byte specifies the lower-order address and the third byte specifies the higher-order

address.

Example: STA 9050H.

This instruction stores the content of the accumulator in the memory location 9050H.

(Store H and L pair registers direct)

[address] L, [address +1] [H]. Machine cycles: 5, States: 16, Flags:. None, Direct addressing, three-byte

instructions.

The content of Register L is stored into the memory location specified by the 16-bit address in the operand

and the content of Register H is also stored into the next memory location by increasing the operand. The

contents of Registers HL will not be changed. This is a 3-byte instruction. The second byte specifies the

lower-order address and the third byte specifies the higher-order address.

Example: SHLD 8000H

This stores the content of Register L in the memory location 8000H. The content of Register H is stored in

the memory location 8001H.

(Exchange the contents of H and L with D and E)

H D, L E, Machine cycles: 1, States: 4, Flags: none, Register addressing.

The content of Register H is exchanged with the content of Register D, and the content of Register L will be

exchanged with the content of Register E.

Example: XCHG

The arithmetic instructions are used to perform arithmetic operations. In this section, all arithmetic instruc-

tions are explained.

(Add register to accumulator)

A A+ R, Machine cycles: 1, States: 4, Flags: all, Register addressing, one-byte instruction.

The contents of the operand (register) are added to the contents of the accumulator and the result is stored in

the accumulator.

Example: ADD B

(Add memory to accumulator)

A A+ [M], Machine cycles: 2, States: 4, Flags: all, register indirect addressing, one-byte instruction.

The contents of the memory location specified by the contents of the HL registers are added with the accu-

mulator. All flags are modified to reflect the result of the addition. For example, the instruction is ADD M.

(Add register to accumulator with carry)

A A + R+CS, Machine cycles: 1, States: 7. Flags: all. Register addressing, one-byte instruction.

The contents of the register and the carry flag are added to the contents of the accumulator and the result is

stored in the accumulator. All flags are modified to reflect the result of the addition.

Example: ADC C

(Add register to accumulator with carry)

A A + M+CS, Machine cycles: 2, States: 7, Flags: all, Register indirect addressing, one-byte instruction.

The content of the memory location, which is specified by the contents of the H-L register pair and the carry

flag are added to the contents of the accumulator. The result is stored in the accumulator. All flags are effected

to reflect the result of the addition.

Example: ADC M

(Add immediate 8-bit data to accumulator)

A A + data, Machine cycles: 2, States: 7, Flags: all, Immediate addressing, two-byte instruction.

The 8-bit immediate data is added to the content of the accumulator and the result is stored in the accumula-

tor. All flags will be modified to reflect the result of addition. For example, the instruction is ADI 78H. Here

data 78H can be added with the content of accumulator.

(Add register pair to H and L registers)

H-L H-L+ Register pair, Machine cycles: 3, States: 10, Flags, CS, Register addressing, one-byte instruction.

The 16-bit contents of the specified register pair can be added to the contents of the HL register pair and the

sum is stored in the H and L registers. The contents of the source register pair cannot be modified. When the

result is greater than 16 bits, the CY flag will be set and no other flags are affected.

Example: DAD B.

The instruction DAD B states that the contents of the BC register pair will be added with the contents of the

HL register pair.

(Subtract register from accumulator)

A A – R, Machine cycles: 1, States: 4, Flags: all, Register addressing, one-byte instruction.

The content of Register R is subtracted from the content of the accumulator, and the result is stored in the

accumulator.

Example SUB C

(Subtract memory from accumulator)

A A – [M], Machine cycles: 2, States: 7, Flags: all Register indirect addressing, one-byte instruction.

The contents of the memory are subtracted from the contents of the accumulator and the result is placed in

the accumulator. The memory location is specified by the contents of the H L register pair. All flags will be

modified to reflect the result.

Example: SBB M

(Subtract register from accumulator with borrow)

A A – R – CS, Machine cycles: 2, States: 4, Flags: all, Register addressing, one-byte instruction.

The contents of the register and the borrow flag are subtracted from the contents of the accumulator and the

result is placed in the accumulator. All flags are modified to reflect the result of the subtraction.

Example: SBB B

(Subtract memory and borrow from accumulator)

A A – [M] – CS, Machine cycles: 2, States: 7, Flags: all, Register indirect addressing, one-byte instruction.

The content of the memory location specified by HL pair and borrow flag are subtracted from the content of

the accumulator. The result is placed in the accumulator.

Example: SBB M

(Subtract immediate 8-bit data from accumulator)

A A – 8-bit data, Machine cycles: 2, States: 7, Flags: all, Immediate addressing, two-byte instructions.

The 8-bit data is subtracted from the contents of the accumulator and the result is stored in the accumulator.

All flags are affected to reflect the result of the subtraction.

Example: SUI 34H.

This instruction will subtract 34H from the content of the accumulator and store the result in the accumulator.

(Subtract immediate 8 bit data from accumulator with borrow)

A A – 8-bit data –CS, Machine cycles: 2, States: 7, Flags: all, Immediate addressing, two-byte instructions.

The 8-bit data and the borrow flag is subtracted from the contents of the accumulator and the result is stored

in the accumulator. All flags are affected to reflect the result of the subtraction.

Example: SBI 34H.

This instruction will subtract 34H and the borrow flag from the content of the accumulator and store the result

in the accumulator.

(Increment register by 1)

R R + 1, Machine cycles: 1, States: 4, Flags, all except carry flag, Register addressing, one-byte instruction.

The contents of the selected register are incremented by 1 and the result is stored in the same register. All

flags except CS are affected.

Example: INR D

(Increment memory by 1)

[M] [M] +1, Machine cycles: 3, States: 10, Flags: all except carry flag, Register indirect addressing, one-

byte instruction.

The content of the memory location addressing by H and L registers is incremented by one. In this instruction

all flags except CS are affected.

Example: INR M

(Increment register pair)

RP RP+1, Machine cycles: 1, States: 6, Flags are not effected, Register addressing, one-byte instruction.

The content of the specified register pair is incremented by one, and the result will be stored in the same

register pair.

Example, INX H

(Decrement register by 1)

R R – 1, Machine cycles: 1, States: 4. Flags, all flags except carry flag, Register addressing, one-byte

instruction.

The contents of the selected register are decremented by 1 and the result is stored in the same place. All flags

except CS are affected.

Example: DCR C

(Decrement memory by 1)

[M] [M] – 1, Machine cycles: 3, States:10, Flags: all except carry flag, Register indirect addressing, one-

byte instruction.

The content of the memory location addressed by HL pair is decremented by one.

Example: DCR M

(Decrement register pair by 1)

RP RP-1, Machine cycles: 1, States: 6, Flags: none, Register addressing, one-byte instruction.

The contents of the specified register pair are decremented by 1 and the result is stored in the same place.

Example: DCX D

(Decimal adjust accumulator)

Machine cycles: 1, States: 4, Flags: all, one-byte instruction.

The contents of the accumulator are transferred from a binary code to two 4-bit Binary Coded Decimal

(BCD) digits. This is the only instruction, which uses the auxiliary flag to perform the binary to BCD conver-

sion. The conversion procedure as follows:

When the value of the lower-order 4 bits in the accumulator is greater than 9 or AC flag is set, the instruc-

tion adds 6 to the lower-order four bits. If the value of the higher-order 4 bits in the accumulator is greater

than 9 or the carry flag is set, the instruction adds 6 to the higher-order four bits. In this instruction S, Z, AC,

P, CY flags are altered to reflect the results of the operation. Example: DAA

The logical instructions perform AND, OR, EX-OR, operations; compare, rotate or complement of data in

register or memory. All logical instructions are discussed in this section.

(Compare register with accumulator)

A – R, Machine cycles: 1, States: 4, Flags: all, Register addressing, one-byte instruction.

The contents of the register are compared with the contents of the accumulator. Both contents are conserved.

The result of the comparison can be reflected by setting the flags in PSW. When A < register, carry flag is set.

If A = register, zero flag is set. While A > register, carry and zero flags are reset.

Example: CMP B

(Compare memory with accumulator)

A – [M], Machine cycles: 2, States: 7, Flags: all, Register indirect addressing, One-byte instruction.

The content of the memory location specified by HL pair is compared with the content of the accumulator,

and status flags are set according to the result of the comparison. The content of the accumulator remains

uncharged.

Example: CMP M

(Compare immediate 8-bit data with accumulator)

A 8-bit data, Machine cycles: 2, States: 7, Flags: all, Immediate addressing, two-byte instructions.

The second byte of the instruction or 8-bit data is compared with the contents of the accumulator. The values

being compared remain unchanged. The result of the comparison will be reflected by setting the flags of the

PSW. If A < 8-bit data: carry flag is set. If A = data: zero flag is set. When A > 8-bit data: carry and zero flags

are reset.

Example: the instruction is CPI 46H

(Logical AND register with accumulator)

A A R, Machine cycles: 1, States: 4. Flags: all, Register indirect addressing, one-byte instruction.

The contents of the accumulator are logically ANDed with the contents of the register. The result is stored in

the accumulator. All flags are modified to reflect the result of the operation. CY is reset and AC is set.

Example: ANA B

(Logical AND memory with accumulator)

A A [M], Machine cycles: 2, States: 7, Flags: all, Register indirect addressing, one-byte instruction.

The content of the memory location whose address is specified by the contents of HL registers is AND with

the accumulator. The result is placed in the accumulator. All status flags are affected.

Example: ANA M.

(Logical AND immediate 8-bit data with accumulator)

A A 8-bit data, Machine cycles: 2, States: 7, Flags: all, Register indirect addressing, one-byte instruction.

The contents of the accumulator are logically ANDed with the 8-bit data. After ANDing the result is stored

in the accumulator. All flags are modified to reflect the result of the operation. The CY flag is reset and AC

flag is set.

Example: ANI 24H.

(Logical OR register with accumulator)

A A R, Machine cycles: 1, States: 4, Flags: all, Register addressing, one-byte instruction.

The content of Register R is logically ORed with the content of the accumulator. The result is stored in the

accumulator. All flags are modified to reflect the result of the operation. Carry flag CY and auxiliary carry

AC are reset.

(Logical OR memory with accumulator)

A A [M], Machine cycles: 2, States: 7, Flags: all, Register addressing, one-byte instruction.

The contents of the accumulator are logically ORed with the contents of the memory location whose address

is specified by the contents of H and L registers and the result is placed in the accumulator. All flags are modi-

fied to reflect the result of the operation. CY and AC are reset.

Example: ORA M

(Logical OR immediate 8-bit data with accumulator)

A A 8-bit data. Machine cycles: 2, States: 7, Flags: all, Immediate addressing, two-byte instructions.

The second byte of the instruction is 8-bit data. This 8-bit data is ORed with the content of the accumulator

and the result is placed in the accumulator. All flags are modified to reflect the result of operation. The CY

and AC flags are reset.

Example: ORI FFH

(EXCLUSIVE-OR register with accumulator)

A A R, Machine cycles: 1, States: 4. Flags: all, Register addressing, one-byte instruction.

The contents of the accumulator are Exclusive ORed with the contents of the register and the result is placed

in the accumulator. All status flags are affected. The CY and AC flags are reset.

Example: XRA B

(EXCLUSIVE-OR memory with accumulator)

A A M, Machine cycles: 2, States: 4. Flags: all, Register addressing, one-byte instruction.

The contents of the accumulator are Exclusive ORed with the contents of the memory location, which is

specified by H L, register pair and the result is placed in the accumulator. All status flags are affected. The

CY and AC flags are reset.

Example: XRA M

(EXCLUSIVE-OR immediate 8-bit data with accumulator)

A A data, Machine cycles: 2, States: 7, Flags: all immediate addressing, one-byte instruction.

The contents of the accumulator are Exclusive ORed with the 8-bit data. The result is stored in the accumula-

tor. Flags are modified to reflect the result of the operation. The CY and AC flag become 1.

Example: XRI 86H

(Rotate accumulator left)

An+1 An, A0 A7, CS A7, Machine cycles: 1, States: 4. Flags: CS, Addressing: implicit, one-byte

instruction.

Each bit of the accumulator is rotated left by one bit. The seventh bit (D7) of the accumulator is placed in the

position of D0 as well as in the carry flag. Only CY flag is modified depending on D7 bit as shown in Fig. 3.1.

S, Z, P and AC are not affected.

(Rotate accumulator right)

A7 A0, CS A0, An An+1, Machine cycles: 1, States: 4, Flags: CS, Implicit addressing, one-byte

instruction.

Each binary bit of the accumulator is shifted right by one position. Bit D0 is placed in the position of D7

as well as in the carry flag. Therefore, CY is modified accordingly as depicted in Fig. 3.2. S, Z, P, AC are not

affected.

Example: RRC

AccumulatorCarry Status

A7

D7 D6 D5 D4 D3 D2 D1 D0

A0CS

AccumulatorCarry Status

A7 A0CS

D7 D6 D5 D4 D3 D2 D1 D0

(Rotate accumulator left through carry)

An+1 An, CS A7, A0 CS, Machine cycles: 1, States: 4. Flags: CS, Implicit addressing, one-byte

instruction.

The content of the accumulator is rotated left one bit through carry flag. The seventh bit of the accumulator,

D7 is placed in the carry flag, and the carry flag is placed to the least significant bit of the accumulator, D0. S,

Z, P and AC are not affected but only carry flag is affected as shown in Fig. 3.3.

A7 A0CS

Carry Status Accumulator

D7 D6 D5 D4 D3 D2 D1 D0

(Rotate accumulator right through carry)

An An+1, CS A0, A7 CS, Machine cycles: 1, States: 4, Flags: CS, Addressing implicit, one-byte

instruction.

The content of the accumulator is rotated right one bit through carry flag. The least significant bit of the

accumulator, D0 is placed in the carry flag. The carry flag is placed in the most significant position of the

accumulator D7. The carry flag is modified according to the bit D0. In this instruction CS flag is affected as

depicted in Fig. 3.4.

A7 A0CS

Carry Status Accumulator

D7 D6 D5 D4 D3 D2 D1 D0

(Complement the accumulator)

A A, Machine cycles: 1, States, 4 Flags: none, Implicit addressing, one-byte instruction.

The content of the accumulator is complemented, and the result is placed in the accumulator. No flags are

affected. For example, CMA determines one’s complement of 0000 1100 is 1111 0011.

(Complement the carry)

CS CS, Machine cycles: 1, States: 4, Flags: CS, one-byte instruction.

The carry flag CS is complemented. No other flags are affected.

Example: CMC

(Set the carry)

CS 1, Machine cycles: 1, States: 4, Flags: CS, one-byte instruction.

The carry flag is set to 1. No other flags are affected.

Example: STC

The branch group instructions are generally used to change the sequence of the program execution. There

are two types of branch instructions, namely, conditional and unconditional. The conditional branch instruc-

tions transfer the program to the specified address when the condition is satisfied. The unconditional branch

instructions transfer the program to the specified address unconditionally. All conditional and unconditional

branch instructions are explained in this section.

(Jump unconditionally)

PC Label (16-bit address), Machine cycles: 3, States: 10, Flags: none, Immediate addressing, three-byte

instructions.

The program sequence is transferred to the memory location specified by the 16-bit address given in the

operand. For example, JMP 8000H, the program jumps to the instruction specified by the address location

8000H unconditionally.

(Jump unconditionally)

In the conditional jump instruction, the program sequence is transferred to the memory location specified by

the 16-bit address given in the operand based on the specified flag of the PSW. All conditional jump instruc-

tions are given below:

Opcode Description Flag Status

JC Jump on carry CY = 1

JNC Jump on no carry CY = 0

JP Jump on positive S = 0

JM Jump on minus S = 1

JZ Jump on zero Z = 1

JNZ Jump on no zero Z = 0

JPE Jump on parity even P = 1

JPO Jump on parity odd P = 0

(Jump on carry)

PC 16-bit address, jump if CY = 0.

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing, three-byte instructions.

The program jumps to the memory location specified by the 16-bit address when the carry flag CY = 1.

Example: JC 9000H

(Jump on no carry)

PC 16-bit address, jump if CY = 0.

Machine cycles: 2/3, States: 7/10. Flags: none, Immediate addressing, three-byte instructions.

The program is transferred to the memory location specified by the 16-bit address when there is no carry.

Example: JNC 9000H

(Jump on positive)

PC 16-bit address, jump if S = 0.

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing, three-byte instructions.

The program jumps to the memory location specified by the 16-bit address if the result is plus or positive.

Example: JP 8000H

(Jump on minus)

PC 16-bit address, jump if S = 1.

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing, three-byte instructions.

When the result is minus, the program jumps to the memory location specified by the 16-bit address.

Example: JM 9060H

(Jump on zero)

PC 16-bit address, jump if Z = 1.

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing

The program jumps to the memory location specified by the 16-bit address while the result is zero or the zero

flag is set.

Example: JZ 9500H

(Jump on no zero)

PC 16-bit address jump if CS = 1.

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing, three-byte instructions.

The program jumps to the memory location specified by the 16 -bits when the result is not zero or the zero

flag is reset.

Example: JNZ 9500H

(Jump on even parity)

PC 16-bit address (jump if even parity)

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing, three-byte instructions.

When the result contains an even number of 1s, the program jumps to the memory location specified by the

16-bit address.

Example: JPE 8500H

(Jump on odd parity)

PC 16-bit address; the parity status P = 0,

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing, three-byte instructions.

The program jumps to the memory location specified by the 16-bit address when the result contains an odd

number of 1s.

Example: JPO 8000H.

(Unconditional subroutine CALL)

([SP] – 1) PCH, ([SP]-2) PCL,[SP] [SP]-2, PC 16 bit address

Machine cycles: 5, States: 9/18, Flags: none, Immediate/register

The program sequence is transferred to the memory location specified by the 16-bit address given in the

instruction. Before the transfer, the contents of the program counter (the address of the next instruction after

CALL) are pushed onto the stack.

Example: CALL 8700H

(CALL Conditionally)

([SP] – 1) PCH, ([SP]-2) PCL,[SP] [SP]-2, PC 16 bit address

Machine cycles: 2/5, States: 9/18, Flags: none, Immediate/register, three-byte instructions.

The program sequence is transferred to the memory location specified by the 16-bit address given in the

operand of the instruction based on the specified flag of the PSW. Before the transfer, the address of the next

instruction after the call or the contents of the program counter is pushed to the stack. All conditional CALL

instructions are given below.

 Opcode Description Flag Status

 CC Call on carry CY = 1

 CNC Call on no carry CY = 0

 CP Call on positive S = 0

 CM Call on minus S = 1

 CZ Call on zero Z = 1

 CNZ Call on no zero Z = 0

 CPE Call on parity even P = 1

 CPO Call on parity odd P = 0

(Return from subroutine unconditionally)

PCL [SP]

PCH [SP]+1

[SP] [SP]+2

Machine cycles: 3, States: 10. Flags: none, Register indirect addressing

The program sequence is transferred from the subroutine to the calling program. Therefore, RET is used at

the end of a subroutine. The two bytes from the top of the stack are copied into the program counter, and

program execution begins at the new address.

Example: RET

(Return from subroutine unconditionally)

PCL [SP]

PCH [SP]+1

[SP] [SP]+2

Machine cycles: 1/3, States: 10, Flags: none, Register indirect addressing

The program sequence is transferred from the subroutine to the calling program based on the specified

flag of the PSW. The two bytes from the top of the stack are copied into the program counter, and program

execution begins at the new address. All conditional call instructions are below:

 Opcode Description Flag Status

 RC Return on carry CY = 1

 RNC Return on no carry CY = 0

 RP Return on positive S = 0

 RM Return on minus S = 1

 RZ Return on zero Z = 1

 RNZ Return on no zero Z = 0

 RPE Return on parity even P = 1

 RPO Return on parity odd P = 0

(Load program counter with H-L contents

PC H-L, PCH H, PCL L

Machine cycles: 1, States: 6 Flags: none, Register addressing, one-byte instruction.

The contents of H and L registers are transferred into the program counter. The contents of Register H are

placed as the higher-order byte of PC register and the contents of Register L as the lower-order byte.

Example: PCHL.

(Restart)

[SP] – 1 PCH, [SP] – 2 PCL

[SP] [SP] – 2], [PC] 8 times n

Machine cycles: 3, States: 12, Flags: none, Register indirect addressing, one-byte instruction.

The RST(Restart) is a one-byte CALL instruction to one of the eight memory locations depending upon

the number. These instructions are generally used in conjunctions with interrupts and inserted using exter-

nal hardware. These instructions can also be used as software instructions in a program to transfer program

execution to any one of the eight locations. The address of the restart instructions are given below:

 Instruction Restart Address

 RST 0 0000H

 RST 1 0008H

 RST 2 0010H

 RST 3 0018H

 RST 4 0020H

 RST 5 0028H

 RST 6 0030H

 RST 7 0038H

The 8085 microprocessor has four additional interrupts. The interrupt

instructions and their restart addresses are given below:

 Interrupt Restart Address

 TRAP 0024H

 RST 5.5 002CH

 RST 6.5 0034H

 RST 7.5 003CH

These interrupts generate RST instructions internally and thus do not require any external hardware.

These instructions are used to manipulate stack-related operations. All stack instructions are discussed as

follows:

(Push the content of register pair B and C to stack)

[SP] – 1 B

[SP] –2 C,

[SP] [SP] –2

Machine cycles: 3, States: 12. Flags: none, Register indirect addressing, one-byte instruction.

The contents of the register pair designated in the operand are copied onto the stack in the following

sequence. The stack pointer register is decremented and the contents of the higher-order Register B are cop-

ied into that location. Then stack pointer register is decremented again and the contents of the lower-order

Register C are copied to that location.

(Push the content of register pair D and E to stack)

[SP] – 1 D

[SP] –2 E,

[SP] [SP] –2

Machine cycles: 3, States: 12. Flags: none, Register indirect addressing, one-byte instruction.

The contents of the register pair DE are pushed into the stack in the following sequence. The stack

pointer register is decremented by 1 and the contents of Register D are copied into that location. After that,

the stack pointer register is decremented and the contents of Register E are copied to that location.

(Push the content of register pair H and L to stack)

[SP] – 1 H

[SP] –2 L

[SP] [SP] –2

Machine cycles: 3, States: 12. Flags: none, Register indirect addressing, one-byte instruction.

The contents of the register pair H and L to stack are copied onto the stack in the sequence given above.

(PUSH accumulator content and flags on stack)

[SP] – 1 A

[SP]– 2 PSW (Program Status Word)

[SP] [SP] –2

Machine cycles: 3, Status: 12, Flags: none, Register indirect addressing, one-byte instruction.

The stack pointer register is decremented by 1 and the content of the accumulator is pushed into the stack.

Again, the stack pointer register is decremented by 1 and the contents of status flags are also pushed into the

stack. Then content of the register SP is decremented by 2 to indicate new stack.

(Pop off stack to register pair B and C)

C [SP]

B [SP] +1

[SP] [SP] +2

Machine cycles: 3, States: 10. Flags: none, Register indirect addressing, one-byte instruction.

The contents of the memory location pointed out by the stack pointer register are copied to the lower-order

Register C. The stack pointer is incremented by 1 and the contents of that memory location are copied to the

higher-order register B. The stack pointer register is again incremented by 1.

(Pop off stack to register pair D and E)

E [SP]

D [SP] +1

[SP] [SP] +2

Machine cycles: 3, States: 10, Flags: none, Register indirect addressing, one-byte instruction.

The contents of the memory location pointed out by the stack pointer register are copied to Register E. Then

stack pointer is incremented by 1 and the contents of that memory location are copied to Register D. After

that the stack pointer register is incremented by 1.

(Pop off stack to register pair H and L)

L [SP]

H [SP] +1

[SP] [SP] +2

Machine cycles: 3, States: 10, Flags: none, Register indirect addressing, one-byte instruction.

The contents of the memory location specified by the stack pointer register are copied to the lower-order

Register L. The stack pointer is incremented by 1 and the contents of that memory location are copied to the

higher-order Register H. Then stack pointer register is incremented by 1.

(Pop off stack to accumulator and flags)

PSW [SP]

A [SP]+1

[SP] [SP]+2

Machine cycles: 3, States 10, Flags: none, Register indirect addressing, one-byte instruction.

The process status word, which was saved during the execution of the POP PSW, can move from the stack to

PSW. The stack pointer is incremented by 1 and the contents of that memory location are copied to accumula-

tor. Then stack pointer register is incremented by 1.

(Exchange H and L with top of stack)

L)[SP]

H)[SP]+1

Machine cycles: 5, States: 16, Flags: none, Register indirect addressing, one-byte instruction.

The contents of the L register are exchanged with the stack location pointed out by the contents of the stack

pointer register. Then contents of the H register are exchanged with the next stack location (SP+1); but the

contents of the stack pointer register are not altered.

(Copy the contents of H-L register pair to the stack pointer)

[H-L]"[SP].

Machine cycles: 1, States: 6, Flags: none, Addressing: register, one-byte instruction.

This instruction copied the contents of the H and L registers into the stack pointer register. The contents of

the H register provide the higher-order address and the contents of the L register also provide the lower-order

address. The contents of the H and L registers are not altered.

These instructions are used to perform the input/output operations and machine control operations. In this

section, the I/O and machine control instructions are explained below:

(Enable interrupts)

Machine cycle: 1, States: 4, Flags: none, one-byte instruction.

When this instruction is executed, the interrupt enable flip-flop is set and all interrupts are enabled. No flags

are affected. After the acknowledgement of an interrupt, the interrupt enable flip-flop is reset, thus disabling

the interrupts.

Example: EI

(Disable Interrupts)

Machine cycle: 1, States: 4, Flags: none, one-byte instruction.

When this instruction is executed, the interrupt enable flip-flop is reset and all the interrupts except the TRAP

are disabled. No flags are affected.

Example: DI

(No operations)

Machine cycle: 1, States: 4, Flags: none, one-byte instruction.

No operation is performed. The instruction is fetched and decoded. However no operation is executed.

Therefore, the registers and flags are not affected.

Example: NOP

(Halt and enter wait state)

Machine cycle: 1, States: 5, Flags: none, one-byte instruction.

When the instruction HLT is executed, the microprocessor finishes executing the current instruction and halts

any further execution. An interrupt or reset is necessary to exit from the halt state. No registers and status

flags are affected.

Example: HLT

(Set Interrupt Mask)

Machine cycle: 1, States: 4, Flags, none, one-byte instruction.

This instruction is used to read the status of interrupts 7.5, 6.5, 5.5 and read serial data input bit. The instruc-

tion loads eight bits in the accumulator with the following interpretations.

Example: RIM

(Read Interrupt Mask)

Machine cycle: 1, States: 4, Flags: none, one-byte instruction.

This instruction is used to implement the interrupts 7.5, 6.5, 5.5 and read serial data output. When this instruc-

tion is executed, the accumulator is loaded with eight bits with the following interpretations.

Example: RIM

(Input data to accumulator from an I/O port with 8-bit address)

A [Port], Machine cycles: 3, States: 10, Flags: none, Direct addressing, two-byte instructions.

The contents of the input port whose address is specified by 8-bit port address are read and loaded into the

accumulator. For example, IN 00H. This instruction states that the data available on the port address 00H is

moved to the accumulator.

(Output data from accumulator to a I/O port with 8-bit address)

[Port] A, Machine cycles: 3, States 10, Flags: none, Direct addressing, two-byte instructions.

The contents of the accumulator are copied into the I/O port specified by the 8-bit address. For example,

OUT 01H. This instruction states that the content of the accumulator is moved to the port address 01H.

Instructions are stored in the memory of a microcomputer to enable it perform a specified operation on given

data. To perform a particular task, a programmer should write a sequence of instructions, called a program.

To execute an instruction, the microprocessor fetches one instruction code from the memory via a data bus at

a time. Then it decodes the instruction code in the instruction register and performs the specified function. In

the same way, all other instructions of a program are executed one by one to produce the final result.

In a 1-byte instruction, only the operation code is fetched from memory and executed it. But in 2-byte

instructions and 3-byte instructions, the subsequent codes are fetched, decoded and executed in the same

way as a 1-byte instruction. All read operations such as opcode fetch from memory and operand read from

memory are performed within a given time period. The system clock provides the timing of instruction and

this operation is controlled by the control unit of the microprocessor. In this section, the timing diagram of

instructions are explained in detail. To understand the timing diagram, the following terms must be well

known:

T state, Instruction cycle, Fetch cycle, Execute cycle, and machine cycle

This is defined as one subdivision of the operation performed in one clock period. Each

subdivision is considered as internal state of operation, which is synchronized with the system clock.

This is defined as the total time required executing an instruction completely

The instruction cycles consist of a fetch cycle and execute cycle as depicted in Fig. 3.5. In a Fetch Cycle (FC),

the microprocessor fetches the opcode from the memory. After the opcode fetch operation, the necessary

steps are carried out to get the operand, if required, from the memory and then perform the specific operation

specified in an instruction. This operation is called Execute Cycle (EC). The time period of Fetch Cycle (FC)

is a fixed but the time required to execute an instruction or time period of Execute Cycle (EC) is variable

which depends on the type of instructions. The total time required to execute an instruction is the summation

of the time period of fetch cycle and execute cycle. This can also be written as

IC = FC + EC

The first byte of an instruction is known as its opcode. An instruction may be one-byte or two-byte or three-

byte long. When an instruction is more than one byte, the other bytes are data or operand. In the Program

Counter (PC), the memory address of the next instruction to be executed is stored. At the starting of a fetch

cycle, the content of the program counter, which is the address of the memory location where the opcode is

stored, will be sent to the memory. Then the memory gets the opcode from memory location on the data bus.

To perform this operation, two consecutive clock pulses are required. In the next clock cycle, data will be

transferred to the microprocessor. To complete the entire fetching operation, four clock cycles are required

as depicted in Fig. 3.6. In slow memory, the microprocessor has to wait till the memory sends the opcode.

The clock cycle for which the CPU waits is known as wait cycle. Therefore, more than four clock cycles are

required for opcode fetch operation in case of a slow memory system.

In the fetch cycle, the opcode is fetched from the memory and moves to the data register (DR) and then moves

to instruction register (IR). After that it moves to the decoder circuit which decodes the instruction. After

decoding the instruction, execution starts. When the operand is in the general-purpose registers, the execution

is immediately performed. The time taken in decoding and execution is one clock cycle. When the instruction

contains the operand, which is in the memory, the microprocessor has to perform read operations to get the

desired operand. After receiving the operand from memory, the microprocessor performs the execute opera-

tion. A read cycle is similar to a fetch cycle. In some instructions, a write operation is performed. In case of a

write cycle, data are sent from the microprocessor to the memory or an output device. Therefore, an execute

cycle consists of one or more read or write cycles or both.

The machine cycle is the sequence of operations required to complete one of the following functions:

Opcode fetch, memory read, memory write, I/O read and I/O write operations.

In other words, the operation of accessing either memory or I/O device is called a machine cycle. In the

8085 microprocessor, the machine cycle consists of three to six clock cycles. An instruction cycle consists

of several machine cycles. In the first machine cycle of an instruction cycle, the opcode of an instruction is

fetched. The 1-byte instructions require only one machine cycle to fetch the opcode and execute the instruc-

tion. Two-byte and three-byte instructions require more than one machine cycle. The additional machine

cycles are required to read data from memory or I/O devices or to write data into the memory or I/O devices.

For example, instruction cycle for MVI B, data is depicted in Fig. 3.7. This instruction has two machine

Fetch Cycle (FC)

C
lo

c
k

Execute Cycle (FC)

Instruction Cycle (IC)

Send address
to memory

Memory gets opcode from
memory location

Transfer opcode
to microprocessor

C
lo
c
k

cycles. The first machine cycle (M1) is for fetching opcode, and the other machine cycle (M2) is for reading

data from the memory and executing the instruction.

At the starting of the Fetch Cycle (FC), the content of the Program Counter (PC) is loaded into a Memory Address

Register (MAR). After that the content of MAR is transferred to the memory through the address bus.

Subsequently, the microprocessor sends control signals to the memory and it indicates that microprocessor

wants to read the content of the memory. Then the decoder circuit in the memory is activated and the

memory can understand what will happen. Consequently, the memory sends an opcode to the microproces-

sor through the data bus. Initially, the opcode is placed in the memory data bus and then it is placed from the

memory data bus to Memory Data Register (MDR). Subsequently, the opcode is placed in the Instruction

Register (IR). Then, the instruction decoder decodes the instruction and the instruction is executed by the

microprocessor. After that the content of the Program Counter (PC) is incremented by one. Figure 3.8 shows

the flow of instruction.

M -Fetch Cycle (FC)1

C
lo
c
k

Instruction Cycle (IC)

M -Execute Cycle (EC)2

Next Instruction
Cycle

Instruction
Register (IR)

Memory Data
Register (MDR)

Instruction
Decoder

Control

Program
Counter (PC)

Memory
Address

Register (MAR)

Memory
Address Bus

Memory
Data Bus

Most of the instructions are of two bytes. Hence, the execution of an instruction requires opcode as well

as operand/data. The flow of data is depicted in Fig. 3.9. The data can be received from memory or any input

device. Actually, the data is input to the processor through the data bus and then it is placed either in the accu-

mulator or in the general-purpose registers as per instruction. After execution of an instruction, the data is

placed in a register or a memory location. After completion of execution of a program, the result is placed in

the memory or any output device. Whenever data is written in the memory, it must be stored in the memory

data register until the write operation has been completed.

Temporary
Register (TR)

Accumulator
(ACC)

General Purpose
Registers

Memory Data
Register
(MDR)

Data Bus
to

Memory

Internal Data Bus

Arithmetic Logic Unit (ALU)

The graphical representation of all steps which are performed in a machine cycle is known as the timing

diagram. In this section, the timing diagrams for opcode fetch, memory read, memory write, I/O read and I/O

write operations are explained briefly.

In the fetch cycle, the microprocessor fetches the opcode of an instruction from the memory. Figure 3.10(a)

shows the timing diagram for an opcode fetch cycle of an instruction MOV A, B. Assume that the opcode of

instruction MOV A, B is stored in 8000H and the content of Register B is 4FH.

 Memory location Opcode Mnemonics

 8000H 78H MOV A, B

To execute this instruction, four consecutive clock cycles T1, T2, T3 and T4 are required. The sequence

of operations are given below:

 In the first clock cycle T1, the microprocessor places the content of the program counter, address of

the memory location 8000H, where the opcode is available on the 16-bit address bus. The 8 MSBs

of the memory address (80H) are placed on the higher-order address bus, A15–A8 and 8 LSBs of the

memory address (00H) are placed on the lower-order address bus, AD7–AD0. Since the AD bus is

needed to transfer data during subsequent clock cycles, it is used in a time-multiplexed mode.

 The microprocessor sends an Address Latch Enable (ALE) signal to go high and latch the 8 LSBs of

the memory address. Therefore, lower-order address bus is demultiplexed and the complete 16-bit

memory address available in the subsequent clock cycles to get the opcode from the specified mem-

ory address, 8000H.

 The microprocessor sends the status signals IO/M = 0, S0 = 1 and S1 = 1 to indicate opcode fetch

operation.

 During T2, lower-order bus AD7–AD0 is ready to carry data from the memory location. The

microprocessor sends the control signal RD = 0 to enable memory and the program counter is incre-

mented by 1 to 8001H. Now the opcode from the specified memory location 8000H is placed on the

data bus.

 During T3, the microprocessor reads the opcode and places it in the instruction register IR. The

memory is disabled when RD goes high during T3. The fetch cycle is completed by T3.

 The microprocessor decodes the instruction opcode in T4. It also places the content of the B register

in the temporary register. After that it transfers it to the accumulator.

When an instruction is one-byte long, only one machine cycle is required as depicted in Fig. 3.10(a). For

Machine Cycle (M)1

PC (Higher-order Address Bus)H

PC LowerL

Lower-order
Address A A0 7–

A –A8 15

Clock

AD AD0 7–

ALE

WR

IO/M

RD

S , S0 1

STATUS

D D0 7–

Opcode 78H

T1 T2 T3 T4

example, MOV, SUB, ADD, RAL are one-byte long instructions. The operands are in the general-purpose

registers; the decoding of the operation code and its execution takes only one clock cycle, T4. When an

instruction is two or three bytes long, more than one machine cycle is required. In the first machine cycle, M1

the opcode, is fetched from the memory. The subsequent machine cycles M2, M3 are required to read oper-

ands from the memory or I/O devices or to write data into the memory or I/O devices. The timing diagram for

a two-byte instruction MVI C, data is illustrated in Fig. 3.10(b).

The MVI C, data is a two-byte instruction. In the coded form, it is written as 3E, FF where 3E is the

opcode for MVI C instruction and FF is data. This instruction is stored in two consecutive memory locations,

8000H and 8001H.

This instruction requires two machine cycles, M1 and M2. The first machine cycle M1 is known as

the fetch cycle to fetch operation code 3E from the memory. The timing diagram for opcode fetch opera-

tion has already been explained in Section 3.7.1. The second machine cycle M2 is used to read the operand

T
1 T

2
T

3
T

4
T

1 T
2

T
3

A –A8 15

Clock

AD –AD0 7

ALE

IO/M

RD

S , S0 1

STATUS

S
1

S
0

D D0 7–

PC (Higher-order Address Bus)H
PC (Higher-order Address Bus)H

PC LowerL

Lower-order
Address A A0 7–

Opcode
3E H

PC LowerL D D0 7–

Operand
FF H

Lower-order
Address A A0 7–

Machine Cycle (M)1 Machine Cycle (M)2

(FFH) from the memory. Actually this is

a memory read cycle. Figure 3.11 shows

the machine cycle M2 and its operation is

explained below:

In the

first clock cycle(T1) the microprocessor

places the content of the program counter,

8001H, which is the address of operand

on the 16-bit address bus. The 8 MSBs

of the memory address 80H are placed on

the higher-order address bus, A15–A8 and

8 LSBs of the memory address, 01H are

placed on the lower-order address bus,

AD7–AD0.

The microprocessor sends an Address

Latch Enable (ALE) signal to go high and

latch the 8 LSBs of the memory address.

Then a lower-order address bus is demul-

tiplexed and the complete 16-bit memory

address is available in the subsequent

clock cycles to get the operand from mem-

ory location 8001H.

The status signals IO/M = 0, S0 = 0

and S1 = 1 to identify the memory read

operation.

The lower-order bus AD7–AD0 is ready

to accept operand from memory. The

microprocessor sends the control signal

RD = 0 to enable memory and the program

counter is incremented by 1 to 8002H.

After that the operand from the memory location 8001H is placed on the data bus.

During T3, the microprocessor reads the operand. RD becomes high

during T3 and the memory is disabled.

The microprocessor also places the operand in the C register.

In an I/O read operation, the microprocessor reads the data from a specified input port or an input device.

The I/O read operation is similar to memory read cycle except the control signal IO/ M. In a memory ready

cycle, IO/M is low but IO/M is high in case of I/O read cycle operation because the signal IO/M goes high in

case of I/O read.

Machine Cycle (M)2

PC (Higher-order Address Bus)H

PC LowerL

Lower-order
Address A A0 7–

A –A8 15

Clock

AD AD0 7–

ALE

IO/M

RD

S0

STATUS

D D0 7–

Operand
FF H

T1 T2 T3

S1

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

A
–
A

8
1
5

C
lo
c
k

A
D
A
D

0
7

– A
L
E

IO
/MR
D S
0

S
T
A
T
U
S

S
T
A
T
U
S S
1

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A
A

0
7

–
L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A
A

0
7

–
D
a
ta
fr
o
m
M
e
m
o
ry

(I
n
s
tr
u
c
ti
o
n
o
p
c
o
d
e
)

D
a
ta
fr
o
m
M
e
m
o
ry

(I
/O
P
o
rt
A
d
d
re
s
s
)

D
a
ta
fr
o
m

I/
O
P
o
rt

I/
O
P
o
rt

P
C
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
(P
C
+
1
)
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)

H

(P
C
+
1
)
L
o
w
e
r

L
I/
O
P
o
rt

P
C
L
o
w
e
r

L
D

D
0

7
–

D
D

0
7

–
D

D
0

7
–

O
p
c
o
d
e
F
e
tc
h
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M
)
1

M
e
m
o
ry
R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M
)
2

In
p
u
t/
O
u
tp
u
t
R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M
)
3

The timing diagram of I/O read operation is shown in Fig. 3.12. In this case, the address on the A-bus is

for an input device. As I/O device or I/O port address is only 8 bits long, the address of I/O device or I/O port

is duplicated on both higher-order address bus A8–A15 and low order address bus AD0–AD7.

For I/O read operation, the IN instruction is used. One example is IN 00. This is a two-byte instruction.

The code of this instruction is DB, 00 where DB is for IN and 00 is the input port address.

This instruction requires three machine cycles for execution. The first machine cycle is opcode fetch

cycle, and the second machine cycle is a memory

read cycle to read the address of input device or

input port. In the third machine cycle, the I/O read

operation is performed, it means that the data to

be read from the input device or input port. After

execution of this instruction, the data is placed in

the accumulator. The opcode fetch cycle and mem-

ory read cycle are exactly similar to MVI C, FF H

instruction. Figure 3.13 shows the machine cycle

M3 of I/O read operation and it is explained below:

 CPU places the address of I/O port or

input-output peripheral devices.

 ALE signal is high.

 IO/M becomes high to perform I/O

operation.

 RD is low for read operation.

 CPU reads data from I/O devices and

places in Register A through a data bus.

 RD signal becomes high as I/O read opera-

tion has been completely performed.

In a memory write operation, the microprocessor sends data from the accumulator or any general-purpose

register to the memory. The timing diagrams of a memory write cycle is depicted in Fig. 3.14. The memory

write cycle is similar to the memory read cycle, but there are differences on status signals. The status signals

Machine Cycle (M)3

T1 T2 T3

A –A8 15

Clock

AD –AD0 7

ALE

IO/M

RD

S0

STATUS

S1

IO Port

I/O Port

Data to I/O
Peripheral Device

D – D0 7

PC (Higher-order Address Bus)H

T
1

T
2

T
3

T
4

T
1

T
2

T
3

PC (Higher-order Address Bus)H

Lower Order
Address A –A0 7

Opcode Lower-order
Address A –A0 7

Operand

D –D0 7

Clock

ALE

WR

S
1

RD

S
0

PC LowerL
PC LowerL

D – D0 7

Machine Cycle (M)1 Machine Cycle (M)2

A –A
8 15

AD –AD
0 7

IO/M

S0 =1 and S1 = 0 and write RW is low during T2 of machine cycle M2 which indicates that the memory write

operation is to be performed.

During T2 of the machine cycle M2, the lower-order address bus AD0–AD7 is not disabled as the data

to be sent out to the memory, which is placed on the lower-order, address bus. When WR becomes high in

T3 of machine cycle M2, the memory write operation will be terminated. The following instructions use the

memory write cycle: MOV M, B; MOV M, A and STA 8000 H, etc. The timing diagram of STA 8000 H is

given in Example 3.1.

The microprocessor sends the content of the accumulator to an I/O port or I/O device in an I/O write cycle.

The operation of an I/O write cycle is similar to a memory write cycle. But the difference between a memory

write cycle and an I/O write cycle is that IO/ M becomes high in case of I/O write cycle. When IO/ M is

high, the microprocessor locates the address of any output device or an output port. The address of an output

device or an output port is duplicated on both higher-order address bus A8–A15 and lower-order address bus

AD0–AD7.

The OUT instruction is used for I/O write operation. This is a two-byte instruction and it requires three

machine cycles as depicted in Fig. 3.15. The first machine cycle is for opcode fetch operation and the second

machine cycle is a memory read cycle for reading the address output device or output port from the memory.

In the next step, the third machine cycle data will be written in the output device or output port. In other

words, data to be send to the I/O device. The third machine cycle is explained below:

O
p
c
o
d
e
F
e
tc
h
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
1

In
p
u
t/
O
u
tp
u
t
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
3

M
e
m
o
ry

R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
2

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

P
C
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
(P
C
+
1
)
(H
ig
h
e
r-
o
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
IO

P
o
rt

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A

A
0

7
–

A
–
A

8
1
5

C
lo
c
k

A
D

A
D

0
7

– A
L
E

W
R

IO
/MR
D S
0

S
T
A
T
U
S

S
T
A
T
U
SS
1

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A

A
0

7
–

D
a
ta
fr
o
m
M
e
m
o
ry

(I
n
s
tr
u
c
ti
o
n
o
p
c
o
d
e
)

D
a
ta
fr
o
m
M
e
m
o
ry

(I
/O

P
o
rt
A
d
d
re
s
s
)

D
a
ta
to

I/
O
P
o
rt

IO
P
o
rt

P
C
L
o
w
e
r

L
D

D
0

7
–

(P
C
+
1
)
L
o
w
e
r

L
D

D
0

7
–

D
D

0
7

–

 CPU places the address of I/O port or input-output peripheral devices.

 ALE signal is high.

 IO/M signal is also high in order to perform I/O operation.

 WR becomes low for write operation.

 CPU places the content of Register A in a data bus.

 Then it writes data to I/O port.

 WR Signal becomes high as I/O read operation has been completed.

Draw and explain the timing diagram for the instruction STA 9400H

Consider that instruction STA 9400H is stored at 9000H, 9001H and 9002H memory locations as given
below:

STA 9400H is a three-byte instruction. Figure 3.16 shows the timing diagram of STA 9400H. This

instruction requires four machine cycles as depicted in Fig. 3.16. The first machine cycle M1 is opcode fetch

cycle to read the opcode from 9000H memory location. The memory read cycle machine cycle M2 is used

to read the lower-order address from memory location 9001H. The machine cycle M3 is also a memory read

cycle to read the higher- order address from 9002H. The last machine cycle M4 can store the contents of

Register A at the specified memory location 9400H. Therefore, machine cycle M4 is memory write cycle.

The opcode fetch cycle and first memory read cycle is same as timing diagram of MVI A, FFH. In STA

9400H instruction, the second memory read cycle is used to read the higher-order address. In this section, the

operation of M4 has been explained below:

 CPU places the content of program counter on the address bus during T1 of machine cycle M4. Here,

PCL content 00H and PCH content is 94H.

 ALE signal is high.

 IO/M signal is low so that program counter content locates the memory location.

 CPU places the content of Register A on the data bus and WR becomes low so that a write operation

will be performed.

 The content of data bus will be written in the specified memory location 9400H.

 Then WR signal will be changed from low to high as I/O read operation has been completed.

O
p
c
o
d
e
F
e
tc
h
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
1

M
e
m
o
ry
R
e
a
d
C
y
c
le
(M

)
3

M
e
m
o
ry
R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
2

M
e
m
o
ry
W
ri
te
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
4

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

T
1

T
2

T
3

A
–
A

8
1
5

C
lo
ck

A
D

A
D

0
7

– A
L
E

W
R

IO
/M

R
D S
1

S
T
A
T
U
S

S
T
A
T
U
S

S
0

P
C
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)
9
0
H

H
(P
C
+
1
)
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)
9
0
H

H
9
4
H

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

D
–
D

0
7

(P
C
+
1)
Lo
w
er
01
H

L

(P
C
+
1
)
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)
9
0
H

H

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
e
ra
n
d
9
4
H

P
C
–
L
o
w
e
r
0
0
H

L
D
–
D

0
7

(P
C
+
2
)
L
o
w
e
r
0
2
H

L
D
–
D

0
7

0
0
H

D
–
D

0
7

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
c
o
d
e
3
2
H

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
e
ra
n
d
0
0
H

A
–
A

8
1
5

C
lo
c
k

A
D
–
A
D

0
7

A
L
E

IO
/MR
D S
1

S
T
A
T
U
S

S
T
A
T
U
S

S
0

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

O
p
c
o
d
e
F
e
tc
h
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
1

M
e
m
o
ry
R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
3

M
e
m
o
ry
R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
2

P
C
(H
ig
h
e
r-
o
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
(P
C
+
1
)
(H
ig
h
e
r-
o
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
(P
C
+
2
)
(H
ig
h
e
r-
o
rd
e
r
A
d
d
re
s
s
B
u
s
)

H

P
C
L
o
w
e
r

L

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
c
o
d
e
2
1
H

D
–
D

0
7

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
e
ra
n
d
5
0
H

L
o
w
e
r-
o
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
e
ra
n
d
8
0
H

D
–
D

0
7

D
–
D

0
7

(P
C
+
1
)
L
o
w
e
r

L
(P
C
+
2
)
L
o
w
e
r

L

Draw and explain the timing diagram for the instruction LXI H, 8050H.

The LXI H, 8050H is a three-byte long instruction and is stored at the memory location 8000H, 8001H and
8002H. The opcode for LXI H is 21H and the address is 8050H. The timing diagram of this instruction is
depicted in Fig. 3.17. It is clear from Fig. 3.17 that this instruction requires the three-machine cycle. The first
machine cycle M1 is a fetch cycle and other two consecutive machine cycles, M2 and M3 are memory read
cycles.

In the fetch cycle, the opcode for LXI H, 21H is fetched from the memory location 8000H and program

counter is incremented by 1 to 8001H. In the second machine cycle M2, 8 LSBs of the 16-bit data (8050H)

are read. Similarly in the third machine cycle M3, 8 MSBs of the 16-bit data (8050) are read. After execution

of this instruction, 50H is stored in Register L and 80H is also stored in Register H.

 In this chapter, different types of 8085 microprocessor-addressing modes have been explained.

 The 8085 microprocessor’s instruction set can be divided into five different groups such as data trans-

fer, arithmetic, logical, branching, stack I/O and machine-control operations.

 Instructions of all categories have been described in detail in this chapter. During execution of an

instruction, the CPU should perform the following operations: opcode fetch from memory through data

bus, read operand/data from memory and perform the specified operation with data.

 All operations are synchronized with the system clock. The timing diagram of any instruction shows

the sequence of different operations with respect to the clock. Instruction cycle is the time required to

complete the execution of an instruction. In this chapter, instruction cycle of one byte, two bytes and

three bytes have been incorporated with timing diagrams.

3.1 The instructions of 8085 microprocessor has

been classified into

 (a) four groups of instructions

 (b) five groups of instructions

 (c) six groups of instructions

 (d) seven groups of instructions

3.2 XCHG is a/an

 (a) data transfer instruction

 (b) arithmetic instruction

 (c) logical instruction

 (d) I/O and stack pointer instruction

3.3 DAD is a/an

 (a) data-transfer instruction

 (b) arithmetic instruction

 (c) logical instruction

 (d) I/O and stack pointer instruction

3.4 When PUSH B instruction is executed,

 (a) the content of Register B and C register is

copied in the stack

 (b) the content of Register B and Register C

is stored in the stack and the registers are

cleared

 (c) Register B and Register C are cleared by

data transfer instructions

3.5 ORA is a/an

 (a) data transfer instruction

 (b) arithmetic instruction

 (c) logical instruction

 (d) I/O and stack pointer instructions

3.6 CALL and RET are used in

 (a) data transfer instructions

 (b) arithmetic instructions

 (c) logical instructions

 (d) Branch control instructions

3.7 HLT is a/an

 (a) data transfer instruction

 (b) arithmetic instruction

 (c) logical instruction

 (d) Machine control instruction

3.8 A one-byte instruction has

 (a) opcode and an operand

 (b) opcode only

 (c) opcode and two operand

 (d) operand only

3.9 A two-byte instruction consists of

 (a) opcode and an operand

 (b) opcode only

 (c) opcode and two operand

 (d) operand only

3.10 A three-byte instruction should have

 (a) opcode and an operand

 (b) opcode only

 (c) opcode and two operand

 (d) operand only

3.11 IN 00H is an instruction of

 (a) direct addressing mode

 (b) indirect addressing mode

 (c) register addressing mode

 (d) immediate addressing mode

3.12 STA 9000H is an instruction of

 (a) one byte (b) two bytes

 (c) three bytes (d) four bytes

3.13 MOV is an instruction of

 (a) direct addressing mode

 (b) indirect addressing mode

 (c) register addressing mode

 (d) immediate addressing mode

3.14 CMA is an instruction of

 (a) direct addressing mode

 (b) indirect addressing mode

 (c) register addressing mode

 (d) immediate addressing mode

3.15 SUB A instruction in the 8085 microprocessor

 (a) resets the zero flag

 (b) sets the zero flag

 (c)sets the carry flag

 (d) resets the auxiliary carry flag

3.16 LXI H, 2500H is an instruction of

 (a) direct addressing mode

 (b) indirect addressing mode

 (c) register addressing mode

 (d) immediate addressing mode

3.17 CALL 8000H is an instruction of

 (a) direct addressing mode

 (b) indirect addressing mode

 (c) register addressing mode

 (d) immediate addressing mode

3.18 MOV A, C is executed by

 (a) one machine cycle

 (b) two machine cycles

 (c) three machine cycles

 (d) four machine cycles

3.19 MOV B, C is executed by

 (a) one machine cycle

 (b) two machine cycles

 (c) three machine cycles

 (d) four machine cycles

3.20 SUB B instruction in 8085 microprocessor

 (a) resets the carry and sign flag

 (b) sets the zero and parity flag

 (c) sets the zero and carry flag

 (d) can modify all flags according to result

3.21 LDA 9500H is executed by

 (a) one machine cycle

 (b) two machine cycles

 (c) three machine cycles

 (d) four machine cycles

3.22 STA 8000H is executed by

 (a) one machine cycle

 (b) two machine cycles

 (c) three machine cycles

 (d) four machine cycles

3.23 OUT 02H is executed by

 (a) one machine cycle

 (b) two machine cycles

 (c) three machine cycles

 (d) four machine cycles

3.1 What are the various types of data formats for 8085 instructions? Give a list of examples for each type

of data format.

3.2 Write the addressing modes of the following instructions:

 (a) MOV A, B (b) MVI C, FFH (c) LXI H, 2500H (d) RAL

3.3 Define opcode and operand, and specify the opcode and the operand in the instruction MVI C, 45H.

3.4 Classify 8085 instructions in various groups. Give a list of examples of instructions for each group.

3.5 Write the differences between

 (a) RAL and RLC (b) RAC and RAR (c) PUSH and POP

3.6 Define: instruction cycle, machine cycle, and T-state.

3.7 Write instructions for the following operations:

 (a) Clear accumulator

 (b) Exchange the content of DE and HL register pair

 (c) Logical AND memory with accumulator

 (d) Decrement DE register pair by 1

3.8 Distinguish between JMP and CALL instructions

3.1 What are the types of addressing modes of Intel 8085? Explain any one addressing mode with suitable

examples.

3.2 Explain the operation of the following instructions when they are executed

 (a) LXI rp, data (b) STA addr (c) DAD rp (d) DAA

 (e) CMP M (f) RAR (g) PUSH rp (h) POP rp

3.3 Find the machine code for the instruction MOV H, A if the opcode = 01, the register code for H = (100)2,

and the register code for A = 111.

3.4 Draw and explain the timing diagram for opcode fetch operation.

3.5 Draw and explain the timing diagram for memory read operation.

3.6 Draw and explain the timing diagram for memory write operation.

3.7 Draw and explain the timing diagram for I/O read operation.

3.8 Draw and explain the timing diagram for I/O write operation.

3.9 Draw the timing diagram for the execution of the following instructions:

 (a) MVI A,FFH (b) SUB C (c) LXI H, 5000H (d) MOV A, B

3.10 Draw I/O read and write machine cycles. Compare the two machine cycles.

3.11 Compare the following instructions:

 (a) MOV A, M and LDAX D (b) CMP B and SUB B (c) XCHG and XTHL (d) DAD and DAA

3.12 Determine the time required to execute the following two instructions if the microprocessor clock

frequency is 1 MHz.

 MOV A, B 5 T-states

 MOV B, C 5 T-states

 3.1 (b) 3.2 (a) 3.3 (b) 3.4 (b) 3.5 (c) 3.6 (d) 3.7 (d) 3.8 (b) 3.9 (a)

 3.10 (c) 3.11 (a) 3.12 (c) 3.13 (c) 3.14 (b) 3.15 (b) 3.16 (d) 3.17 (d) 3.18 (a)

 3.19 (a) 3.20 (d) 3.21 (d) 3.22 (d) 3.23 (c)

A program is a sequence of instructions which operate with operands or data. The program may be written in

any one of the available languages to achieve the objective of the user. When a programmer writes a program

for a particular problem, the following five steps are followed:

Step 1 Define the problem

Before starting, it is required to understand the problem completely and assume all inimical conditions.

Step 2 Plan the solution

Break the problem into modular form and determine how the modules are logically linked.

Step 3 Code the program

Translate the logical solution of each module in assembly or any programming language which the

microcomputer can understand.

Step 4 Test the program

After writing the program, implement/test the program in a microcomputer system.

Step 5 Documentation

All related matters must be documented, as we may not always remember the most important steps that

we did during development of the program.

The development of the program depends on the skill of the programmer as well as the complexity of the

problem. Generally, the program is fed into the microcomputer through input devices such as the keyboard

and is stored in the memory of the microcomputer. The 8085 microprocessor is able to understand instruc-

tions which are written in 0s and 1s. When a program is written using 0s and 1s, the program is known as a

machine-language program. But it is very difficult for a programmer to write a program in machine language.

The other way of writing a program is using mnemonic operation codes in hexadecimal, octal or binary nota-

tions, which is known as assembly language. In assembly language, when a program is executed, instructions

are converted/translated into machine code. The translator which translates/converts an assembly-language

program into machine language is known as an assembler. In this chapter, assembly-language programs are

discussed in detail.

Programmers write instructions in various programming languages. Some programs are directly understand-

able by the computer and other programs require intermediate translation steps. Nowadays hundreds of com-

puter languages are available for use in solving different problems. These programming languages are clas-

sified into three general types as given below:

 Machine languages

 Assembly languages

 High-level languages

Machine language is the ‘natural language’ of computers. Machine-language programs are usually writ-

ten in binary code. Therefore, 0s and 1s are used in a machine-language program. Machine languages are

machine-dependent, that is, a particular machine language can be used on only one type of computer. In this

language, a specific binary code is used for each instruction. For example, to copy data from Register A to B,

the binary code 0100 0111 is used. Similarly, different binary codes are available in the 8085 microprocessor

for different operations such as addition, subtraction, increment, decrement, rotate, and compare. But it is

very difficult to write machine-level programs. The program can be simplified by converting binary code to

hexadecimal.

Machine language has the following advantages:

 1. This is suitable for small and simple programs.

 2. Program execution is very fast and requires less computation time.

 3. Generally, this language is suitable for prototype applications as the final product.

The disadvantages of machine-language programs are the following:

 1. A program written in machine code is a set of binary numbers. Therefore, program writing is difficult

and time consumable.

 2. It is also very difficult to understand a program which is written in machine language or hexadecimal

form.

 3. Since a program is always written in 0s and 1s, each bit has to be entered individually. Thus, time taken

for data entry becomes very slow and tiresome.

 4. There is always some possibility of errors in writing programs. Even a single bit error in any instruc-

tion can generate unsatisfactory results.

 5. Such programs tend to be very long.

To overcome the limitations of machine languages, assembly language was developed. In this language,

machine-level instructions are replaced by mnemonics. For example, ADD represents addition, SUB rep-

resents subtraction, INC for increment, RAL for rotate left, and CMP for compare. These instructions are

known as mnemonics. A program written in mnemonics is called an assembly-language program. It is easier

for a programmer to write programs in assembly language compared to those in machine language. It is also

easier to understand an assembly-language program. Such programs are microprocessor-specific.

Assembly-language programs are translated to machine-level programs using a translator program

known as assembler, as shown in Fig. 4.1.

Assembly language has the following advantages:

 1. It is easy to write.

 2. It is easy to understand.

 3. Assembly-language programs produce faster results.

 4. It is suitable for real-time control and industrial applications.

 5. It requires less computation time.

The disadvantages of assembly language compared to high-level languages are given below:

 1. An assembly language is microprocessor specific. Detailed knowledge of the particular microproces-

sor is required to write a program. The programmer should know all about registers and instructions

of the microprocessor.

 2. An assembly language program is not portable, as a program written for one microprocessor may not be

used in other processors.

 3. Assembly-language program writing is difficult and time consuming compared to that of high-level

languages.

The demerits of assembly languages are overcome by using high-level languages. High-level languages can

improve the readability by using English words which make it easier to understand the code and to sort out

any faults in the program. In addition, the high-level languages relieve the programmer of any need to under-

stand the internal architecture of the microprocessor. Ideally, the programmer need not even know what pro-

cessor is being used. For programs written in high-level lan guages, any type of computer can be used easily.

Therefore, the program should be totally portable. The pro grams written in high-level lan guages are very easy

to write and fast to execute but a compiler is required to translate high-level language into machine codes, as the

microprocessor can understand only machine code, 1 or 0.

Translators translate high-level programming language to binary codes and make the

program understandable for the computer. There are two general types of translators, namely, compiler and

interpreter. The compiler translates an entire program at one time and then executes it. The interpreter also

translates one program line at a time while executing. The differences between compilers and interpreters are

given below:

Compiler Interpreter

Compiled programs execute much faster. Interpreted programs are slower because translation takes

 times.

Compilation is usually a multi-step process. Interpretation translates in one step.

Compilers do not require space in memory when Interpreters must be in memory while a program is

programs run. running.

It is more costly than an interpreter, and suitable for a It is cheaper and suitable for a smaller system.

larger system

Compiler
Machine-level

language program
High-level

language program

Assembler Machine-language
program

Machine-language
program

Instructions written in high-level languages are called statements. High-level languages allow program-

mers to write instructions that look almost like everyday English and contain commonly used mathematical

notations.

High-level languages are much more desirable from the programmer’s point of view. Translator pro-

grams called compilers convert high-level language programs into machine language. FORTRAN, COBOL,

BASIC, PASCAL, ALGOL, PL/M, C/C++ and Java are among the most powerful and most widely used high-

level languages. The features of some such high-level languages are discussed in this section.

High-level languages have the following advantages:

 1. In high-level languages the programs are written using instructions and each instruction is very clear

about performing a specified operation.

 2. Writing programs in high-level languages is very easy and fast. These languages are suitable for large

programs and for developing large projects.

 3. Programs are portable in high-level languages and can be executed in any standard.

 4. Complex mathematical computation is possible in these languages.

 5. Report writing and documentation are simple in high-level languages.

 6. The program is independent of the internal architecture of the microprocessor structure. The pro-

grams are problem-oriented and can run in any standard computer.

High-level languages have the following

disadvantages:

 1. Each high-level language has a standard syntax and specified rules to write programs.

 2. Each statement of a high-level language is equivalent to many instructions in machine language.

Therefore, the execution time of programs written in high-level languages is more and to reproducing

results, also takes more time. So the high-level language speed is slow compared to that in assembly

language.

 3 Hardware and software supports are required.

 4. Large volume of data needs to be processed in high-level language and programs in high-level lan-

guages require large memory. Hence, memory utilization is less.

 5. To translate a high-level language program into a machine-language program, a compiler is required.

Most compilers are costly.

FORTRAN stands for FORmula TRANslator. IBM introduced this language in the mid-1950s’ primarily for

scientific and engineering applications. This was the first high-level language to gain widespread acceptance.

FORTRAN has built instructions to handle most scientific formulas such as sine, cos, tan, etc., which are

extremely difficult to write in assembly language.

A FORTRAN program must first be converted into the machine code understood by the microprocessor.

If the FORTRAN program can be converted to machine code, then it follows that the program could have

been written in machine code in the first case. It is just a matter of saving an enormous amount of work.

In 1958, a re-defined language called FORTRAN 2 was developed by small additions of new ‘dialects’

and alterations. After that, FORTRAN 3 and 4 were developed. In the early 60s, FORTRAN 4 was very popu-

lar. In 1966, FORTRAN 66 was designed with new dialects. In 1977, the American National Standards Institute

(ANSI) published a standard for FORTRAN. This standard form of the language is known as FORTRAN 77 is

industry and education institutions.

The absolutely final and totally definitive FORTRAN is FORTRAN 90. Presently, FORTRAN 95 ver-

sions are also available. Each new version included extras features rather than changes. This ensured that all

previous versions were incorporated in the next versions, and even a system designed for FORTRAN 90 can

still use the original FORTRAN.

BASIC stands for Beginners’ All-purpose Symbolic Instruction Code. In the early days, the emphasis was

given on ‘easy to learn’ and ‘use of minimum memory’. These two attributes were very useful in colleges but

not in the real world. In 1960, a simplified language was developed in Dartmouth College, USA. This lan-

guage was known as BASIC (Beginners’ All purpose Symbolic Instruction Code). It was based on FORTRAN

and was designed as a simpler language and easier to learn.

The most popular versions are Q-BASIC, GW BASIC and Quick Basic. Q-Basic is a menu-oriented

language. It provides a Graphical User Interface (GUI). In 1991, a new version called Visual Basic appeared

which has features to make the generation of Windows programs much easier.

To save memory, BASIC was designed as an interpreted language. An interpreter rather than a compiler

carried out the conversion of the source code to the object code. The compiler converts the whole program

into object code, stores it, and then runs the program. The interpreter takes a different approach. The first

instruction in the program is converted to source code and it is then executed. The next item of the source

code is then converted to object code and then run, and so on, right through the program. The interpreter never

stores the whole of the machine-code program. It just generates it, a line at a time, as needed.

COBOL stands for COmmon Business-Oriented Language. FORTRAN and BASIC did not make enor-

mous steps towards employing normal English-language phrases. In 1959, COBOL was introduced by the

US Defense Department to make easy-to-read business programs. Its purpose was information handling. It

proved to be successful at this and spread from the US Navy where it kept records of stocks and supplies, to

the business world. COBOL was designed, more in hope than reality, to be easily read by nonprogrammers.

Large businesses handle enormous amounts of information every day. Just imagine the amount of infor-

mation involved in a few everyday activities like handling bank accounts, credit cards, stock information,

prices, dates, our card numbers, and names. All such data are transmitted to the national card centre and our

accounts are amended. None of these transactions involve particularly complicated mathematics. The calcu-

lations are basically addition and subtraction of totals.

COBOL has survived by meeting a specific need and has had a series of upgraded standard versions.

They refer to the date of adoption: COBOL 60, COBOL 74, COBOL 85 and COBOL 97.

PASCAL was first designed by Nicklaus Wirth in Switzerland in 1971. This is mostly an academic language

but was also suitable for scientific applications. During learning other languages, a short course of Pascal is

often employed as an introduction. Pascal is used because it is very useful for beginners. Pascal is a structured

language. A structured program consists of a series of separate, self-contained units, each having a single

starting point and a single exit point. The program layout looks like a simple block diagram with all the

blocks arranged one under the other. Every unit can be isolated from the others.

This is a compact language and its compiler is quite suitable for a smaller system. Program design and

debugging in Pascal is simpler. This language produces a very efficient machine-code program when it is

compiled. Pascal is several times faster than BASIC or FORTRAN. This is more versatile than BASIC and more

modular than FORTRAN. Pascal can handle numbers, vectors, matrices, strings of characters, sets, records,

files and lists.

The language C was invented a year after Pascal and allowed all the good practice programming methods of

Pascal with a few extras. The main difference between C and Pascal is that C is a lower-level language than

Pascal. It is a powerful, flexible and very efficient language used in writing operating-system code and software

package. Its advantage is that it can control low-level features like memory loading as in assembly language.

It has many high-level features and low-level facilities when we require them and can produce very compact,

and therefore fast, code.

The new version of C which incorporates all features of the C language and adds a new feature, is known as

Object-Oriented Programming (OOP). This version of C is known as C++. Object-oriented programming is

a different approach to programming. In these languages, a number of objects may be of any form of data

such as a diagram on a monitor screen, a block of text or a complete program. Once objects are defined, some

storage areas are allocated for an entire object at the same time.

For example, suppose you have a square/circle on the monitor screen and you wish to move it. There are

different ways to do this. For this, take each point on the screen and shift its position, and hence rebuild the

square/circle in a different position. The object-oriented approach must define the shape as an object, and

then instruct the object to move. We use a mouse to take hold of an object, say a menu, and simply drag it to

a new position. The menu is being treated as a single lump, which is an example of an object.

LISP was designed in the early 1960s by an American, John McCarthy. LISP (LISt Processing) involves the

manipulation of data, which are entered by the keyboard. This language is suitable for artificial intelligence,

searching, handling and sorting long strings. LISP is a function-oriented language. This means that functions

such as add, subtract or more complex combinations can be easily handled through this.

A sample of LISP is a list consisting of a series of ‘members’ separated by spaces and enclosed in brackets.

A simple function defined as (PLUS 6 4) would return 10 by adding the two numbers. Since LISP is an inter-

preted language, the program is executed one step at a time, and so inputted values are used they are entered.

The APL stands for ‘A Programming Language’. This is an interpreted language developed by IBM around

1962. This is only used for handling numerical data. Actually, it is a curious mixture of LISP and FORTRAN.

It combines the function orientation of LISP and the procedural mathematics of FORTRAN. This language

allows users to define functions and has a large library of solutions to common problems. This requires a

special keyboard and terminal as special symbols are used for sin, cos and tan, etc.

This language was named after Lady Augusta Ada Lovelace. CII-Honeywell-Bull of France introduced it in 1980.

It is a multipurpose language suitable for both scientific and business applications. This language combines

the best features of Pascal, ALGOL and PL. It also has the feature of real-time multitasking required in con-

trol applications. It has complex subroutines, which are used as software components while writing programs.

Actually, this is a ‘do-everything language’.

PROLOG stands for PROgramming by LOGic. It is a ‘declarative’ language. It was first developed at the

University of Marseillers, France, in 1972. Other versions were developed, such as DEC10, and IC PROLOG

in the UK and the US. PROLOG is a nonprocedural language. This is capable of handling large databases and

can be used in the development of artificial intelligence and expert systems.

The stack is a group of memory locations in Read/Write (R/W) memory of any microcomputer and is

used to store the contents of the register, operand and memory address. The starting location of the stack

is defined by loading a 16-bit address into the stack pointer, a reserved space usually at the top of memory

map. Theoretically, the size of the stack is unlimited, but it is restricted only by the available R/W memory

in a microcomputer system. The stack can be initialized anywhere in the user-memory map, but the stack is

initialized at the highest user-memory location so that there will not be any interface with the program.

In 8085 microprocessor systems, the beginning of the stack is defined in the program by using the

instruction LXI SP, 16-bit. The LXI SP is a 16-bit state that loads the 16-bit address into the stack pointer

register. Then contents of register pairs (BC, HL, etc.) can be stored in two consecutive stack memory loca-

tions by using the instruction PUSH and can be retrieved from the stack into register pairs by using the POP

instruction. The microprocessor keeps track of the next available stack memory location by incrementing or

decrementing the address in the stack pointer. The address in the stack pointer (register) always points to the

top of the stack and indicates that the next memory location (SP-1) is available to store information.

This method of information storage looks like the process of stacking books one above another. Therefore,

data is always retrieved from the top of the stack. So data are stored in the stack on Last-In-First-Out (LIFO)

principle. The syntax of stack instructions to store data on and retrieve data from the stack are given below:

Opcode Operand Description

LXI SP, 16-bit Load 16-bit address into the stack pointer register. This is a load instruction,

 similar to other 16-bit load instructions discussed previously.

PUSH RP This is a 1- or 2-byte instruction and copies the contents of the specified regis-

PUSH R ter pair or index register onto the stack as described below. Instructions for four

 register pairs and index registers are listed here.

PUSH PSW The instruction first decrements the stack pointer (register) and copies

PUSH BC the higher-order byte of the register pair or the index register on the stack

PUSH DE location SP – 1.

PUSH HL Then it again decrements the stack pointer and copies the lower-order byte of

 the register pair or the index register onto the stack location SP – 2.

POP RP This is a 1- or 2-byte instruction and copies the contents of the top two

POP R locations of the stack into the specified register pair or the index register.

POP PSW First, the instruction copies the contents of the stack indicated by SP into

POP BC the lower-order register (for example, register C of the BC pair) or as a

POP DE lower-order byte into the index register and then increments the stack

POP HL pointer to SP + 1.

 It copies the contents of the SP + 1 location into the high order register

 (for example, Register B of the BC pair) or as a higher-order byte into

 the index register and increments the stack pointer to SP + 2.

Figure 4.3 shows a stack and stack top location. The

SP register holds the address of the stack top location, i e ,

8004 H.

For example, a program is stored in memory locations

starting from 7000H as given below, and the stack is initialized

at the location 8004H.

7000 LXI SP, 8004H

7003 PUSH DE

7004 POP DE

7005 HALT

The position of a stack before PUSH operation is depicted

in Fig. 4.3. When the program is executed, the contents of the

register pair HL must be pushed to the stack. After the PUSH

operation, the stack position is changed to 8001H. In the same

way, a POP operation is used to transfer the contents from the

stack to the register. The stack position before and after the PUSH operation has been given in Fig. 4.4 (a)

and Fig. 4.4 (b) respectively. Figures 4.5 (a) and 4.5 (b) show the stack position before and after the POP

operation correspondingly.

From the above example, the following points can be summarized:

 1. During the execution of a program, a 16-bit address (8004H) is stored in the stack pointer register. The

stack space grows upward in the numerically decreasing order of memory addresses. The contents of

HL register pairs can be stored beginning from the next location (SP-1).

STACK

Next Memory
Location

Stack of Location
SP = 8004

FF

8000

8001

8002

8003

8004

STACK

FF

Register D Register E
STACK

Register D Register E

23 77 23 77

8000

8001

8002

8003

8004

8000

8001

8002

8003

8004

23

77

FF

Next memory
location

Stack of
location

SP = 8004
(a) (b)

Next memory
location

Stack of
location

SP = 8002

23 77 23 77

Next memory
location

Stack of
location

SP = 8002

8000

8001

8002

8003

8004

8000

8001

8002

8003

8004

23

77

FFFF

STACK
Register D Register E STACK Register D Register E

(a) (b)

Next memory
location

Stack of
location

SP = 8004

 2. The PUSH instructions are used to store contents of register pairs on the stack, and the POP instruc-

tions are used to retrieve the information from the stack. The address in the stack pointer register

always points to the top of the stack, and the address is decremented as information is stored or

retrieved, respectively.

 3. The storage and retrieval of the content of registers on the stack should follow the LIFO (Last-In-

First-Out) sequence.

 4. Information in the stack locations may not be destroyed until new information is stored in that mem-

ory location.

Some operations/functions are repeatedly performed in a main program like multiplication, division, and

time delay between two operations, etc., Groups of instructions are written to perform these

operations and these groups of instructions are known as subroutines, which are called by the main

program whenever required. When a main program calls a subroutine, the program execution is transferred to

the subroutine and after the completion of the subroutine, the program execution returns to the main program.

The microprocessor uses the stack to store the return address of the subroutine. For example, generally,

subroutine are written for sine, cosine, logarithms, square root, time delay, and multiplication functions in

8085 microprocessors.

A subroutine is implemented with two associated instructions, namely, Call and Return. Call is used to

call a subroutine and the Call instruction is written in the main program. Return is used to return from the

subroutine. and the Return instruction is written in the subroutine to return to the main program. When a

subroutine is called, the contents of the program counter are stored on the stack, and the program execution

is transferred to the subroutine address. When the Return instruction is executed at the end of the subroutine,

the memory address stored in the stack is retrieved and the sequence of execution is resumed in the main

program. All types of CALL and RET instructions are explained in this chapter. The syntax of CALL and

RET are given below:

Opcode Operand Description

CALL 16-bit Call subroutine conditionally located at the memory address specified by 16-bit operand.

 This instruction places the address of the next instruction on the stack and transfers the

 program execution to the subroutine address.

RET Return unconditionally from the subroutine.

 This instruction locates the return address on the top of the stack and transfers the program

 execution back to the calling program.

The general characteristics of CALL and RET instructions are given below:

 1. The Call instructions are 3-byte instructions; the second byte specifies the lower-order byte, and the

third byte specifies the higher-order byte of the subroutine address.

 2. The Return instructions are 1-byte instructions.

 3. A Call instruction must be used in conjunction with

a Return instruction (conditional or unconditional)

in the subroutine.

The following types of subroutines are generally used in

microprocessors:

 1. Multiple CALL subroutines

 2. Nested subroutines

 3. Multiple ending subroutines

Figure. 4.6 shows the basic concept of multiple CALL sub-

routines. This is a subroutine called from many locations

in the main program. For example, the DELAY routine is

a multiple CALL subroutine. These types of routines are

easy to trace and need minimal stack space. Initially, stack

pointer content is XX55H so that the return address can be

stored on the stack. When the CALL instruction starts to

execute, the subroutine is called from the 8050 memory

location. The return address is stored on the stack and the

stack pointer is decrement by two locations to XX53H.

When the subroutine is called by another subroutine, it is

called a nested subroutine. When a subroutine calls another subroutine, all return addresses are stored on the

stack. Therefore, only the number of available stack locations limits the extent of nesting. The structure of a

nested subroutine is depicted in Fig. 4.7.

The main program calls Subroutine I from location 8050H. The address of the next instruction, 8053H,

is placed on the stack, and the program is transferred to Subroutine I at 8150H. During the execution of

Subroutine I, it calls Subroutine II from location 8190H. The address 8193H is placed on the stack, and the

program is transferred to Subroutine II. The sequence of execution returns to the main program as shown in

Fig. 4.7.

Main program

Subroutine

8050

8056 RET

CALL

80

50

CALL

50

80

8000

8001

8002

8003

8004

When a subroutine can be terminated at more than one place, it is called a

multiple ending subroutine, as illustrated in Fig. 4.8. The subroutine has con-

ditional returns such as RET Z (RZ) – Return On Zero and RET C (RC) —

Return on Carry. This subroutine has an unconditional return (RET). While the

Z flag is set, the subroutine returns from location 8050H, and if the CY flag is

set, it returns from location 8090H. If neither flag is set, the subroutine returns

from location 80A0H.

Microprocessors perform different operations in sequence and one operation at a time. To complete an opera-

tion, some time is required. When some time delay is required between two operations, a time-delay loop is

used to provide it.

Time delay can be generated using a register or a register pair. Initially, a register is loaded with an oper-

and or number and then the number is decremented until it reaches zero. So a conditional jump instruction is

used in a delay loop to come out from the loop. The time delay depends on the number which is loaded in the

register. Figure 4.9 shows the flowchart of time delay-loop using one register.

The typical instructions of a time-delay loop are given below:

PROGRAM 4.1

Memory address Machine Codes Labels Mnemonics Operands Comments T state

8000 06, 80 MVI B, 80 Initialise Register B 7

8002 05 LOOP DCR B Decrement Register B 5

8003 C2, 03, 80 JNZ LOOP Jump not zero to LOOP 10

8000

8050 RZ

RC8090

RET
80A0

Subroutine

8050

8051

8052

8053

8150 8250

Subroutine - 1 Subroutine - 2

Main program

CALL

81

50

CALL

82

50

RET RET

8190

8191

8192

8193

Initialize Delay
Register Pair

Decrement
Register Pair

No

Yes

Is
Register
Pair = 0?

It is clear from the above instructions that MVI B, 80 requires seven clock cycles, DCR B requires 5

clock pulse and JNZ also requires 10 clock pulses during execution . When these instructions are executed,

MVI B,80 instruction is executed once and the next two instructions are executed 128 times.

The number of T states for execution of LOOP is

 = (T states for DCR B + T states for JNZ) Number of times LOOP is executed

 = (7 + 5) 128 T states

The delay time to execute the LOOP instruction is TL = T number of T states for execution of LOOP,

where T is the system clock period. When the microprocessor operates in 5 MHz clock frequency,

TL =
5

1 × 10–6 (5 + 10) × 128s = 384 s.

The total time delay TD is calculated from the summation of time to execute instruction of outside LOOP,

TOL and time to execute LOOP instruction, TL.

TD = TOL + TL =
5

1 × 10–6 × 7 +
5

1 × 10–6 × (5 + 10) × 128 s = 385.4 s

Using only one register in a delay loop, a limited time delay is generated. If very high time delay is

required, a register pair will be used in place of a register. Figure 4.10 shows the flowchart for time-delay

generation using a register pair. For example, a 16-bit operand is loaded in the DE register pair. Then the DE

register pair is decremented by one using DCX D instruction. The DCX instruction does not set the zero flag.

Therefore, additional testing will be done using some extra instructions as the JNZ instruction is executed

only when the zero flag is set.

Initialize Delay
Register

Decrement
Register

No

Yes

Is Register = 0?

The typical instructions of a time-delay loop using a register pair are given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments T state

8100 11, 00, 80 LXI D, 8000 Initialise the DE register pair 10

8103 1B LOOP DCX D Decrement the DE register pari 5

8104 7B MOV A,E Copy content of Register E 5

 in the accumulator

8105 B2 ORA D OR D with accumulator 4

8106 C2, 06, 81 JNZ LOOP Jump not zero to LOOP 10

In the above instructions, LXI D, 8000 is executed once and the other instruc-

tions (DCX D, MOV A, E, ORA D and JNZ) are executed for 8000H (32768D)

times.

The number of T states for execution of LOOP is

= (T states for DCX D + T states for MOV A, E + T states for ORA D + T

 states for JNZ) Number of times LOOP is executed

 = (5 + 5 + 4 + 10) 32768 T states

If the microprocessor clock frequency is 5 MHz, time delay in LOOP is

equal to TL . TL = T number of T states for execution of LOOP =
5

1 × 10–6 ×

(5 + 5 + 4 + 10) × 32768 s = 157.268 s (approx).

TD = TOL + TL = +
5

1 × 10–6 × 10 +
5

1 × 10–6 × (5 + 5 + 4 + 10) × 32768 s

 = 157.288 s (approx)

The time delay can also be generated by using two loops as depicted in Fig.

4.11. The C register is used in inner loop and the B register is used in external

loop. Here, both B and C registers are loaded with numbers. Then Register C

is decremented until it becomes zero. When the content of Register C is zero,

decrement Register B. If the content of Register B is not zero, load the Register

C with initial value and repeat the process.

The example of time delay using two loops is given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments T state

8200 06, 80 MVI B, 80 Initialise the Register B 7

8202 0E,FF LOOP-II MVI C, FF Initialise the Register B 7

8203 OD LOOP-I DCR C Decrement Register B 5

8204 C2, 03, 82 JNZ LOOP-I Jump not zero to LOOP 10

8207 05 DCR B Decrement Register B 5

8208 C2, 02, 82 JNZ LOOP-II Jump not zero to LOOP 10

Load Register B

Load Register C

Decrement Register C

No

Yes

Is
Register

= 0?C

Decrement B Register

Is Register
B = 0?No

Yes

Time delay will be calculated based on time delays for LOOP–I and LOOP–II.

Time delay for LOOP-I is

TLOOP-I = T (T states for DCR B + T states for JNZ) Number of times LOOP is executed

 =
5

1 × 10–6 × (5 +10) × 256 s

Time delay for LOOP-II is

 TLOOP-II = {TLOOP-I + T (T states for MVI C, FF + T states for DCR B + T states for

 JNZ)} Number of times LOOP-II is executed

 = {
5

1 × 10–6 × (5 +10) ×256 +
5

1 × 10–6 × (7 + 5 +10)} 128 s

Total delay time(TD) = Time to execute instruction of outside LOOP(TOL) + Time to execute LOOP-II

 (TL TLOOP-II) = 5
1

 × 10–6 × (7) + {
5

1 × 10–6 × (5 +10) × 256 +

5

1 × 10–6 × (7 + 5 +10)} 128 s = 98.868 ms (approx.)

Generally, industry-programming projects consist of thousands of lines of instructions or operation code.

Such huge monolithic programs would be unmanageable and incomprehensible. Therefore, it is difficult

to design, write, debug, and test such a project. Hence, the complete project is divided into sub-problems

or small modules. Each independent modules are separately named and are individually invokeable pro-

gram elements. The sizes of modules are reduced to a humanly comprehensible and manageable level. This

approach is known as modular programming. The divide-and-conquer approach is used in programming.

Modules are designed, written, tested and debugged by individuals or small teams to allow for multiple

programmers to work in parallel. Modules are integrated to become a software system that satisfies the

problem requirements. To integrate successfully, the original decision must be good and interfaces between

modules must be correct.

Each module will be different, depending on the specific problem being solved. In very simple problems

only one module exists, but complex problems have many hundreds of modules. Modules are written in such

a way that everybody understands the program very easily. Generally, a top-down design is used in modular

programming. In this programming, high-level instructions are broken down into smaller sets of instructions

and again into smaller sets until we get the smallest module. The characteristics of modules are given below:

 1. Each module is independent of other modules.

 2. Each module has one input and one output.

 3. A module is small in size.

 4. Programming a single function per module is a goal.

The advantages of modular programming are the following:

 1. It is easy to write, test and debug a module.

 2. Generally modules of common nature are prepared, which can be used at many places.

 3. The programmer can divide tasks and use the previously written programs.

 4. If a change is to be made, it is made in the particular module; the entire program is not affected.

 5. Pieces can be debugged independently.

 6. Work can be divided between multiple programmers.

 7. Code can be reused.

 8. Problems can be reduced to smaller, simpler, humanly comprehensible levels.

 9. Modules can be assigned to different teams/programmers. This enables parallel work, reduces pro-

gram-development time, and facilitates programming, debugging, testing and maintenance.

 10. Individual modules are portable; so they can be modified to run on other platforms.

 11. Modules can be re-used within a program and across programs.

The disadvantages of modular programming are the following:

 1. The combining of modules together is a difficult task.

 2. It needs careful documentation as it may affect the other parts of the program.

 3. While testing modules it may be found that the module under test may require data from other mod-

ules or its results may be used by other modules. To solve such problems, special programs called

drivers are to be developed to produce the desired data for the testing of modules. The development

of drivers requires extra effort and time.

 4. Modular programming requires extra time and memory.

 5. The modular programming was originally developed for writing long programs but this technique

can also be used for shorter programs written for microcomputers. Modules are divided on functional

lines and hence, they can form a library of programs. Modules of 20 to 50 lines should be developed.

They are very useful. There is unnecessary wastage of time in preparing shorter modules. Longer

modules are not converted to general nature. The modules should be developed for common tasks.

They should be of general form.

Although 246 instructions are available in the 8085 microprocessor, some new instructions can be developed

using a sequence of known instructions. These new instructions are always assigned a name and known as

MACRO, used in assembly-language programming. Examples are DELAY, LARGE, SMALL, MUL, and

DIV, etc. Most of the assemblers have macro facility. The general form of a macro is

Name MACRO arg

 Statement-1

 Statement-2

 ENDM

where, Name is the name of the macro, arg represents the arguments of the macro, statements are instruc-

tions, and ENDM is used to end the macro.

The example of a DELAY macro is

DELAY MACRO 8000H

 LXI B, 8000H

LOOP DCX B

 MOV A, C

 ORA D

 JNZ LOOP

 ENDM

In the above example DELAY is the name of the macro to generate a time delay. In the assembly-

language program if we write DELAY 8000H, the assembler replaces the macro by the above instructions.

When a sequence of instructions is written and the macro name is assigned to it, the macro name can be

used repeatedly the main program and this makes the program easy to understand.

Another example of macro is ADDER as given below:

ADDER MACRO ADDRESS (8000H)

 LXI H, 8000H

 MOV A, M

 INX H

 ADD M

 ENDM

In this example, ADDER is the name of the macro. Here, ADDRESS is a parameter and ENDM is used

at the end of the macro. In an assembly-language program, if ADDRESS is 8000H, the macro replaces the

above instructions.

Macros and subroutines are similar. A subroutine requires CALL and RETURN instructions whereas

macros do not. Macros execute faster than subroutines. Macros are used for short sequences of instructions,

whereas subroutines for longer ones, generally more than 10 instructions and more. Like subroutines, a

macro can be written in nested form. One macro can be called by another macro. The differences between

macro and subroutines are given below.

Macros Subroutine

It is used to perform specified operations. Subroutines are also used in specified operations like

 macros.

In macros, only name of the macro is used and at the In a subroutine, CALL and RET are used.

end of each macro, ENDM is used.

Macros are faster than subroutines. Subroutines are slower than macros.

Macros are used for very few instructions, More than ten instructions are used in a subroutine.

approximately. 10 instructions.

Each statement in an assembly-language program consists of the following fields: Memory address, Machine

Codes, Labels, Mnemonics, Operands and Comments. The commonly used format of an instruction in assem-

bly language is given below:

Memory Address Machine Codes Labels Mnemonics Operands Comments

This is the address of the memory location in which a program or a series of

instructions are stored.

Every instruction has a unique one-byte code called operation code. Instructions are

operated using data. Data may be of one byte or two bytes. Machines codes are the hexadecimal representation

of operation codes and codes.

It is assigned in the instruction in which it appears. The presence of a label in an instruction

is optional. When a label is present, it provides a symbolic name that can be used in branch instructions to

branch to the instruction. If there is no label then the colon must not be entered. A label may be of any length,

from 1 to 35 characters. A label appears in a program to identify the name of a memory location for storing

data and other purposes. This is used for conditional/unconditional jumping.

Each instruction has a specific mnemonic. The mnemonic states the operation which will

be executed.

Operands depend on the type of instruction. In a one-byte instruction, there is no operand.

Only one operand exists in two-byte instructions and a three-byte instruction has two operands which are

separated by a comma.

In this field, general comments about the instructions are always incorporated to understand

the program easily. It is optional. The comment field contains any combination of characters. A comment

may appears on a line and the first character of the line must be a semicolon.

 Transfer data from accumulator to Register B respectively.

 Mnemonics Opcode Comments

 MOV B,A 47 Copy the content of accumulator to Register B

Load FFH in Register C.

 Mnemonics Opcode Comments

 MVI C, FFH 0E, FF Load FFH in Register C immediately

Load 22H and 67H in registers B and C respectively.

 Mnemonics Opcode Comments

 LXI B 22 67 01, 67, 22 Load Register C with 67H and Register B

 with 22H

Load HL register pair by the data 8150H.

 Mnemonics Opcode Comments

 LXI H,8150H 21, 50, 81 Load HL register pair with 8150H

Load the content of memory location 8100H in the accumulator.

 Mnemonics Opcode Comments

 LXI H,8100H 21, 00, 81 Load memory location address 8100H in HL

 register pair

 MOV A, M 7E Copy content of memory location in the

 accumulator

Store the content of accumulator in 8001H location.

 Mnemonics Opcode Comments

 STA 8001H 32, 01, 80 Content of accumulator is stored in 8001H

 location

Transfer data stored in memory location 9950H to the accumulator.

 Mnemonics Opcode Comments

 LDA 9950H 3A 50 99 Move data to accumulator from memory

 location 9950H

Load 45H data in the memory location 8500H. Increment the content of

 memory location.

 Mnemonics Opcode Comments

 LXI H,8500H 21, 00, 85 Load memory location address 8500H in HL

 register pair

 MVI M,45H 36, 45 45H is stored in 8500H location

 INR M 34 Content of memory location incremented by one

Transfer the contents of 8101H and 8100H to registers H and L respectively.

 Then store the HL content to memory location 9301H and 9300H respectively.

 Mnemonics Opcode Comments

 LHLD 8100 H 2A, 00, 81 Load H and L from memory location 8101H and

 8100H

 SHLD 9300H 22, 00, 93 Store data from H and L memory location 9301H

 and 9300H respectively.

Consider the first number 26H is stored in the memory

location 8000H and the second number 62H is stored in

the memory location 8001H. The result after addition

of two numbers is to be stored in the memory location

8003H. Assume the program starts from the memory location

8500H. The program flow chart is shown in Fig. 4.12.

 1. Initialize the memory location of the first number in

the HL register pair.

 2. Move first number/data into the accumulator.

 3. Increment the content of the HL register pair to

initialize the memory location of second data.

 4. Add the second data with the accumulator.

 5. Store the result in the memory location 8003H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8500 21, 00, 80 LXI H, 8000 H Address of first number in HL register pair

8503 7E MOV A,M Transfer first number in accumulator

8504 23 INX H Increment content of HL register pair

8505 66 ADD M Add first number and second number

8506 32, 03, 80 STA 8003H Store sum in 8003 H

8509 76 HLT Halt

START

Initialize the memory location of first data

Load first data in accumulator

Initialize the memory location of second data

Add the content of memory location, i.e.,
second data with accumulator

Store the result, i.e., the content of
accumulator in memory location

End

Data Result

Memory location Data Memory location Data

8000 26H 8003 88H

8001 62H

The first number F2H is stored in the memory location 8501H and the second number 2FH is stored in the

memory location 8502H. The result after addition will be stored in the memory locations 8503H and 8504H.

Consider the program is written from the memory location 8000H. The program flow chart is depicted in

Fig. 4.13.

Store first data in the memory location

Store second data in the memory location

Initialize the memory location of second data

Initialize the register C to
store MSBs of Sum (C = 00H)

Move second data in accumulator

Add first data with second
data, i.e., the content of

with accumulator

Is carry
flag = 1?

Store LSBs of sum, i.e., Content
of Accumulator in memory

Store MSBs of sum, i.e., Content
of Register C in memory

End

Initialize the memory location of first data

START

Increment C by 1
C = 01H

Yes

No

 1. Initialize the memory location of first data in the HL register pair.

 2. Store first data in the memory location.

 3. Increment the content of the HL register pair for entering next data in the next memory location.

 4. Store second data in the memory location.

 5. Move the second number in accumulator.

 6. Decrease the content of the HL register pair.

 7. Add the content of memory (first data) with the accumulator.

 8. Store the results in memory locations 8503H and 8504H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 21, 01, 85 LXI H, 8501 H Address of 1st number in HL register pair

8003 36, F2 MVI M, F2H Store 1st number in memory location rep

 resented by HL register pair

8005 23 INX H Increment content of HL register pair

8006 36, 2F MVI M, 2FH Store 2nd number in memory location

 represented by HL register pair

8008 7E MOV A, M 2nd number in accumulator

8009 0E, 00 MVI C, 00H Initialize Register C with 00H to store

 MSBs of sum

800B 2B DCX H Address of 1st number 8501 in HL pair

800C 66 ADD M Addition of 1st number and 2nd number

800D D2, 11, 85 JNC LEVEL_1 If carry does not generate, jump to LEVEL 1

8010 0C INR C When carry is generated, increment Register C

8011 32, 03, 85 LEVEL 1 STA 8503H Store LSBs of sum in memory location

 8503H

8014 79 MOV A,C Move MSBs of sum in accumulator

8015 32, 04, 85 STA 8504 H Store MSBs of sum in memory location

 8504H

8018 76 HLT Halt

Data Result

Memory location Data Memory location Data

8501 F2H 8503 82H LSBs of sum

8502 2FH 8504 01H MSBs of sum

Write a program for addition of a series of 8-bit numbers with carry. The ‘N’ number of hexadecimal num-

bers are stored from F101H onwards. F100H has the number of hexadecimal bytes to be added. The result

is stored at F200H and F201H memory locations. Assume the program is written in the memory location

F000H. Figure 4.14 shows the flowchart for addition of ‘N’ 8-bit numbers.

START

Initialise HL register pair

Load count in register C

Increment HL register pair
to load next number

Sum = Sum + Next Number

Is
carry

generated?

Yes

No

MSB of Sum = Previous
Value + 1

Decrement counter

Is
counter = 0?

Yes

Store LSB of Sum
Store MSB of Sum

End

No

 1. Load the number of bytes to be added in the F100H memory location.

 2. Initialize accumulator, as LSBs of the result will be stored in accumulator.

 3. Register B is also initialized to store MSBs of sum.

 4. Let the memory point the number of the bytes to be added and stored in Register C.

 5. Move next memory location for data and data with accumulator.

 6. If carry is generated, Register B will be incremented by one.

 7. Decrement the counter having number of bytes.

 8. Check if zero—no repetition from point 5.

 9. Store the result at F200H and F201H locations.

Memory Machine

address Codes Labels Mnemonics Operands Comments

F000 21, 00, F1 LXI H,F100H Address of number of bytes in HL register pair

F003 4E MOV C, M Transfer number of bytes from memory location

 to Register, C

F004 AF XRA A Clear accumulator register

F005 06, 00 MVI B,00 Initialize Register B with 00H to store MSBs

 of sum.

F007 23 LOOP INX H Address of 1st number in HL pair.

F008 66 ADD M Add memory to accumulator

F009 D2, 0D, F0 JNC LEVEL_1 If carry does not generate , jump to LEVEL 1

F00C 04 INR B If carry is generated, increment Register, B

F00D 0D LEVEL 1 DCR C Decrement count by one

F00E C2, 07, F0 JNZ LOOP Test to check whether addition of all numbers

 are done

F011 32, 00, F2 STA F200 Store LSBs of sum in memory location F200H

F014 78 MOV A,B Copy content of B in accumulator

F015 32, 01, F2 STA F201 Store MSBs of sum in memory location F201H.

F018 76 HLT Stop

Consider five (N = 05H) data are stored from the location F101 onwards as

 given below. The result is stored in locations F200H and F201.

Data Result

Memory location Data Memory location Data

F100 05H F200 0FH LSBs of sum

F101 01H F201 00H MSBs of sum

F102 02H

F103 03H

F104 04H

F105 05H

The first 16-bit number is stored in 8501H and 8502H memory locations. The second 16-bit number is stored

in 8503H and 8504H memory locations. After addition, the result will be stored from 8505H and 8506H

memory locations. Assume the program starts from the memory location 8000H. The program flow chart for

addition of two 16-bit numbers with 16-bit sum is depicted in Fig. 4.15.

 1. Store first 16-bit number in HL pair.

 2. Exchange the contents of DE pair and HL pair to store the first number in DE register pair.

 3. Store second 16-bit number in HL register pair.

 4. Addition of first and second numbers.

 5. Store result in 8505H and 8506H locations.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 2A, 01, 85 LHLD 8501 H Load the content of 8501H location in Register L and

 Register H is loaded with the content of 8502H location

8003 EB XCHG` The contents of HL register pair are exchanged with DE

register pair so that first data is stored in DE register

pair

8004 2A, 03, 85 LHLD 8503H Load second 16-bit number (data-2) in HL pair

8007 19 DAD D The contents of DE pair are added with the contents of

 HL pair and result is stored in HL pair

8008 22, 05, 85 SHLD 8505H Store LSBs of sum in 8505H and MSBs of sum 8506 H

800B 76 HLT Halt

Data Result

Memory location Data Memory location Data

8501 05H LSBs of data-1 8505 0FH LSBs of sum

8502 01H MSBs of data-1 8506 00H MSBs of sum

8503 02H LSBs of data-2

8504 03H MSBs of data-2

START

Store the first 16-bit number in HL register pair

Move the first number in DE register pair

Load second 16-bit number in HL register pair

Add the content of HL register pair
with content of DE register pair

Store the result in memory location

End

Two decimal numbers 52H and 85H are stored in F050H and F051H locations respectively. The result is to

be stored in F052H and F053H locations. Assume program is written from memory location F100H. The

program flow chart for decimal addition of two 8-bit numbers with 16-bit sum is shown in Fig. 4.16.

Load first decimal
number in accumulator

Initialize the memory location
of second decimal number

Initialize the register
B with 00H

Addition of first and
second decimal number

Decimal adjustment
after Addition

Is Carry
flag = 1?

Store the result in memory locations

End

Initialize the memory location
of first decimal number

START

Increment B by 1
B = 01H

Yes

No

 1. Load address of the first number in HL register pair.

 2. Load the first number in accumulator and store 00H in Register B.

 3. Increment the content of HL register pair to initialize the memory location of second data.

 4. Addition of the content of second memory location with first data.

 5. Decimal adjustment of result.

 6. If carry is generated, Register B is incremented by one.

 7. Store the result in F052H and F053H locations.

Memory Machine

address Codes Labels Mnemonics Operands Comments

F100 21, 50, F0 LXI H,F050 Address of first number in HL register pair

F103 7E MOV A,M Move first number in accumulator

F104 06, 00 MVI B,00H Load 00H in Register B

F105 23 INX H Increment HL register pair to locate second number.

F106 86 ADD M Addition of 1st and 2nd number

F107 27 DAA Decimal adjust

F108 D2, 00, F1 JNC LEVEL_1 If carry does not generated, jump to LEVEL_1

F10B 04 INR B Increment Register B

F10C 32, 52, F0 LEVEL_1 STA F052H Store LSDs of result in F052H location

F10F 78 MOV A,B Move MSDs from B to A

F110 32, 53, F0 STA F053 Store MSDs of result in F053H location

F103 76 HLT Halt

Data Result

Memory location Data Memory location Data

F050 52H F052 89H LSDs of sum

F051 85H F053 01H MSDs of sum

Consider a number of data in 8000H and data are stored in 8001H onwards. After addition, the result will be

stored in 8100H and 8101H. Assume that the program starts from memory location 8500H. The program flow

chart for addition of N 8-bit decimal numbers is illustrated in Fig. 4.17.

 1. A number of data is loaded in Register C.

 2. Load 00H in Register B.

 3. Load address of first number in HL register pair.

 4. Load the first number in accumulator.

 5. Increment the content of HL register pair to initialize the memory location of next data.

 6. Addition of the content of next memory location with first data.

 7. Decimal adjustment of result.

 8. If carry is generated, Register B is incremented by one.

 9. Decrement Register C.

 10. Test to check whether additions of all numbers are done. If C is not equal to zero, repeat steps 5 to 10.

 11. Store the result in 8100H and 8101H locations.

Initialize register C with the count
value of number of decimal number

Initialize the register
B with 00H

Decrement the register C

Load first decimal number
in accumulator from memory

Increment memory location
for next decimal number

Add next decimal number
with accumulator

Is Carry
flag = 1?

Decrement the register C

START

Increment register B by 1
B = B + 1

Yes

No

Decimal adjustment
after Addition

Is
C = 0?

Store the result in memory locations

End

No

Yes

Memory Machine

address Codes Labels Mnemonics Operands Comments

8500 21, 00, 80 LXI H,8000H Address of number of data in HL register pair

8503 4E MOV C,M Move number of data in accumulator

8504 06, 00 MVI B,00H Load 00H in Register B (Contd.)

8506 23 INX H Increment HL register pair to locate first number

8507 7E MOV A,M Move first number into accumulator

8508 0D DCR C Decrement Register C

8509 23 LOOP INX H Increment HL register pair to locate next number

850A 86 ADD M Addition of content of accumulator and next number

850B 27 DAA Decimal adjust

850C D2, 10, 85 JNC LEVEL_1 If carry does not generated, jump to LEVEL_1

850F 04 INR B Increment Register B

8510 0D LEVEL_1 DCR C Decrement Register C

8511 C2, 09, 85 JNZ LOOP Jump not zero to LOOP

8514 32, 00, 81 STA 8100H Store LSDs of result in 8100H location

8517 78 MOV A,B Move MSDs from B to A

8518 32, 01, 81 STA 8101H Store MSDs of result in 8101H location

851B 76 HLT Stop

Data Result

Memory location Data Memory location Data

8000 05H 8100 0FH LSBs of sum

8001 01H 8101 00H MSBs of sum

8002 02H

8003 03H

8004 04H

8005 05H

Data are stored in memory locations 8000H and 8001H.

The result after subtraction will be stored in 8002H. Consider

the program is written from memory location 8500H. The

program flow chart for subtraction of two 8-bit numbers is

shown in Fig. 4.18.

 1. Load address of first number in HL register pair.

 2. Move first data into accumulator.

 3. Increment the content of HL register pair.

 4. Subtract the second data from accumulator.

 5. Store the result in memory location 8002H.

START

Initialize the memory location of first data

Load first data in accumulator

Initialize the memory location of second data

Subtract the content of memory location,
i.e., second data from accumulator

Store the result, i.e., the content of
accumulator in memory location

End

(Contd.)

Memory Machine

address Codes Labels Mnemonics Operands Comments

8500 21, 00, 80 LXI H,8000 Address of first number in HL register pair

8503 7E MOV A,M Transfer first number in accumulator

8504 23 INX H Increment content of HL pair

8505 96 SUB M Subtract second number from first number

8506 23 INX H Increment content of HL pair

8507 77 MOV M,A Store result

8508 76 HLT Halt

Data Result

Memory location Data Memory location Data

8000 89H 8002 47H

8001 42H

Consider first number in DE register pair and the second number is in BC register pair. After subtraction,

result will be stored in 9000H onwards. Assume MSBs of first number is greater than second number. Assume

the program starts from 8500H memory location. The program flow chart for subtraction of two 16-bit num-

bers is depicted in Fig. 4.19.

Load second 16-bit number in BC register
pair from memory locations 8002H and 8003H

Compare withE C

Is Carry
flag = 1?

Find – and –E C D B

Load first 16-bit number in DE register pair
from memory locations 8000H and 8001H

START

Find + + 1
and – –1

E

D B

C

Yes

No

Store the result in memory locations

End

 1. Load first number in DE register pair from memory locations 8000H and 8001H.

 2. Load second number in BC register pair from memory locations 8002H and 8003H.

 3. Compare LSBs of two numbers, E and C. If E C , find D–B and E–C. When E < C, find D-B-1 and

E + C + 1.

 4. Then store results in memory locations 9000H and 9001H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8500 21, 00, 80 LXI H,8000 Load address of first number in HL register pair

8503 5E MOV E,M Load first two byte numbers in DE register pair

 LSBs in Register E and MSBs in Register D

8504 23 INX H Increment content of HL pair for address of second

8505 56 MOV D, M number

8506 23 INX H

8507 4E MOV C,M Load second two byte number in BC register pair,

8508 23 INX H LSBs in Register C and MSBs in Register B

8509 46 MOV B,M

850A 7B MOV A,E Transfer LSBs of first number in accumulator.

850B B9 CMP C Compare between LSBs of second number

 and LSBs of first number

850C DA, 00, 85 JC LEVEL 1 If carry is generated, jump to LEVEL_1

850F 7B MOV A,E Transfer LSBs of first number in accumulator

8510 91 SUB C Find E – C

8511 32, 00, 90 STA 9000 Store LSBs, the result of (E – C) in 9000H location

8514 7A MOV A,D MSBs of second number in accumulator

8515 98 SUB B Find D–B

8516 32, 01, 90 STA 9001 Store MSBs, D–B in 9001 location

8519 C3, 2B, 85 JMP 852B Jump to 852B

851C 79 LEVEL 1 MOV A,C Transfer LSBs of first number in accumulator.

851D 2F CMA Get the complement of C = C

851E 83 ADD E

851F C6, 01 ADI 01H Determine E + C + 1 pair

851I 32, 00, 90 STA 9000 Store LSBs the result of E + C +1 in

 9000H location

8524 7A MOV A,D Transfer MSBs of first number in accumulator

8525 90 SUB B Subtract B from accumulator

8526 D6, 01 SUI 01H Subtract 01H from accumulator. Find D–B–1

8528 32, 01, 90 STA 9001 Store MSBs, the result of DB1 in 9001H location

852B 76 HLT

Data Result

Memory location Data Memory location Data

8001 F0H LSBs of data-1 8005 FFH LSBs of sum

8002 F0H MSBs of data-1 8006 0FH LSBs of sum

8003 0FH LSBs of data-2 8007 01H MSBs of sum

8004 1FH MSBs of data-2

Two 8-bit decimal numbers are stored in memory locations 8000H and 8001H. The result after subtraction

will be stored in 8002. Assume program is written from memory location 8500H. The program flow chart for

8-bit decimal subtraction is given in Fig. 4.20.

START

Initialize the memory location
of second decimal number

Load 99H in accumulator

Subtract the second decimal number
from accumulator and add 1 to determine
10’s complement of second decimal number

Addition of first decimal number with 10’s
complement of second decimal number

Decimal adjustment of accumulator

End

Store the result in memory

 1. Find 9’s complement of second number = 99H –second Number.

 2. Determine 10’s complement of second number = 9’s complement of number +1.

 3. Add second number with 10’s complement of second number.

 4. Addition of 1st decimal number with 10’s complement of 2nd decimal number.

 5. Decimal adjustment of accumulator.

 6. Store the result in memory location 8002H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8500 21, 01, 80 LXI H,8001 Load the address of 2nd number in HL register pair

8503 3E, 99 MVI A,99H Get 9’s complement of 2nd number

 = 99H – 2nd Number

8505 96 SUB M

8506 C6, 01 ADI 01H 10’s complement of 2nd number = 9’s

 complement of number +1

8508 2B DCX H Decrement HL register pair

8509 8E ADD M Addition of 1st number and 10’s complement

 of 2nd number

850A 27 DAA Decimal adjustment

850B 32, 02, 80 STA 8002 Store result in 8002H location

850E 76 HLT

In the above program, the instruction INR A may be used in place of ADI 01H.

Data Result

Memory location Data Memory location Data

8000 89H 8002 47H

8001 42H

The number is stored in the memory location 8050H and

one’s complement of the number will be stored in the location 8051H.

Assume the program memory starts from 8000H. The program

flow chart for one’s complement of an 8-bit number is shown in

Fig. 4.21.

 1. Load memory location of data 8050H in HL register pair.

 2. Move data into accumulator.

 3. Complement accumulator.

 4. Store the result in the memory location 8051H.

START

Load data in accumulator
from memory location 8050H

Complement the content
of accumulator

Store the result, i.e.,
the content of accumulator
in memory location 8051H

End

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 21, 50, 80 LXI H,8050H Load address of number in HL register pair

8003 7E MOV A,M Move the number into accumulator

8004 3F CMA Complement accumulator

8005 32, 51, 80 STA 8051H Store the result in 8051H

8008 76 HLT Stop

In the above program, the first two instructions LXI H,8050H and MOV A,M can be replaced by directly

loading the content of location 8050H in accumulator. For this LDA 8050H can be used.

Data Result

Memory location Data Memory location Data

8050 F0H 8051 0FH

The number is stored in the memory location 8500H. The two’s comple-

ment will be stored in 8501H. The program is written from the memory

location 8510H. The program flow chart for 2’s complement of an 8-bit

number is depicted in Fig. 4.22.

 1. Transfer the content of the memory location 8500H to

accumulator.

 2. Complement the content of the accumulator.

 3. Add 01H with accumulator to get two’s complement of a number.

 4. Store the result in the memory location 8501H.

START

Load data in accumulator
from memory location 8500H

Complement the content
of accumulator

Store the result, i.e.,
the content of accumulator
in memory location 8501H

End

Add 01H with accumulator

Memory Machine

address Codes Labels Mnemonics Operands Comments

8510 3A, 00, 85 LDA 8500H Load the content of memory location

 8500H in accumulator

8513 2F CMA Complement accumulator

8514 C6, 01 ADI 01H Add 01H with accumulator to find two’s

 complement of the number

8516 32, 01, 85 STA 8501H Store result in 8501H location

8519 76 HLT Stop

Data Result

Memory location Data Memory location Data

8500 F0H 8501 10H

The number is stored in 8000H and its one bit left shift will be stored in

8001H. Assume the program is written from memory location 8010H.

The program flow chart for shifting an 8-bit number left by one bit is

depicted in Fig. 4.23.

 1. Load memory location of data 8000H in HL register pair.

 2. Move data from memory to accumulator.

 3. Content of accumulator rotate left by one bit.

 4. Store the result in the memory location 8001H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8010 21, 00, 80 LXI H,8000 Load memory address of data 8000H in HL pair

8013 7E MOV A, M Move data in accumulator

8014 07 RLC Content of accumulator rotate left by one bit

8015 23 INX H Increment HL register pair

8016 77 MOV M, A Store the result in memory location 8001H

8017 76 HLT Halt

A number will be shifted by one bit when the same number is added with itself. Actually, the number will

be doubled. For example, if the number is 02H, after shifting one bit left the number becomes 04 H. Therefore

RLC instruction can be replaced by ADD A.

Data Result

Memory location Data Memory location Data

8050 04H 8051 08H

Assume a 16-bit number is stored in 8050H and 8051H locations. After shifting one bit, the result will be

stored in 8053 and 8054 locations. The program memory starts from 8100H. The program flow chart for shift

a 16-bit number left by one bit is shown in Fig. 4.24.

START

Load data in accumulator
from memory location 8000H

Content of accumulator
shifted left by one bit

Store the result, i.e., the
content of accumulator in
memory location 8001H

End

 1. Load 16-bit or 2-byte data from memory location to HL register pair.

 2. Contents of HL register pair are added to itself once and the result stored in HL pair for shift left by

one bit

 3. Store the result in 8053H and 8053H locations.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 2A, 50, 80 LHLD 8050 H Load data from memory location 8050H and 8051

 to HL register pair

8103 29 DAD H Shift 16-bit number by one bit

8104 22, 53, 80 SHLD 8053 H Store result in 8053H and 8054H memory

 locations

8107 76 HLT

Data Result

Memory location Data Memory location Data

8050 52H 8053 A4H LSBs of result

8051 85H 8054 0AH MSBs of result

The first number is stored in the memory location 8050H and the second number is placed in 8051H location.

The result will be stored in the memory location 8052. Assume the program memory starts from 8100H. The

program flow chart is shown in Fig. 4.25.

START

Load 16-bit data in HL register pair
from memory locations 8050H and 8051H

Shift left the content of HL
register pair by one bit

Store the result, i.e., the content
of HL register pair in memory
locations 8053H and 8054H

End

Load first number in accumulator

Initialize the memory location
of second data

Is
number in

accumulator >
second
number?

Get larger number in
Accumulator as first number

is largest

Initialize H-L register pair as
the memory location of first data

START

Second number is largest
and move into accumulator

Yes

No

Store the largest number

End

 1. Load the first number in accumulator from the memory location 8050H.

 2. Compare second number with first number.

 3. If second number is greater than first number, copy Second number in the accumulator from memory.

 4. Store the result in 8052H location.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 50, 80 LXI H,8050 Load the 1st number in accumulator from memory

 location 8050H

8103 7E MOV A,M

8104 23 INX H Address of 2nd number in HL pair

8105 BE CMP M Compare between 2nd number and 1st number

8106 D2, 0A, 81 JNC LEVEL If borrow (carry) is not generated, jump LEVEL

8109 7E MOV A,M Move 2nd number in accumulator

810A 32 LEVEL STA 8052 Store largest number in 8052H

810B 76 HLT Halt

Data Result

Memory location Data Memory location Data

8050 78H 8052 FFH

8051 FFH

The count value of numbers 05H is stored in Register C directly and the numbers are stored in the

memory locations from 9001H to 9005H. The largest number will be stored in 9006H location. Assume the

program memory starts from 9100H. The flowchart to find out the largest number from an array is depicted

in Fig. 4.26.
START

Initialise HL register pair

Load count in register C

Load first number in accumulator

Is
number in

accumulator >
next number?

Get larger number in
accumulator

Decrement counter

Yes

No

Yes

No

Store the result

End

Is counter = 0?

 1. Load count value of numbers 05H in Register C immediately.

 2. Load the first number in accumulator from the memory location 9001H.

 3. Move the first number in the accumulator.

 4. Decrement the count value by one.

 5. Move to the next memory location for next data.

 6. Compare the content of memory with content of accumulator.

 7. If carry is generated, copy content of memory in accumulator.

 8. Decrement the count value by one.

 9. If count value does not equal to zero, repeat steps 5 to 8.

 10. Store the result in 9006H location.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 0E, 05 MVI C, 05 Load cout value in Register C

9102 21, 01, 90 LXI H, 9001 Load address of first data in HL register pair

9105 7E MOV A, M Copy 1st data in accumulator

9106 0D DCR C Decrement Register C

9107 23 LOOP INX H Increment HL register for address of next data

9108 BE CMP M Compare next data with the content of accumulator

9109 D2,0D,91 JNC LEVEL If carry is not generated, jump to LEVEL

910C 7E MOV A, M Copy large number in accumulator from memory

910D 0D LEVEL DCR C Decrement Register C

910E C2, 07, 91 JNZ LOOP Jump not zero to LOOP

9111 32, 06, 90 STA 9006 Store largest number in 9006H location

9114 76 HLT

Data Result

Memory location Data Memory location Data

9001 23H 9006 FFH

9002 FFH

9003 47H

9004 92H

9005 10H

The first number is placed in the memory location 9050H and the second number is placed in the

9051H location. The smallest number is to be stored in the memory location 9052. Consider the program

memory starts from 9100H. The program flow chart to find out the smallest of two numbers is depicted in

Fig. 4.27.

 1. Address of the first number is in HL register pair.

 2. Move first number into accumulator.

 3. Increment HL register pair for addressing second number.

 4. Compare second number with first number.

 5. When the first number is less than second number, the content of accumulator is the smallest number.

If second number is less than first number, copy second number in accumulator from memory.

 6. Store the result in 9052H location.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 21, 50, 90 LXI H, 9050H Load the 1st number in accumulator from

 memory location 9050H

9103 7E MOV A,M

9104 23 INX H Address of 2nd number in HL pair

9105 BE CMP M Compare 2nd number and 1st number

9106 DA,-- JC LEVEL If borrow (carry) is generated, jump LEVEL

9109 7E MOV A,M Move 2nd number in accumulator

910A 32, 52, 90 LEVEL STA 9052H Store smallest number in 9052H

910D 76 HLT Halt

Load first Number in accumulator

Initialize the memory location
of second data

Is
number in

accumulator <
second number?

Get smallest number in
accumulator as first
number is smallest

Initialize H-L register pair as
the memory location of first data

START

Second number is smallest
and move into accumulator

Yes

No

Store the smallest number

End

Data Result

Memory location Data Memory location Data

9050 78H 9052 78H

9051 FFH

A series of five numbers: (01H, FFH, 27H, 44H, 65H) are stored in memory locations from 8001H to 8005H.

The largest number will be stored in the 8006H location. Assume the program memory starts from 8100H.

The program flow chart to find out the smallest number from an array of numbers is shown in Fig. 4.28.

START

Load count in register C

Initialise HL register pair

Load first number in
accumulator

Decrement C

Increment HL register pair
to locate next number

Is
number in

accumulator <
next number?

Yes

No

Next number is smallest
number and move in

accumulator

Get smallest number
in accumulator

Decrement C

No

Yes

Is C = 0?

Store Result

End

 1. Store count of numbers 05H in Register C immediately.

 2. Load the first number in accumulator from memory location 8001H.

 3. Decrement the count value by one.

 4. Move to next memory location for next data.

 5. Compare the content of memory with content of accumulator.

 6. If carry is not generated, copy the content of memory in accumulator.

 7. Decrement the count value by one.

 8. If count value does not equal to zero, repeat steps 4 to 8.

 9. Store result in 8006H location.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 0E, 05 MVI C,05 Load cout value in Register C

8102 21, 01, 80 LXI H,8001 Load address of first number in HL register pair

8105 7E MOV A,M Copy first number in accumulator

8106 0D DCR C Decrement Register C

8107 23 LOOP INX H Increment HL register for address of next number

8108 BE CMP M Compare next number with the content of accumulator

8109 DA, 0D, 81 JC LEVEL If carry is generated, jump to LEVEL

810C 7E MOV A,M Copy large number in accumulator from memory

810D 0D LEVEL DCR C Decrement Register C

810E C2, 07, 81 JNZ LOOP Jump not zero to LOOP

8111 32, 06, 80 STA 8006 Store smallest number in 9006H location

8104 76 HLT

Data Result

Memory location Data Memory location Data

8001 01H 8006 01H

8002 FFH

8003 27H

8004 44H

8005 65H

A series of five numbers (11H, 05H, 46H, 23H, 65H) are stored in memory locations from 9001H to 9005H.

Arrange the above numbers in descending order and to be stored in 9001H to 9005H locations. Assume the

program memory starts from 9100H.

 1. Store 05H, number of data to be arranged in Register C from memory and store number of compari-

sons in Register D.

 2. Initialize the memory location 9001H of first data.

 3. Load the first data in accumulator from memory.

 4. Increment HL register pair for addressing next data.

 5. Load the next data in Register B from memory.

 6. Compare next data with accumulator. Store the smallest number in accumulator and largest number

in memory.

 7. Then next number is compared with accumulator and store the largest number in memory and small-

est number in accumulator.

START

Initialise DE register
pair and HL register pair

Load count - 1 in
register B

Load count - 2 in
register C

Load first number
in accumulator

No Is
next number >
accumulator?

Load large number
in accumulator

Decrement
counter in register C

Yes

Is Count-2 in
C = 0?

Store the largest number

Continue

Load Count - 3 in
Register C

No

Yes

Continue

Is
next number =

largest
number?

Decrement Count - 3
in Register C

Is Count-3 in
C = 0?

Replace largest
number by 00

Decrement Count - 1
in Register B

No

Yes

End

Is Count-1 in
B = 0?

Yes

No

 8. This process will continue till comparison of all numbers have been completed. After completion of

comparison of all numbers, the smallest number in accumulator and store it in memory. In this way,

the first process will be completed.

 9. At the starting of second process, Register C is decremented and store number of comparisons in

Register D Then repeat steps 2 to 8. After completion of this process, the smallest number is in 9005H

and the second smallest number is in 9004H.

 10. Register C is decremented and the next process starts if the content of Register C is not zero.

The flowchart for arranging a series of numbers in descending order is depicted in Fig. 4.29.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 0E, 05 MVI C, 05H Load count value of number of data in Register C

9102 16, 05 START MVI D, 05 Load count for number of comparisons in

 Register D

9104 21, 01, 90 LXI H, 9001H Load memory location of 1st number

9107 7E MOV A, M 1st number in accumulator

9108 23 LOOP INX H Increment HL register pair for addressing

 next number

9109 46 MOV B, M Copy next number in Register B from memory

910A B8 CMP B Compare next number with accumulator

910B DA, 17, 91 JC LEVEL 1 If the content of accumulator > next number,

 jump to LEVEL 1

910E 2B DCX H Increment HL register pair to locate the addressing

 for storing largest number

910F 77 MOV M,A Store largest of the two numbers in memory

9110 78 MOV A,B Move smallest of the two numbers in accumulator

 from Register B

9111 C3, 19, 91 JMP LEVEL_2 Jump to LEVEL_2

9114 2B DCX H

9115 77 MOV M,A Place smaller of the two numbers in accumulator

9116 C3 JMP Jump to LEVEL_2

9117 2B LEVEL 1 DCX H Store largest of the two numbers in memory

9118 70 MOV M,B

9119 23 LEVEL 2 INX H

911A 15 DCR D Decrement Register D to count for number of

 comparisons

911B C2, 08, 91 JNZ LOOP Jump zero to

911E 77 MOV M,A Place smallest number in memory

911F 0D DCR C Decrement count value

9120 C2, 02, 91 JNZ START Jump not zero to START

9123 76 HLT Halt

Data Result

Memory Data Memory After After After After

location location 1st process 2nd process 3rd process 4th process

9001 11H 9001 11H 46H 46H 65H

9002 05H 9002 46H 23H 65H 46H

9003 46H 9003 23H 65H 23H 23H

9004 23H 9004 65H 11H 11H 11H

9005 65H 9005 05H 05H 05H 05H

A series of five numbers are stored in memory locations in 8001H to 8005H. These numbers are 56H, F4H,

22H, 9AH and A1H.

Arrange the above numbers in ascending order in 9001H to 9005H locations using a subroutine. Assume

the program memory starts from 9100H. The program flow chart to arrange a series of numbers in ascending

order using subroutine is depicted in Fig. 4.30.

Initialize the address in DE Register Pair
to store the numbers in ascending order

Load the count value of
numbers into register B

CALL subroutine I to find
the smallest number of array

Store the result in memory location
which is specified by DE register pair

CALL subroutine II to check
which is the smallest number of
array and it is replaced by FFH

Increment DE register pair by 1

Decrement B by 1

Is
B = 0?

YES

NO

End

START

 1. Find the smallest number from the given series of numbers and store it in the memory location 9001H.

 2. Then detect the memory location of the smallest number from the given series and store FFH in that

memory location. As the content of the memory location is replaced by FFH, initial series of numbers

will be modified and a new series will be developed.

 3. Decrement count value by one.

 4. Again find the smallest number from the modified series of numbers and store it in the next memory

location.

 5. Then detect the memory location of the smallest number from the given series and place FFH in

that memory location. As the content of the memory location is replaced by FFH, the array is again

modified.

 6. Decrement count value by one.

 7. Repeat steps 4 to 6, till the counter value becomes zero and all the numbers of the given series are

arranged in descending order.

The program is divided into three subparts, namely, main program, Subroutine-I and Subroutine-II. The

main program is used to call Subroutine-I and Subroutine-II. Application of Subroutine-I is to find the small-

est number of a series of numbers and Subroutine-II is used to detect the location of the smallest number and

replace it by FFH.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 11, 01, 90 LXI D, 9001H Load memory locations in DE register pair to store

 the result

9103 21, 01, 80 LXI H, 8001H Load count address in HL register pair

9106 46 MOV B, M Copy count values in Register B to check whether

 all numbers have been arranged in ascending order.

9107 CD, 00, 85 START CALL 8500H Call Subroutine-I to find smallest number of array

910A 12 STAX D Store the result in memory location whose address is

 in DE register pair

910B CD, 00, 86 CALL 8600H Call Subroutine-II to check which number is smallest

910E 13 INX D Increment in DE register pair to store next

 smallest number

910F 05 DCR B Decrement Register B

9120 C2, 07, 91 JNZ START If the content of B is not equal to zero, repeat process

9123 76 HLT Stop

Memory Machine Mnem-

address Codes Labels onics Operands Comments

8500 21, 00, 80 LXI H,8000H Load address of number of data in HL register pair

8503 4E MOV C,M Load count value in Register C

8504 23 INX H Increment HL register pair to locate first data

Contd.

8505 7E MOV A,M Copy 1st data in accumulator

8506 0D DCR C Decrement Register Cc

8507 23 LOOP_1 INX H Increment HL register for address of next data

8508 BE CMP M Compare next data with the content of accumulator

8509 DA, 0D, 85 JC LEVEL_1 If carry is not generated, jump to LEVEL_1

850C 7E MOV A,M Copy smallest number in accumulator from memory

850D 0D LEVEL_1 DCR C Decrement Register C

850E C2, 07, 85 JNZ LOOP_1 Jump not zero to LOOP

8511 C9 RET

Memory Machine

address Codes Labels Mnemonics Operands Comments

8600 21, 00, 80 LXI H, 8000 H Copy the count value from memory location

 8000H to Register C

8603 4E MOV C, M

8604 23 LOOP_2 INX H Increment HL register for address of next number

8605 BE CMP M Compare the next number with smallest number

 in accumulator

8606 CA, 06, 86 JZ LEVEL 2 If the present number is smallest number, jump to

 LEVEL 2

8609 0D DCR C Decrement C register

860A C2, 04, 86 JNZ LOOP_2 If C is not zero, jump to take up next number

860D 3E, FF LEVEL_2 MVI A, FF

860F 77 MOV M, A Replace smallest number by FFH

8610 C9 RET

Data Modified Array

Memory Data Memory After After After After After

location location 1st process 2nd process 3rd process 4th process 5th process

8001 56H 8001 56H FFH FFH FFH FFH

8002 F4H 8002 F4H F4H F4H F4H FFH

8003 22H 8003 FFH FFH FFH FFH FFH

8004 9AH 8004 9AH 9AH FFH FFH FFH

8005 A1H 8005 A1H A1H A1H FFH FFH

 Result

Memory location Data

9001 22FH

9002 56H

9003 9AH

9004 A1H

9005 F4H

Contd.

Load the number in the memory location 9000H and the square root of

the number will be stored in the memory location 9001H. The square

roots of numbers 0, 1, 4, 9, 16, 25, 36, 49, 64 and 81 are stored in 8500H,

8501H, 8504H, 8509H, 8516H, 8525H, 8536H, 8549H, 8564H and

8581H locations respectively as given in tabular form. Assume the

program is written from memory location 9100H. The program flow

chart to find out square root a decimal number using look up table is

given in Fig. 4.31.

 1. Store the number in the accumulator from the memory location

9000H.

 2. Move the content of accumulator in Register L and store 85H in

Register H.

 3. When the number is 16, the content of H and L registers are 85H

and 16H respectively. Then the HL register pair represents the

8516H memory location.

 4. Copy the square root of the number in the accumulator from the

memory location which is represented by HL register pair.

 5. Store the result in 9001H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 3A, 00, 90 LDA 9000H Load the number in accumulator from memory

 location 9000H

9103 6F MOV L, A Copy the content of Accumulator in Register L

9104 26, 85 MVI H, 85 Load 85H in Register H

9106 7E MOV A, M Move square root of decimal number in accumulator

 from memory

9107 32, 01, 90 STA 9001H Store square root value in 9001H

910A 76 HLT

 ADDRESS SQUARE ROOT

 8500 00

 8501 01

 8504 02

 8509 03

 8516 04 (Contd.)

START

Load the number in accumulator
from memory location 9000H

Load the content of accumulator
in Register L and 85H in

register H

Store the result i.e.
the content of accumulator
in memory location 9001H

End

Copy the square root of number
from the memory location

specified by HL pair to Look-up
table into the accumulator

 8525 05

 8536 06

 8549 07

 8564 08

 8581 09

ADDRESS SQUARE ADDRESS Result

9000 H 16 9001 H 04

Two eight-bit data are stored in 8000H and 8001H memory locations. After multiplication, the result will be

stored in 9000H and 9001H memory locations. Assume the program is written from memory location 9100H.

 1. Store multiplicand in Register B and multiplier in Register E.

 2. Clear Register D and clear HL register pair.

 3. Content of DE registers will be added with content of HL registers.

 4. Decrement Register B.

 5. If content of Register B is not equal to zero, repeat steps 3 to 5.

 6. When Register B is equal to zero, the content of HL will be stored in memory locations 9000H and

9001H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 21, 00, 80 LXI H,8000H Address of multiplier in HL pair

9103 4E MOV C,M Store multiplier in Register C from memory

9104 24 INX H Address of multiplicand in HL pair

9105 5E MOV E,M Multiplicand in Register E

9106 16, 00 MVI D,00H Load 00H in Register D

9108 21, 00, 00 LXI H, 0000 Initial value of product = 00H in HL pair

910B 19 LOOP DAD D Add content of DE with content of HL

910C 0D DCR C Decrement Register C

910D C2, 0B, 91 JNZ LOOP If not zero, jump to LOOP

9110 EB XCHG The content of DE register pair and HL register

 pair exchanged; result in DE register

9111 21, 00, 90 LXI H, 9000H Load 9000H in HL pair

9114 73 MOV M,E Store content of Register E in 9000H location

9115 23 INX H Address of next memory location in HL pair

9116 72 MOV M,D Store content of Register E in 9001H location

9117 76 HLT Stop

(Contd.)

Address Data Address Result

8000 H 45H Multiplicand 9000 H 05H

8001 H 13H Multiplier 9001 H FFH

The other method of multiplication

is binary multiplication. If the multiplicand is multiplied by 1,

the product will be equal to the multiplicand. If the multiplicand is

multiplied by zero, the product is zero.

For binary multiplication, the following procedure is followed :

 45 H Multiplicand

× 13 H Multiplier

05 1FH Product

 0 1 0 0 0 1 0 1

 × 0 0 0 1 0 0 1 1

 0 1 0 0 0 1 0 1

 0 1 0 0 0 1 0 1 x

 0 0 0 0 0 0 0 0 x x

 0 0 0 0 0 0 0 0 x x x

 0 1 0 0 0 1 0 1 x x x x

 0 1 0 1 0 0 0 1 1 1 1 1 (05 1F)H

Step 1 The multiplicand is multiplied by the LSB of the multiplier

and the partial product is stored. Then multiplicand is shifted right.

Step 2 Again the shifted multiplicand is multiplied by the second bit

and then added with the previous result. Then the shifted multiplicand

is shifted right. If the bit is a 0 bit, nothing will be added with the partial

product but the multiplicand is simply shifted right by one bit.

Step 3 The step will be repeated till the completion of multiplication

of all bits of the multiplier.

In binary multiplication, the multiplicand is shifted right and shift mul-

tiplier left to check the LSB bit whether it is 1 or 0. The flowchart for

multiplication of two numbers is shown in Fig. 4.32.

START

Load Multiplicand
Load Muliplier

Initialise Product =
00 and Count = 08

Shift product left 1 bit
Shift multiplier left 1 bit

Is
carry generated
from multiplier?

Product =
Product + Multiplicand

Decrement
counter

No

Yes

No

Yes

Is counter = 0?

End

Store
Result

 1. Load the multiplicand and multiplier.

 2. Initialize product value = 0.

 3. Load number of bits of multiplier in Register C.

 4. Shift multiplier right by one bit.

 5. If carry flag is set, multiplicand adds with initial value 0000H + multiplicand. Then product is equal

to 0000H+ multiplicand. This result is also called as partial product. Then partial product is shifted

left by one bit.

 6. DCR counts value.

 7. If the content of Register C is not zero, modified multiplier again shifted one bit right.

 8. If carry flag is set, shifted multiplicand adds with partial product. Then once again shifts the modified

multiplicand left.

 9. Repeat steps 6, 7 and 8 till the content of Register C becomes zero.

 10. Store the result in 9000H and 9001H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 21, 00, 80 LXI H,8000H Address of multiplicand in HL pair

9103 5E MOV E,M Store multiplicand in Register E from memory

9104 23 INX H Address of multiplicand in HL pair

9105 56 MOV D,M Multiplicand in Register D

9106 0E, 08 MVI C,08H Load 08H in Register C

9108 3A, 02, 80 LDA 8002H Load multiplier in accumulator

910B 21, 00, 00 LXI H, 0000H Initial value of product = 00 in HL pair

910E 0F LOOP RRC Rotate accumulation left

910F D2, 13, 91 JNC LEVEL If there is no carry, jump to level

9112 19 DAD D Add content of DE with content of HL

9113 EB LEVEL XCHG The content of DE register pair and HL register

 pair exchanged, result in DE register

9114 19 DAD H Multiplicand shifted one bit right

9115 EB XCHG The content of DE register pair and HL register

 pair exchanged, result in DE register

9116 37 STC Clear the carry flag using set carry status and

 then complement the carry status

9117 3F CMC

9118 0D DCR C Decrement Register C

9119 C2, 0E, 91 JNZ LOOP If content of Register C is not zero, jump to

LOOP

911C 22, 00, 90 SHLD 9000H Store the content of HL register pair in 9000H

 and 9001 memory location

911F 76 HLT Stop

Load Dividend
Load Divisor

START

Initialise Quotient =
00 and Count = 08

Shift dividend Left 1 bit
Shift quotient Left 1 bit

Is
MSB of

Dividend >
Divisor?

Yes

Quotient = Quotient + 1
8 MSB of Dividend =

8 MSB of Dividend – Divisor

Decrement
counter

No

Is counter = 0?

Store Result

End

Yes

No

Address Data Address Result

8000 H 45H Multiplicand 9000 H 05H

8001 H 13H Multiplier 9001 H FFH

The division can be

performed by repetitive subtractions. The divisor is subtracted

from the dividend. When there is no borrow, the quotient is

incremented by one. If there is borrow, the quotient and remainder

are stored in specified memory location. Assume dividend and

divisor are nonzero quantities. Assume the program starts from

memory location 9100H.

 1. Store the dividend in the memory location 8000H and the

divisor in the memory location 8001H.

 2. Clear Register C by storing 00H within it.

 3. Move dividend in accumulator and copy it in Register D.

 4. Subtract divisor from dividend.

 5. If carry is not generated, increment Register C. Repeat

steps 3 to 5.

 6. When carry is generated, quotient, content of Register C,

and remainder, content of Register D are stored in mem-

ory location.

 7. If zero flag is set, Register C is incremented by one. Then

quotient, content of Register C and remainder, content of

Register D are stored in memory location.

The flowchart for division of two numbers is illustrated in Fig.

4.33.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 21, 00, 80 LXI H,8000H Address of dividend in HL pair.

9103 36, 22 MVI M, Dividend Store dividend in memory location

 (Dividend)

9105 23 INX H Address of divisor in HL pair

9106 36, 21 MVI M, Divisor Store divisor in memory location

 (Divisor)

9108 0E, 00 MVI C,00H Load 00H in Register C for initial value

 of quotient

910A 2B DCX H Decrement HL register pair

910B 7E LOOP MOV A,M Load dividend in accumulator from memory

910C 57 MOV D,A Copy dividend in Register D

910D 23 INX H Increment HL register pair

910E 96 SUB M Subtract divisor from dividend

910F DA, 1B, 91 JC LEVEL_1 If there is carry, jump to LEVEL_1

9112 CA, 20, 91 JZ LEVEL_2 If there is zero, jump to LEVEL_2

9115 2B DCX H Decrement HL register pair

9116 77 MOV M,A Store modified dividend in memory

 location from accumulator

9117 0C INR C Increment Register C

9118 C3, 0B, 91 JMP LOOP

911B 37 LEVEL 1 STC Clear the carry flag using set carry status

 and then complement the carry status

911C 3F CMC

911D C3, 21, 91 JMP LEVEL_3 Jump to LEVEL_3

9120 0C LEVEL_2 INR C

9121 21, 00, 90 LEVEL_3 LXI H, 9000H

9124 71 MOV M,C Store quotient in 9000H from Register C

9125 23 INX H Increment HL register pair

9126 72 MOV M,D Store remainder in 9000H from Register C

9127 76 HLT Stop

Binary division is also performed by trial subtractions. The divisor is subtracted

from the 8 most significant bits of the dividend. When there is no borrow, the bit of the quotient is set to

1; otherwise, 0. Then the dividend and quotient are shifted left by one bit before the next subtraction. The

dividend and quotient can use a 16-bit register. As dividend is shifted, one bit of the register falls vacant in

each step and the quotient is stored in unoccupied bit positions.

The dividend is a 16-bit number and divisor, an 8-bit number. When the dividend is an 8-bit number,

place 00H in MSBs positions. The dividend is stored in the memory locations 8000H and 8001H. The divisor

is placed in the memory location 8002H. The results will be stored in the memory locations 8003H and

8004H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9100 2A, 00, 80 LHLD 8000 H Store dividend in HL pair

9103 3A, 02, 80 LDA 8002H Store divisor in accumulator from memory

 location 8002H

9106 47 MOV B,A Copy the content of accumulator in Register B

9107 0E, 08 MVI C, 08 Load 08H in Register C

9109 29 LOOP DAD H Shift dividend and quotient right by one bit

910A 7C MOV A,H Move MSBs of dividend in accumulator

910B 90 SUB B Subtract divisor from dividend

910C DA, 11, 91 JC LEVEL_1 If there is carry, jump to LEVEL_1

910F 67 MOV H,A After subtraction store dividend in Register H

 from accumulator

9110 2C INR L Increment L register

9111 0D LEVEL_1 DCR C Decrement C register

9112 C2, 12, 91 JNZ LOOP If there is no zero, jump to LOOP

9115 22, 03, 80 SHLD 8003H Store results in 8003 and 8004 H

9118 76 HLT Stop

Address Data Address Result

8000 H 9A H LSBs of dividend 9003H F2 Quotient

8001 H 48 H MSBs of dividend 9004 H 06 Remainder

8002 H 1A H Divisor

Store an 8-bit data in 8000H location and load 08H in Register C. Transfer data from memory to accumula-

tor. The content of accumulator is shifted right with carry and store carry bit in the 8058H location. After that

clear carry. Again content of the accumulator is shifted right with carry, and the content of carry will be stored

in the previous memory location. In this way the operation will be repeated till Register C becomes zero.

Assume the program starts from the memory location 8100H. The program flow chart to convert a 8-bit

Hexadecimal number to binary number is illustrated in Fig. 4.34.

 1. Initialize memory location 8000H. Load an 8-bit hexadecimal number in the memory.

 2. Initialize the memory location to store result.

 3. Load 8-bit data in accumulator.

START

Initialize the address 8000H of the
Hexadecimal number in H-L Register
pair and store number in memory

Initialize the memory location
8058H to store the binary number

Load hexadecimal number
into accumulator

Load 08H in Register C

Rotate the content of Accumulator
right with carry

MOVE the content of Accumulator
in Register E

MOVE the carry in Accumulator
and store in memory

Clear carry, Move the content of E in
Accumulator and decrement the
destination memory location

Decrement register C by 1

No
Is

C = 0?

Yes

End

 4. Load 08H in Register C.

 5. Rotate accumulator right with carry.

 6. Copy content of accumulator in Register E.

 7. Save carry in accumulator.

 8. Store in memory.

 9. Transfer Register E to accumulator.

 10. Clear carry.

 11. Decrement HL pair.

 12. Decrement Register C.

 13. Repeat steps 6 to 12 till the content of Register C.becomes zero.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 00, 80 LXI H, 8000H Initialize the memory location 8000 H through

 HL register pair

8103 36, DATA MVI M, DATA Load DATA in the memory

8105 21, 58, 80 LXI H, 8058H Initialize the memory Location 8058H to store

 binary

8108 3A, 00, 80 LDA 8000 H Load data in accumulator from the memory

 location 8000H

810B 0E, 08 MVI C, 08H Store 08H in Register C

810D 1F LOOP RAR Rotate the content of accumulator right with

 carry

810E 5F MOV E, A Copy the content of accumulator in Register E

810F 3E, 00 MVI A, 00H Store 00H in accumulator

8111 8F ADC A Add the contents of accumulator and carry

8112 77 MOV M,A Move the content of accumulator in memory

8113 7B MOV A, E Transfer the content of accumulator in Register E

8114 B7 ORA A Clear carry

8115 2B DCX H Decrement HL register pair

8116 0D DCR C Decrement Register C

8117 C2, 0D, 81 JNZ LOOP If content of C is not zero, Jump to LOOP

811A 76 HLT Halt

8-Bit DATA Binary number in Memory Location

 8051H 8052H 8053H 8054H 8055H 8056H 8057H 8058H

27 0 0 1 0 0 1 1 1

9F 1 0 0 1 1 1 1 1

A block of data is available starting from 9051H. Tansfer the block so that it can be stored from 9100H. The

number of bytes in the block is stored in 9050H. Assume the program starts from 8000H. The program flow

chart is depicted in Fig. 4.35.

 1. Store the address of the number of data in HL register pair.

 2. Load number of data in Register B from memory.

 3. Store the starting address of destination in DE register pair.

Initialize the address of the
number of data in H-L Register pair

START

Load number of data in Register B

Initialize the starting address of
destination in DE register pair

Initialize the starting address of
source in HL register pair

Load data into accumulator from
source memory

Store data from accumulator into
destination memory

Increment HL by 1
Increment DE by 1

Decrement B register by 1

Is
B = 0?

No

Yes

End

 4. Increment HL register pair to get data from source.

 5. Copy data from source to accumulator.

 6. Exchange HL and DE register pair, store the content of accumulator in destination address.

 7. Exchange HL and DE register pair.

 8. Increment HL and DE register.

 9. Decrement Register B.

 10. If Register C is not zero, repeat steps 5 to 9.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 21, 50, 90 LXI H,9050 Store the address of number of data, 9050H

 in HL register pair

8003 46 MOV B,M Load number of data in Register B from memory

8004 21, 00, 91 LXI D,9100 Store the destination address in DE register pair

8007 23 INX H Increment HL register pair

8008 7E LOOP MOV A,M Move data from source to accumulator

8009 EB XCHG Exchange the content of HL and DE

800A 77 MOV M,A Store the content of accumulator, data in

 destination address

800B EB XCHG Exchange the content of HL and DE

800C 23 INX H Increment source address

800D 13 INX D Increment destination address

800E 05 DCR B Decrement Register B.

800F C2, 08, 80 JNZ LOOP If B is not zero, Jump to LOOP

8012 76 HLT

 Input Result

 ADDRESS DATA ADDRESS DATA

 9050 05 H 9100 05 H

 9051 48 H 9101 48 H

 9052 1A H 9102 1AH

 9053 F2 H 9103 F2H

 9054 06 H 9104 06H

 9055 33H 9105 33H

Load the decimal number in memory location F000H and the square of the decimal number will be stored in

the memory location F001H. The square values of decimal numbers from 0 to 9 are stored in F110 to F119H

in tabular form as depicted in the Look-up table. Assume the program is written from memory location

F150H. The program flow chart to find out the square of a number using a look-up table is shown in Fig.4.36.

 1. Store the decimal number in the accumulator from memory location F000H.

 2. Move the content of the accumulator in L register and Load F1H in H register.

 3. If the decimal number is 05, the content of H and L registers are F1 and 05H respectively. Then the

memory location F105H will be denoted by H-L register pair.

 4. Move square of decimal number in the accumulator from memory location represented by H-L regis-

ter pair.

 5. Store the result, square value in F001H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

F150 3A, 00, F0 LDA F000H Load the decimal number in accumulator from

 memory location F000H

F153 6F MOV L,A Copy the content of accumulator in L register

F154 26, F1 MVI H,F1 Load F1H in H register

F156 7E MOV A,M Move square of decimal number in accumulator

 from memory

F157 32, 01, F0 STA F001H Store square value in F001H

F15A 76 HLT Halt

 ADDRESS SQUARE

 F100 H 00

 F101 H 01

 F102 H 04

 F103 H 09

 F104 H 16

 F105 H 25

 F106 H 36

 F107 H 49

 F108 H 64

 F109 H 81

START

Load the decimal number in
accumulator from memory

location F000H

Load the content of
accumulator in Register L

and F1H in Register H

Copy the square of number
from the memory location specified

by HL pair of look-up table
into the accumulator

Store the result i.e.
the content of accumulator
in memory location F001H

End

 Address Square (Decimal) Address Result (Decimal)

 F000 H 05 F001 H 25

Load the BCD number in memory location 8000H and the binary equivalent of BCD number will be stored

in the memory location 8001H. Assume the program is written from memory location 8100H. The program

flow chart to convert BCD number to binary number is depicted in Fig. 4.37.

START

Initialize the memory location
of BCD number in HL register pair

Move the BCD number into accumulator

Separate the Units digit of BCD number
and stored in B register

Separate the tens digit of BCD number
and stored in C register

Multiply tens digit by 10

Add Units digit with 10 times of tens digit

Store the result in memory

End

 1. Store the BCD number in accumulator from memory location 8000H.

 2. Separate the units digit of the BCD number and stored in B register.

 3. Separate the tens digit of the BCD number and stored in C register.

 4. Multiply tens digit by 10.

 5. Add units digit with 10 times of tens digit.

 6. Store the result, i.e., binary equivalent in 8001H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 00, 80 LXI H,8000H Load the address of a BCD number in HL register

pair

8103 7E MOV A,M Move data from memory to accumulator

8104 E6, 0F ANI 0FH Perform logical AND operation between 0FH and

Accumulator content, i.e., mask units digit

8106 47 MOV B,A Store units digit in register B

8107 7E MOV A,M Move data from memory to Accumulator

8108 E6, F0 ANI F0H Perform logical AND operation between 0FH and

Accumulator content, i.e., mask tens digit

810A 0F RRC Rotate accumulator right four times, so that the tens

digit is placed in units digit position

810B 0F RRC

810C 0F RRC

810D 0F RRC

810E 87 ADD A The content of A is added with A, i.e., tens digit

becomes 2 times

810F 4F MOV C,A Store 2 time of tens digit in C register

8110 87 ADD A tens digit becomes 4 times

8111 87 ADD A tens digit becomes 8 times

8112 81 ADD C Get 10 times of tens digit

8113 80 ADD B Add units digit

8114 23 INX H Increase HL pair by 1

8115 77 MOV M,A Store result in memory

8116 76 HLT Halt

 Address Decimal Number Address Result (Binary)

 8000 H 68 8001 H 1010110

An 8-bit binary number is stored in memory location 8000H. Find out the decimal equivalent of binary num-

ber and decimal number will be stored in the memory locations 8001H and 8002H. Assume the program is

written from memory location 8100H. The program flow chart to convert a 8-bit binary number to decimal

number is shown in Fig. 4.38.

 1. Initialize the register B = 00H as Hundreds counter and initialize the register C = 00H as tens counter.

 2. Move the binary number into accumulator from memory location 8000H.

Initialize the address of the
binary number in H-L Register pair

START

Load number into accumulator

Initialize the C register = 00H
as hundreds digit

Initialize the B register = 00H
as hundreds digit

Greater than
>

Subtract (64)H
Increment C by 1

Subtract (64)H
Increment C by 1

< Less than

Compare
ACC

with (64)H
or (100)D?

=

Greater than
>

=
Compare
ACC

with (0A)H
or (10)D?

Subtract (0A)H
Increment B by 1

< Less than

Subtract (0A)H
Increment B by 1

Move units into register E

Move tens into accumulator

Units and tens are combined
in accumulator using

OR instruction

Store units, tens and
hundreds in memory

End

 3. To separate the hundreds digit of the decimal number, subtract (100)D or (64)H from the number until

the remainder becomes less than 100 and the Hundreds digit must be stored in C register.

 4. To separate the tens digit of the decimal number, i.e., reminder after subtracting(100)D or (64)H

repeatedly, subtract (10)D or (0A)H from the remainder, until the next remainder becomes less than

(10)D and the tens digit must be stored in B register.

 5. The next reminder is the units digit of the decimal number and stored in E register.

 6. Load the content of register B in accumulator and rotate left four times.

 7. Perform OR operation between the content of accumulator and register E and combined the tens digit

and units digit and stored in 8001H.

 8. Store the hundreds digit in 8002H.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 00, 80 LXI H,8000H Load the address of a 8-bit binary number in HL

register pair

8103 7E MOV A,M Move data from memory to accumulator

8104 0E,00 MOV C,00 Initialize hundreds digit in register C

8106 06,00 MOV B,00 Initialize tens digit in register B

8108 FE,64 Start CPI 64H Compare accumulator with 64H or 100D

810A CA, 16,81 JZ Level-1 When the content of accumulator is (64)H or

(100)D, jump to Level-1

810D DA,1C,81 JC Level-2 When the content of accumulator is less than (64)H

or (100)D, jump to Level-2

8110 DE, 64 SBI 64H Subtract (64)H or (100)D from accumulator

8112 0C INR C Increment Hundreds digit count in register C

8113 C3,08, 81 JMP Start Jump to Start

8116 0C Level-1 INR C Increment Hundreds digit count in register C

8117 DE, 64 SBI 64 Subtract 64H or 100D from accumulator

8119 C3,2D,81 JMP Level-4 Jump to Level-4

811C FE,0A Level-2 CPI 0A Compare accumulator with (0A)H or (10)D

811E CA,2A,81 JZ Level-3 When accumulator content is equal to (0A)H or

(10)D, Jump to Level-3

8121 DA,00,81 JC Level-4 When accumulator content is less than (0A)H or

(10)D, jump to Level-4

8124 DE,0A SBI 0AH Subtract (0A)H or (10)D from the accumulator

8126 04 INR B Increment tens digit count in register B

8127 C3,1C,81 JMP Level-2 Jump to Level-2

812A 04 Level-3 INR B Increment tens digit count in register B

812B DE,0A SBI 0A Subtract (0A)H or (10)D from the accumulator

812D 5F Level-4 MOV E,A Store units digit in register E

812E 78 MOV A,B Move tens digit count into Accumulator

812F 07 RAL Rotate accumulator left four times, so that the tens

digit is placed in tens digit position

8130 07 RAL

8131 07 RAL

8132 07 RAL

8133 B3 ORA E The content of E is ORed with accumulator so that

tens digit and units digit is available in accumulator
(Contd.)

4.1 The assembler is

 (a) program that translates mnemonics into

binary code

 (b) program that translates mnemonics into

octal code

 (c) an operating system which manages all the

programs in the system

 (d) a compiler that translates statements from

assembly language into machine language

4. 2 The compiler is

 (a) faster than an interpreter

 (b) slower than an interpreter

 (c) an interpreter

 (d) a single-step process

4.3 When a subroutine is called by CALL

instruction, the microprocessor stores the 16-bit

address of the instruction next to CALL on the

(Contd.)

8134 23 INX H Increase HL pair by 1

8135 77 MOV M,A Store tens digit and units digit in memory

8136 79 MOV A,C Move hundreds digit into accumulator

8137 23 INX H Increase HL pair by 1

8138 77 MOV M,A Store result in memory

8139 76 HLT Halt

 Address Binary Number Address Result (Decimal)

 8000 H (FD)H 8001 H (53)D

 8002 H (02)D

 This chapter has given a brief introduction to machine-language, assembly language and high-level

languages with their advantages and disadvantages.

 Time-delay loops, modular programming, and macro are also discussed. Time delay can be developed

using registers and register pairs, and delay time can be determined by the number of T states in a delay

loop, system frequency and the number of times the loop is repeated. The calculation of time delay

has been incorporated in this chapter. Time-delay loops are very important in digital clocks, process

control, traffic signals, etc.

 In this chapter, programming techniques such as looping, counting using data transfer instructions,

arithmetic and logical instructions are explained. The application of CALL, RET, PUSH and POP

instructions in some programs are discussed.

 Assembly-language programs on arithmetic addition, subtraction, multiplication, division, and

conversion from BCD to binary are illustrated. Assembly-language programs to arrange an array in

ascending order and descending order, find the maximum and minimum number of an array, and transfer

a block of data from one section of memory to another section of memory are also incorporated.

 (a) stack pointer (b) accumulator

 (c) program counter (d) stack

4.4 When a CALL instruction is executed, the stack

pointer register is

 (a) decremented by two

 (b) incremented by two

 (c) decremented by one

 (d) incremented by one

4.5 When the RET instruction is executed at the

end of a subroutine,

 (a) the memory address of the RET instruction

is transferred to the program counter

 (b) two data bytes stored in the top locations

of the stack are transferred to the stack

pointer

 (c) the data where the stack is initialized is

transferred to the stack pointer

 (d) two data bytes stored in the top two

locations of the stack are transferred to the

program counter

4.6 Whenever the PUSH H instruction is executed,

 (a) data bytes in the HL pair are stored on the

stack

 (b) two data bytes at the top of the stack are

transferred to the HL register pair

 (c) two data bytes at the top of the stack are

transferred to the program counter

 (d) two data bytes from the HL register that

were previously stored on the stack are

transferred back to the HL register

4.7 Whenever the POP H instruction is executed,

 (a) two data bytes from the HL register which

were previously stored on the stack, are

transferred back to the HL register

 (b) data bytes in the HL pair are stored on the

stack

 (c) two data bytes at the top of the stack are

transferred to the program counter

 (d) data bytes in the HL pair are stored on the

program counter

4.8 What will be the content of the stack pointer

after execution of the following instructions?

MVI C, 05

 LXI H, 8000H; SPHL

 (a) 8000H (b) 0005H

 (b) 0080H (d) 0500H

 LOOP MVI C, FFH

 DCR C

 JNZ LOOP

 HLT

4.9 In the above instructions, how many times is

DCR C instruction executed?

 (a) 256 (b) 255

 (b) 155 (d) 156

4.10 How many times does the program jump to

LOOP?

 (a) 256 (b) 255

 (b) 155 (d) 156

4.11 Match the following:

 Column I Column II

 (a) POP (i) to save data in the stack

 (b) PUSH (ii) to read data from the stack

 (c) Stack (iii) a portion of memory

reserved for return address

and data

 (d) Mask (iv) a byte used with an ANI

instruction to blank out

certain bits

 (A) a – i, b – ii, c – iii, d – iv

 (B) a – iv, b – iii, c – ii, d – i

 (C) a – ii, b – i, c – iii, d – iv

 (D) a – iii, b – i, c – ii, d – iv

4.12 Opcode is

 (a) the part of the instruction which tells the

computer what operation to perform

 (b) an auxiliary register that stores the

data to be added or subtracted from the

accumulator

 (c) the register that receives the constructions

from memory

 (d) The data which will be used in data

manipulation of instruction

 Register A contains 5FH, B contains 4FH, C

contains 26H, H contains 80H, L contains FFH

and the memory locations 80EE and 80FF

contains 2D and 4E respectively. The following

program begins at the memory location 8110H.

 ADD C

 MOV B,M

 MOV M, A

 DAD B

4.13 What will A contain after the program?

 (a) 85 H (b) 5FH

 (c) FFH (d) 4AH

4.14 What will B contain after the program?

 (a) 4E H (b) AA H

 (c) DD H (d) 4A H

4.15 What will H contain after the program?

 (a) CF H (b) AB H

 (c) DA H (d) 4AH

4.16 What will L contain after the program?

 (a) 25 H (b) AA H

 (c) DD H (d) 4AH

4.17 What will be the content of the memory location

80EEH after the program?

 (a) 2D H (b) AA H

 (c) DD H (d) 4AH

4.18 What will be the content of the memory location

80FF after the program?

 (a) 85H (b) AD H

 (c) D0H (d) 4FH

4.19 The PC contains 8452H and SP contains

88D6H. What will be the content of PC and

SP following a CALL to subroutine at location

82AFH?

 (a) 82AF, 88D4 (b) 82AF, 8450

 (c) 8450, 88D4 (d) 82AF, 8452

4.20 What will be the delay generated by the

following instructions?

 MVI C, FF 10T

 LOOP DCR C 5T

 JNZ LOOP 10/7 T

 (a) 3832 T states (b) 3850 T states

 (c) 3857 T states (d) 3835 T states

4.1 Explain the following terms:

 (a) Assembly language (b) Machine language (c) High-level language (d) Compiler

4.2 What the disadvantages of machine languages? What the advantages of assembly languages?

4.3 Write the disadvantages of high-level languages.

4.4 What are translators? Write the differences between compilers and interpreters.

4.5 Define stack. Explain the function of PUSH and POP instructions.

4.6 List the high-level languages. What are the advantages and disadvantages of high-level languages?

4.7 Explain the features of the following languages:

 (a) FORTRAN (b) C (c) ADA

 (d) PASCAL (e) PROLOG (f) BASIC

4.8 Define macro and explain the operation of a macro with examples. What is the difference between

macro and subroutine ?

4.9 What is modular programming? Write the advantages and disadvantages of modular programming.

4.1 Explain time-delay loop using register and register pair. Write some applications of time-delay loop.

Calculate the time required to execute the following two instructions if the system-clock frequency is 1

MHz.

 LOOP: MOVA,B 5 T-states

 JMP LOOP 10 T-states

4.2 Calculate the time delay to execute the following instructions:

 LEVEL MOV C,B 5 T-states

 NOP 5 T-states

 NOP 5 T-states

 JMP LEVEL 10 T-states

4.3 Write an assembly-language program to load memory locations 8100H and 8200H with 58H and 42H.

Add the contents and store it in the memory location 8300H.

4.4 Data byte 28H is stored in Register B and data byte 97H is stored in the accumulator. Show the contents

of registers B, C, and the accumulator after the execution of the following instructions:

 (a) MOV C, A (b) MOV A, B (c) ADD B

4.5 Two numbers A and B are stored in successive memory locations 8500H and 8501H respectively. Write

a program to determine and store the results of the following operations starting from 8520H.

 (a) A + B, (b) A–B, (c) A NOR B, (d) A NAND B,

 (e) A XOR B, (f) A AND B (g) A OR B

4.6 Write an assembly-language program for addition of 00H and 80H and save the result in the memory

address 8000H.

4.7 Write an assembly-language program for addition of two 8-bit decimal numbers and save the result in

the memory address 8000H.

4.8 Find the sum of 10 numbers stored in successive memory locations starting from 2000H and store the

result in two bytes, 8100H and 8101H.

4.9 Data stored in locations 8000H and 8001H are 07 and 40H respectively. Assemble them to 47 and store

in location 8002H.

4.10 A series of sixteen bytes of data are stored in memory locations from 9000 H to 900F H. Write an

assembly-language program to transfer the entire block of data bytes to new memory locations starting

from 9100H.

4.11 Write an assembly-language program to multiply two 8-bit numbers.

4.12 Assume that six data bytes are stored in the memory locations starting from 8100H. Write an assembly-

language program to transfer the data to the locations 8200H to 8205H in the reverse order.

4.13 A string of ten data bytes is stored starting from the memory location 9000H. The string includes some

bytes with FF value. Write a program to eliminate the FF from the string.

4.14 A string of ten data bytes is stored starting from the memory location 9000H. The string includes some

bytes with zero values. Write a program to eliminate the blank from the string.

4.15 Write a program to subtract two bytes at a time and store the result in memory locations.

4.16 Calculate the l’s and 2’s complement of the contents of two successive memory locations 8500H and

8501H and store them in four consecutive memory locations starting from 8600H.

4.17 N numbers are stored in consecutive memory locations starting from 8001H and the value of N is

available in memory location 8000H. Find the maximum of N numbers and store in 9001.

4.18 N numbers are stored in consecutive memory locations starting from 8101H and the value of N is

available in memory location 8100H. Find the minimum of N numbers and store in 9001.

4.19 N numbers are stored in consecutive memory locations starting from 8001 and the value of N is available

in memory location 8000H. Sort the numbers in ascending order and store in the memory location

starting from 9001.

4.20 N numbers are stored in consecutive memory locations starting from 8001H and the value of N is

available in memory location 8000H. Sort the numbers in descending order and store in the memory

location starting from 9001.

4.21 Subtract the content of the memory location 9501H from the content of the memory location 9500H and

place the result in the memory location 9502H. The contents are in signed magnitude format.

4.22 Find the l’s and 2’s complement of a 16-bit number stored in two consecutive memory locations and

store the desired result in the next two consecutive memory locations.

4.23 Calculate the square of the contents of the memory location 9100H using a look-up table and place the

result in the memory location 9501.

4.24 Write an assembly-language program to divide two 8-bit numbers.

4.25 A block of 32 bytes of data is stored at the memory location starting from 8000H. Move this block to

the memory location starting from 9000H.

4.26 Write an assembly-language program to detect a even and odd numbers.

4.27 Write an assembly-language program for addition of two 16-bit numbers whose sum is more than 16

bits.

4.28 Write an assembly-language program for decimal addition of two 8-bit numbers whose sum is 8 bits.

4.29 Write an assembly-language program for 16-bit decimal subtraction.

4.30 Write an assembly-language program for one’s complement of a 16-bit number.

4.31 Write an assembly-language program for two’s complement of an 16-bit number.

4.32 Write an assembly-language program for shifting an 8-bit number left by two bit.

4.33 Write an assembly-language program for shifting an 16-bit number left by two bit.

4.34 Write an assembly-language program to arrange a series of numbers in descending order using a

subroutine.

4.35 Write an assembly-language program to find the square of a number using look-up table.

4.36 Write an assembly-language program for converting temperature from F to C degree.

4.37 Write an assembly-language program for converting hexadecimal number into its ASCII number.

4.38 Write an assembly-language program for signed arithmetic operation.

4.39 Write an assembly-language program to display digits 123456789ABCDE or 1 to F on the screen.

4.40 Write an assembly-language program for rolling display.

 4.1 (d) 4.2 (a) 4.3 (d) 4.4 (a) 4.5 (d) 4.6 (a) 4.7 (a) 4.8 (a) 4.9 (b)

 4.10 (b) 4.11 (c) 4.12 (a) 4.13 (a) 4.14 (a) 4.15 (a) 4.16 (a) 4.17 (a) 4.18 (b)

 4.19 (a) 4.20 (c)

The Intel 8086 is a high-performance 16-bit, N-channel, HMOS microprocessor which is available in three

clock rates: 5, 8, and 10 MHz. The term HMOS stands for ‘High-Speed MOS’. The 8086 is Intel’s first 16-bit

microprocessor. This processor was introduced in 1978, due to the demand for more powerful and high-speed

computers. This processor has a more powerful instruction set and more programming flexibility, and its

speed is more than the 8085 microprocessor. The CPU of the 8086 processor is implemented in N-channel,

depletion load, and silicon-gate technology. This processor has the following features:

 The CPU has a direct addressing capability of 1 MB memory.

 Bit, byte, word and block operations are available.

 8-bit and 16-bit signed and unsigned arithmetic in binary and decimal operations are performed.

 It is available in 40-pin lead CERDIP and plastic DIP package (Dual In-Line Package).

 It has architectures designed for assembly language as well as high-level language.

The 8086 is manufactured for the standard temperature range (32ºF to 180ºF) and extended temperature

range (40°F to + 225°F). It contains an electronic circuitry of 29000 transistors. The 8086 has 20 address

lines and 16 data lines. This CPU can directly address up to 220 = 1 Mbytes of memory. The 16-bit data word

can be divided into a low-order byte and a high-order byte. The 20-bit address lines are time multiplexed to

select lines of low-order byte and high-order byte data separately. The 8088 is an 8-bit processor designed

around the 8086 architecture. The internal functions of 8088 are same as the 8086 processor functions. The

8088 processor has a 20-bit address bus and an 8-bit data bus. The comparison between 8085, 8086 and 8088

microprocessors are illustrated in Table 5.1 and Table 5.2. In this chapter, the architectures of 8086 and 8088

are discussed in detail.

8085 Microprocessor 8086 Microprocessor

8085 is an 8-bit processor created in 1977 and it has 8086 is a 16-bit processor developed in 1978 and it has

an 8-bit data bus. a 16-bit data bus.

8085 is manufactured using NMOS technology and this 8086 is fabricated on HMOS technology and the pro-

processor IC consists of about 6200 transistors. cessor IC consists of approximately 29000 transistors.

8085 has a 16-bit address bus and is able to access 8086 has a 20-bit address bus and is able to access 220 =

216 = 64 KB memory locations. 1MB memory locations.

Number of flags are 5. Number of flags are 9.

Pipelining concept is not used in 8085. 8086 uses pipelining.

Instruction queue does not exist in 8085 and it 8086 has a 6-byte instruction queue in BIU (Bus

sequentially executes instructions. Interface Unit).

No segment registers exist in 8085. There are four segment registers, CS, DE, ES, SS, in

8086.

Only four types of addressing modes are available. Eight types of addressing modes are available.

8085 has less instructions than 8086. Direct multiplication, 8086 has more instructions than 8085. Direct multipli-

divide, string byte block movement and loop instructions cation, divide, string byte block movement and loop

are not available in 8085. instructions are available in 8085.

8086 Microprocessor 8088 Microprocessor

8086 is a 16-bit processor developed in 1978 and it has 8088 is an 8-bit processor developed in 1979 and it has

a 16-bit data bus. an 8-bit data bus.

8086 has a 6-byte instruction queue in BIU. 8086 has a 4-byte instruction queue in BIU.

The 8086 BIU fills the queue when its queue is having The 8088 BIU fetches a new instruction byte to load

an empty space of 2 bytes. into the queue whenever there is one byte hole in the

queue.

As 8086 has a 16-bit data bus, and 8-bit or 16-bit memory As 8088 has an 8-bit data bus, it can read 8 bits of data

read/write operation is possible in a single operation. from memory or I/O devices and write 8-bit data to

memory or I/O devices. To read 16-bit data, the 8088

requires two memory read operations .

AD15 – AD8 pins are used as time multiplexed address/ AD7 – AD0 pins are used as time multiplexed address/

data bus in 8086. data bus and A15 – A8 pins are used as address bus only

in 8088.

BHE is present in 8086 and the external memory BHE is not present in 8088. Therefore, the external

interfaces have even or odd address banks. memory interfaces will not have even or odd address

banks. The external memory will therefore be byte ori-

ented as 8085.

In 8086, I/O and memory pin is represented as IO/M In 8088, I/O and memory pin has been inverted and rep-

resented as IO/M.

The status signals of 8086 are S2, S1 and S0 The status signals of 8086 are IO/M, DT/R and SS0.

The overall execution time of the instructions in 8086 is The overall execution time of the instructions in 8088 is

less compared to 8088 as 8086 has a 16-bit data bus and more due to the 8-bit data bus, and the 16-bit operations

only 4 clock cycles are required to execute. require additional 4 clock cycles.

The 8086 architecture has been implemented using two-stage pipelining in instruction execution. The pro-
cessor logic unit has been divided into Bus Interface Unit (BIU) and Execution Unit (EU). These units are
always operating asynchronously. The Bus Interface Unit (BIU) provides interface with external memory and
I/O device addresses and data bus, and executes all bus operations. The BIU has a 6-byte instruction queue.
On the other hand, the Execution Unit takes the instruction from the 6-byte instruction queue of BIU and
executes it. Thus, the instruction fetch time has been drastically reduced.

The 8086 is a 16-bit microprocessor and it has a 20-bit address bus and a 16-bit data bus. Therefore, this
processor can directly access 220 = 1,048,567 (1 MB) memory locations. It can read/write 8-bit data or 16-bit
data from/to memory or Input/Output (I/O) devices. The 8086 has time-multiplexed address and data buses.
Hence, the number of pins can be reduced, but it slows down the data-transfer rate. The block diagram of the
internal architecture of the 8086 processor is shown in Fig. 5.1. It is divided into two separate functional units

Address Bus/Status
A /S –A /S19 6 16 3

Address/Data Bus
AD –AD15 0

BIU
(Bus Interface Unit)

Address Generation
and Bus Control

R

Memory Address
Logic

Instruction
Queue

6

5

4

3

2

1

Segment
Registers

CS

ES

SS

DS

Instruction Pointer

General
Registers

AX

BX

CX

DX

AH

CH

BH

DH

AL

BL

CL

DL

BP

DI

SI

SP

EU
(Execution Unit)

Internal Data Bus

Arithmetic
Logic Unit

Flags

Control and Timing

H
O
L
D
A

H
O
L
D

C
L
K

R
E
S
E
T

R
E
A
D
Y

M
N
/M
X

TEST

LOCK

INT
NMI

RQ GT/ 0-1

S S S2 1 0

QS –QS0 1

GND VCC

such as Bus Interface Unit (BIU) and Execution Unit (EU). These two separate units are worked simultane-
ously for instruction execution based on two-stage instruction pipeline principles.

The Bus Interface Unit (BIU) consists of bus interface logic, general-purpose registers, segment registers,
stack pointer, base pointer and index registers, memory addressing logic and a 6-byte instruction queue. The
BIU carries out all bus operations for the Execution Unit, and it is responsible for executing all external bus
cycles.

The BIU performs data and addresses transfer between the processor and memory or I/O devices. This
section computes and sends addresses, fetches instruction codes, stores fetched instruction codes in a First-
In-First-Out (FIFO) register which is called a queue. The BIU is also used to read data from memory and I/O
devices, and write data to memory and I/O devices. While the EU is busy in instruction execution, the BIU
continues to fetch instructions from memory and stores them in the instruction queue.

This unit relocates addresses of operands while it gets unrelocated operand addresses from EU. The
execution unit tells BIU from where to fetch instructions as well as from where to read data.When the EU
executes an instruction the BIU resets the queue, fetches the next instruction from the new memory location,
and passes the instructions to the EU. In this way, the 8086 BIU fills the queue when the queue becomes
empty spaces of two bytes. This process is known as pipeline flush.

The Execution Unit (EU) consists of Arithmetic Logic Unit (ALU), general-purpose registers, flag register
(FLAGS), instruction decoder, pointers and index registers, and the control unit which are required to execute
an instruction.

The EU gets the opcode of an instruction from the instruction queue. Then the EU decodes and executes
it. The BIU and EU operate independently. When the EU is decoding or executing an instruction, the BIU
fetches instruction codes from the memory and stores them in the queue. This type of overlapped operation of
the BIU and EU functional units of a microprocessor is called pipelining. This process becomes faster except
for Jump and Call instructions as the queue must be dumped and then reloaded from a new address. Hence,
the function of the EU is to execute all instructions, provide address to the BIU for fetching opcodes and
operands and perform ALU operations after using various registers as well as the flag register.

During fetch and execute of instructions in the 8085 microprocessor, the nonpipeline concept follows so that
instructions are fetched and execute sequentially as shown in Fig. 5.2(a). In the 8086 processor, the BIU and
EU perform the fetch and execute operations with overlap. The fetch and execute operations of 8086 are
given below:

 The BIU output is the content of the Instruction Pointer (IP), register which is put on the address bus.
Therefore, a byte or word can be read from a specified address into the BIU.

 The content of the instruction pointer register is incremented by 1 to make it ready for the next
instruction fetch.

 After receiving the opcode and operand of the instruction, the instruction code must be passed to the
queue which is a FIFO (first-in first-out) register.

 Initially, the queue is empty. As soon as the BIU puts the instruction on the queue, the EU draws the
instruction from the queue and starts execution.

 While the EU is executing one instruction, the BIU will continue to fetch new instructions. Depending
upon the execution time of the instruction, the BIU can fill the queue with instructions. When execu-
tion time is more, the queue will be filled completely before the EU is ready to get the next instruc-
tion for execution. Figure 5.2(b) shows the pipeline concept of fetch and execution in BIU and EU.
In this architecture, BIU and EU are operating independently. The advantage of this architecture is
that the EU executes instructions continuously without waiting for fetching of the instruction in BIU.

But sometimes the EU can enter wait mode. There are three different conditions when the EU operates in
wait mode. The first condition is when an instruction wants to access a memory location which is not in the
queue. Then the BIU suspends fetching instructions and outputs the address of the memory location. After
waiting for memory access, the BIU can start again filling the queue and the EU also starts to execute instruc-
tion codes from the instruction queue.

While executing a JUMP instruction, the control is to be transferred to a new address which is nonse-
quential. But it is known to us that instructions for a queue are executed sequentially. Due to the nonsequen-
tial new address of the JUMP instruction, the existing instruction codes in the queue will not be executed
and the EU must wait while the instruction at the jump address is fetched. During this operation, the existing
bytes in the queue will be discarded.

The last condition for wait-mode operation is possible when the BIU suspends the instruction-fetching
operation. This is feasible when the EU operates slowly to execute an instruction. In case of AAM, ASCII
adjusts for multiplication instruction require about 83 clock pulses to execute completely. Generally, four
clock cycles are required per instruction fetch. Consequently, the queue will be completely filled during the
execution of an AAM instruction. Then BIU must wait until the execution of slow instruction has been com-
pleted or the EU pulls one or two bytes from the queue.

Sometimes, an instruction requires to read data from a memory location which is not in the queue. Then
BIU should suspend instruction fetching and wait for output from the address of the memory location. After
waiting for reading data from memory, the EU can again start executing instruction codes from the queue.

Fetch Fetch Fetch Fetch FetchExecute Execute Execute Execute Execute

Initially, CS:IP must be loaded with the addresses from which the program will be executed. At first, the
queue is empty and the microprocessor starts a fetch operation and the first byte, i.e., opcode of the instruc-
tion is loaded into the queue. Subsequently, data will also be fetched in the queue. When the first byte of the
queue, i.e., opcode of instruction, is loaded into decoder for decoding, one byte becomes empty from the
queue. Therefore, the queue must be updated with the next instruction opcode and data.

FetchFetch Fetch Fetch Read Data Fetch Fetch Fetch Fetch Fetch

WaitExecuteWait Execute Execute Execute Execute Execute Execute Execute

After decoding the opcode, the decoder takes a decision whether the instruction is of one byte or multi-
byte. When the instruction is of one byte, the opcode can perform operations during executing the instruction.
If the instruction is multi-byte, the first byte is opcode and other remaining bytes are data, or first two bytes
are opcodes and other bytes are data. Therefore, the microprocessor should read the operand from queue and
decode it. Subsequently, it executes the instruction by accepting data from the queue. After completion of
fetching and decoding of an instruction, the next instruction will be fetched and decoded and executed. Figure
5.3 shows the queue operation in an 8086 microprocessor.

From memory

Instruction
Queue

Decode first byte i.e. opcode

Is
One byte
Instruction?

No

Yes

Execute the instruction

Read the next instruction and repeat the process

Read second opcode
from the queue
and decode it

Read data/operand
from the queue
and execute
instruction

6

5

4

3

2

1

The 8086 CPU has fourteen 16-bit registers as depicted in Fig. 5.4. All these registers are subdivided into dif-
ferent groups, namely, Data Register Group (four registers), Segment Register Group (four registers), Pointer
and Index Register Group (four registers), Instruction Register (Program Counter) and Flag Register. In this
section all registers are discussed.

AH

BH

CH

DH

AL

BL

CL

DL

15 8 7 0

Accumulator

Base

Counter

Data

SP

BP

SI

DI

IP

15 0

Stack Pointer

Base Pointer

Source Index

Destination Index

Instruction Pointer

ES

CS

DS

SS

15 0

Extra Segment

Code Segment

Data Segment

Stack Segment FlagsH FlagsL

15 8 7 0

Flag Register

(a) (b)

(c) (d)

AX

BX

CX

DX

The 8086 has four 16-bit general-purpose registers (AX, BX, CX and DX). These registers can be used in
arithmetic, logical operations and temporary storage. Each of these 16-bit registers is further subdivided into
two 8-bit registers (upper and lower bytes) as shown in Table 5.3.

 16-Bit 8-Bit High-order 8-Bit Low-order

 Registers Registers Registers

 AX AH AL

 BX BH BL

 CX CH CL

 DX DH DL

The functions of each data register are discussed as follows:

The AX register serves as an accumulator. It performs input/output operations and
processes data through AX or AH or AL. During execution of a 16-bit multiply and divide instruction, AX
contains the one-word operand and the result is stored in the accumulator. In 32-bit multiply and divide
instructions, AX is used to hold the lower-order word operand. Instructions involving AX or AH or AL can
load data immediately and hence data usually require less program memory.

BX can be used as an index register for MOVE operation and base register while
computing the data memory address.

CX register can be used as a count register for string operations and holds a count
value during large number iterations. In LOOP instructions, CX holds the desired number of repetitions
and is automatically decremented by one, after each iteration. While CX becomes zero, the execution of
instructions should be terminated. In the same way, the 8-bit CL register is used as a count register in bit-
shifting and rotate instructions.

DX can be used as a port
address for IN and OUT instructions. The DX
may be used in I/O instructions, multiply and
divide instructions. In 32-bit multiply and divide
instructions, DX is used to hold the high-order
word operand.

The concept of memory segmentation was intro-
duced in the 8086 processor. In memory seg-
mentation, the complete 1 MB memory can be
divided into 16 parts which are called segments.
Each segment thus contains 64 KB of memory.
In 8086, there are four segment registers such
as Code Segment (CS) Register, Data Segment
(DS) Register, Stack Segment (SS) Register and
Extra Segment (ES) Register. The 8086 micro-
processor-based system memory is divided into
four different segments, namely, Code Segment
(CS), Data Segment (DS), Stack Segment (SS)
and Extra Segment (ES). Each segment has a
memory space of 64 KB, as depicted in Fig. 5.5,
and each segment can be addressed by 16-bit
segment registers.

The code segment register is used for addressing a memory location in the
code segment of the memory in which the program is stored for execution.

The data segment register points to the data segment of the memory, where
data is stored.

The extra segment is a segment which can be used as another data segment
of the memory. Therefore, extra segment contains data.

The stack segment register is used for addressing stack segment of memory
in which stack data is stored. The CPU uses the stack for temporarily storing data, i.e, the content of all
general purpose registers which will be used later.

The pointer and index registers of 8086 are as follows:

 Stack Pointer (SP)

 Base Pointer (BP)

8FFFFH

80000H

6FFFFH

60000H

3FFFFH

30000H

1FFFFH

10000H

00000H

Segment Memory
Segment Register

Code Segment

Data Segment

Stack Segment

Extra Segment

8000H

6000H

3000H

1000H

64 KB

64 KB

64 KB

64 KB

 Source Index (SI)

 Destination Index (DI)

 Instruction Pointer (IP)

The stack pointer is used to locate the stack-top address. It contains an
offset address. In PUSH, POP, CALL and RET instructions, the stack address is determined after adding the
contents of the stack segment register, after 4-bit left-shift and the contents of SP.

The base pointer register can provide indirect access to data in a stack. The BP
may also be used for general-purpose data storage.

These registers are used in memory or
stack-address computation for general data storage. The main purpose of these registers is to store offset or
displacement. In memory address computation, the content of data segment and index registers depending
upon addressing modes.

Sometimes SI is used as source index and DI as destination index. If the content of SI is added with the
content of DS to determine the physical address, it will be used as source address of data. While the content
of DI is added with the content of ES to find the destination address of the data, these registers can also be
used as general purpose registers.

Generally, the instruction pointer register is used as a program counter.
This is used for the calculation of memory addresses of instructions which will be executed. This register
stores the offset for the instruction. The content of IP is automatically incremented while the execution of an
instruction is going on. The address of the next instruction is computed after adding IP contents to the code
segment register contents after 4-bit left-shift.

The 8086 has a 16-bit flag register. This register is also called Program Status Word (PSW). It has nine flags
out of which six are status flags and three are control flags. The status flags are Carry flag (CF), Parity flag
(PF), Auxiliary Carry flag (AF), Zero flag (ZF), Sign flag (SF) and Overflow flag (OF). These status Flags are
affected after the execution of arithmetic or logic instructions. The control flags are Trap flag (TF), Interrupt
Flag (IF) and Direction Flag (DF). Figure 5.6 shows the 16-bit flag register of the 8086 processor.

X XXX DFOF IF TF SF ZF X AF X XPF

15 FlagsH 8 7 FlagsL

CF

0

SF – Sign flag

TF – Trap flag

IF – Interrupt flag

DF – Directional flag

OF – Overflow flag

CF – Carry flag

PF – Parity flag

AF – Auxilary cary flag

ZF – Zero flag

X – Underfined

The carry flag is set to 1 if after arithmetic operation a carry is generated or a
borrow is generated in subtraction. When there is no carry out, the carry flag is reset or zero. This flag can
also be used in some shift and rotate instructions.

If the result of 8-bit operation or lower byte of the word operation contains an
even number of 1s, parity flag is set.

This flag is set to 1 if there is a carry out of the lower nibble to the
higher nibble of an 8-bit operation. It is used for BCD operations.

The zero flag is set to 1 if the result of any arithmetic or logical operation is zero.
While the result is zero, it is reset.

The sign flag is set to 1, if the MSB of the result is 1 after the arithmetic or logic
operations. This flag represents a sign number. Logic 0 indicates a positive number and logic 1 is used to
represent negative number.

This flag is set to 1 if the signed result cannot be expressed within the
number of bits in the destination operand. This flag is used to detect magnitude overflow in signed arithmetic
operations. During addition operation, the flag is set when there is a carry into the MSB and the flag is reset
if there is no carry out of the MSB. For subtraction operation, the flag is set when the MSB desires a borrow,
and the flag is reset if there is no borrow from MSB.

The direction flag is used in string operations. When it is set to 1, string
bytes can be accessed from a memory address in decrement order, i.e., high memory address to low memory
address. If it is zero, string bytes can be accessed from memory address in increasing order, i.e., low memory
address to high memory address. For example, in MOVS instruction if DF is set to 1, the contents of the index
registers SI and DI are automatically decremented to access the string bytes. If DF = 0, index registers SI and
DI are automatically incremented to access the string bytes.

This flag can be used as an interrupt enable or disable flag. When
this flag is set, the maskable interrupt is enabled and 8086 recognizes the external interrupt requests, and
the CPU transfer control to an interrupt vector specified location. When IF is 0, all maskable interrupts are
disabled and there will be no effect on nonmaskable interrupts as well as internally generated interrupts. If
8086 is reset, IF is automatically cleared.

TF is a single-step flag. When TF is set to 1, a single step interrupt occurs after
the next instruction executes and the program can be executed in single-step mode. The TF will be cleared
by the single-step interrupt.

The 8086 sends a 20-bits address on the address bus to detect a memory location for memory read or write
operations. Addresses within the segment can be varied from 0000H to FFFFH (64 KB).To detect a memory

location, the segment register supplies the higher-order 16 bits of the 20-bit memory address. The lower-order
16 bits of the 20-bit memory address are stored in any of the pointers and index registers or BX register.
Therefore, memory addresses of the 8086 are computed by summing the contents of the segment register
which is shifted left by 4 bits and the content of offset address. The 20-bit address sent by the 8086 processor
is called the physical address as depicted in Fig. 5.7.

The physical address is calculated from the segment address and offset address. The segment
register contains the higher-order 16 bits of the starting address of a memory segment. The CPU shifts the
content of the segment register left by four bits or inserts four zeros for the lowest four bits of the 20-bit
memory address. For example, if the content of the code segment register is 4000H, the starting address of
the code segment will be 40000H. Hence, the 64 KB memory segment may be anywhere within the complete
1 MB memory based on the content of the code segment register and the starting address should be divisible
by 16.

The offset address is used to determine the memory location distance from the starting address within
the memory segment. An offset can be
determined depending upon the addressing
modes. The offset address will be different
in different addressing modes. To locate a
memory location within a memory segment,
the 8086 processor generates a 20-bit
physical address.

To determine the 20-bit physical address
with a segment register and offset, the con-
tent of the segment register is left shifted by
4 bits and then an offset is added to it. For
example, if the content of CS is 4000H and
an offset is 2000H, the computation of 20-bit
physical address is 42000H. Then 42000H
represents the starting address of the segment
in memory. Figure 5.6 shows the computa-
tion of physical address.

Determine the physical address when CS = 5300H and IP = 0200H. Write the
starting and ending address of the code segment.

The content of the code segment is left shifted by 4 bits and the base address becomes 53000H. To determine
the physical address, the content of IP will be added with base address. Hence physical address = 53000 +
0200 = 53200H.

The starting of code segment memory = 53200H.

As each segment memory consists of 64K memory locations, the end address will be computed after
addition of 64K with the starting of code segment memory.

The ending address of code segment = 53200 + FFFF = 631FFH.

Effective Address
or Offset

Segment Address
16 Bits

16 Bits

4 Bits

Adder

20 BitsPhysical Address

Determine the physical address when ES is 6500H and offset address is 4767H

The content of the segment register ES is 6500H. When it is left shifted by 4 bits or multiplied by (16)D or
(10)H, the base address is equal to 6500H × (10)H = 65000H.

Physical address = Content of segment register ×(10)H + Offset address

 = 6500H×(10)H + 4567H = 65000H + 4567H = 69567H

 What is the content of data segment DS to locate the physical address 43657H?
Assume the content of IP = 2057H.

The physical address is 43657H when the content of IP is 2057H

Physical address = Content of data segment register ×(10)H + IP address

Therefore,

 43657H = Content of data segment register ×(10)H + 2057H

Then the content of data segment register × (10)H = 43657H – 2057H = 4 1600H

The content of data segment register (DS) is 4160H.

The 8086 processor is connected with memory and I/O devices through a set of parallel lines called buses.
There are three different buses such as address bus, data bus and control bus which are explained below:

The 8086 CPU uses the address bus to select the desired memory or I/O device by
generating a unique address which corresponds to the memory location or the location of I/O device of the
system. The address bus is unidirectional and this processor has 20-bit address lines.

To transfer data between the CPU and memory and the CPU and I/O devices, a data bus
is used. The data which is in the data bus can be used as instruction for the CPU, or the CPU sends data to an
I/O device or the CPU receive data from I/O device. Therefore, a data bus is bidirectional.

The control bus of 8086 carries control signals which are used to specify the memory
and I/O devices. The control signals of 8086 CPU are M / IO, INTA, ALE, and DEN, etc.

Figure 5.8(a) shows the segment memory of an 8086 microprocessor. The address of 1st segment memory
is 00000H to 0FFFFH. For these addresses, the content of segment register is 0000H and the offset address,
i.e., the content of Instruction Pointer (IP) varies from 0000H to FFFFH. The physical address of memory is
computed from

The content of segment register × (10)16 + offset address.

Similarly, the second segment memory address is 10000H to 1FFFFH. In this case, the content of segment
register is 1000H and the offset address is any value from 0000H to FFFFH. In the same way, other segment

memory addresses are –20000H to 2FFFFH, 30000H to 3FFFFH, 40000H to 4FFFFH, 50000H to 5FFFFH,
……… E0000H to EFFFFH, and F0000H to FFFFFH. In this case, the segments are non-overlapping and
this type of memory segmentation is called non-overlapping memory segments.

Sometimes the segments are overlapping. For example, if a segment starts at a particular address, it will
continue up to 64 K bytes. When another segment memory starts before 64K memory locations of the first
segment, the two segments should be overlapped.

Assume the content of CS segment register CS = 2500H and the content of DS segment register DS
= 2540H and the offset address varies from 0000H to FFFFH. The code segment register (CS) and offset
address can represent the memory segment address starting from 25000H to 25000H0+FFFFH=34FFFH.

Similarly, the data segment DS and content of IP can address the memory segment address starting from
25400H to 25400H + FFFFH= 353FFH as depicted in Fig. 5.8(b). It is clear from Fig. 5.8(b) that some por-
tion of the segments are overlapping and this overlapping portion of the segment memory is called an over-

lapped segment area. The address locations of overlapping may be located from different sets of segments

FFFFFH

F0000H

E0000H

D0000H

C0000H

B0000H

A0000H

90000H

80000H

70000H

60000H

50000H

40000H

30000H

20000H

10000H

00000H

Segment without overlapping

DS=2540H
25400H

25000H
CS=2500H

00000H

64K

64K

34FFFH

353FFH

EFFFFH

DFFFFH

CFFFFH

BFFFFH

AFFFFH

9FFFFH

8FFFFH

7FFFFH

6FFFFH

5FFFFH

4FFFFH

3FFFFH

2FFFFH

3FFFFH

0FFFFH

FFFFFH

Segment overlapping

Segment with overlapping

64K

and offset addresses. Therefore, different sets of segments and offset address can locate the physical memory
locations with non-overlapping segments and overlapping segments. The advantages of segment memory are
given below:
 (i) Allow the memory capacity to be 1 MB even though the addresses associated with the individual

instructions are 16 bits wide.
 (ii) Allow the use of separate memory areas for the program code and data and stack portion of the

program
 (iii) Permit a program and/or its data to be placed into different areas of memory whenever the program is

executed.
 (iv) Multitasking becomes easy
 (v) The advantage of having separate code and data segments is that one program can work on different

sets of data. This is possible by reloading the data segment register (DS) to the point to the new data.
 (vi) The advantage of segment memory is that the reference logical addressed can be loaded into the

instruction pointer (IP) and run the program anywhere in the segment memory as the logical address
varies from 0000H to FFFFH.

 (vii) Programs are re-locatable so that programs can be run at any location in the memory.

The 8086/8088 processor has 20 bit address lines and it can allow 220 or 1048567 (1MB) memory locations.
Hence, the 8086 memory address space can be viewed as a sequence of 1MB as depicted in Fig. 5.9(a). Each
memory location contains 8-bit data or one byte data and any two consecutive memory locations contain
16-bit data or a word. 524, 287 words are visualised in Fig. 5.9(b).

F0000H

E0000H

D0000H

C0000H

B0000H

A0000H

90000H

80000H

70000H

60000H

50000H

40000H

30000H

20000H

10000H

00000H

FFFFFH

EFFFFH

DFFFFH

CFFFFH

BFFFFH

AFFFFH

9FFFFH

8FFFFH

7FFFFH

6FFFFH

5FFFFH

4FFFFH

3FFFFH

2FFFFH

1FFFFH

0FFFFH

FFFFFH

00000H

Word 524287
Byte 1048575

Byte 1048574

Word 2

Word 1

Word 0
Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

64 KB

(a) (b)

Physically, the memory can be organised as two banks such as even and odd bank and each bank consists
of 512 KB memory size. The data lines D7–D0 are used for data transfer from even banks and D15–D8 are
used for the odd banks. The even bank is selected by A0 = 0 and BHE = 1 and data bus D7–D0 is connected
with this bank. When A0 = 1 and BHE = 0, the odd bank is selected and data bus D15–D8 is connected. The
address space is physically connected to a 16-bit data bus by dividing the address space into two 8-bit banks,
namely, odd-addressed bank and even-addressed bank as depicted in Fig. 5.10.

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

ODD Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D –D15 8 D D7 0–

A0
BHE

The 8086 reads 16-bit data from an odd-addressed bank memory and an even-addressed bank memory
simultaneously. One bank is connected to the lower byte of the 16-bit data bus, D7–D0 and contains even
address bytes, if A0 = 0 and BHE = 1 an even address bank is selected. The odd-addressed bank is connected
to higher bytes of data bus D15–D8 and contains odd address bytes. When A0 = 1 and Bus high Enable, BHE
is low (BHE = 0) and the odd-address bank is selected. Any specific byte within even-addressed or odd-
addressed banks can be selected by address lines A1–A19. Table 5.4 shows the memory processing depending
upon A0 and BHE. Data can be accessed from memory in four different ways as given below:

 8-bit data from even-address bank

 8-bit data from odd-address bank

 16-bit data starting from even-address bank

 16-bit data starting from odd-address bank

 BHE A
0
 Processing

 0 0 Both banks active. 16-bit data transfer, 16-bit word transfer on AD15–AD0

 0 1 Only high bank active, one byte transfer on AD15–AD8

 1 0 Only low bank active, one byte transfer on AD7 – AD0

 1 1 No bank active

To access memory bytes from an even address, information is transferred over the lower half of the data bus
D7–D0, if A0 = 0 and BHE is high to enable the even bank. For example, assume loading one byte of data into

CH register from memory location within the even-address bank. The data will be accessed from the even
bank through D7–D0. Then this data will be transferred into the 8086 over lower 8-bit lines, the 8086 redirects
the data over higher 8 bits of its internal 16-bit data path and hence data is loaded into CH register.

Assume 20-bit address is 20002H. A0 = 0, BHE = 1, and one byte data can be transferred from the mem-
ory. Only even bank is selected and only one byte will be transferred from 20002H to data bus as depicted
in Fig. 5.11.

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

ODD Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 00
BHE = 1

To read one byte from an odd address bank, information must be transferred over the higher-order data bus
D15–D8. If A0 = 1, the even memory bank is disabled and BHE is low to enable the odd bank as depicted in
Fig. 5.12.

Assume the 20-bit address is 20003H. As A0 = 1 and BHE = 0, only one byte has to be transferred from
memory. As odd bank is selected for data transfer, one byte will be transferred from odd bank memory. The
data bus AD15–AD8 contents data from memory.

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

ODD Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 10
BHE = 0

Figure 5.13 shows that 16-bit data from an even address and an odd address respectively is accessed within
a single bus cycle. The address lines A19–A1 select the appropriate byte within each bank. While A0 = 0 and
BHE is low, the even and odd banks are enabled simultaneously. For example, the 20-bit address is 20002H.
Since A0 = 0 and BHE = 0, one word or two bytes have to be transferred from memory locations 20002H and
20003H respectively. Data from an odd bank is transferred to D15–D8 and data from an even bank is trans-
ferred to D7 –D0 data bus. Hence data bus AD15–AD0 contains two byte data from memory. As WR = 0, M/IO
= 1, 16-bit data can be copied into the data bus from the memory bank.

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

ODD Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 00
BHE = 0

Generally, a 16-bit word located at an odd address is accessed using two bus cycles. Assume the 20-bit physi-
cal address is 20003H and the 8086 transfers a word in two bus cycles. During the first cycle, A0 = 1 and
BHE = 0; the odd bank becomes enabled for data transfer and even bank is disabled. RD = 0 and M/IO = 1 for
8086, the odd memory places data on D15–D8 bus. During the first bus cycle the lower byte is accessed from
memory location 20003H as depicted in Fig. 5.14(a). In the second cycle, A0 = 0 and BHE = 1, the even bank

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

ODD Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 10
BHE = 0

of memory becomes enabled and the odd bank is disabled. Then processor output RD = 0 and M/IO = 1. The
selected even-bank memory location content is on D7–D0 bus. Then data is to be accessed. Therefore, during
the second bus cycle, the upper byte is accessed from the even address bank of memory location 20004H as
depicted in Fig. 5.14(b)

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

ODD Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 00
BHE = 1

The pin diagram of 8086 has been shown in Fig. 5.15. The 8086 can operate either in minimum mode or
in maximum mode depending upon the status of the pin MN/MX. When MN/MX = 5 V, the 8086 works in
minimum mode which means that 8086 operates in a single processor environment. If MN/MX = GND, it
works in maximum mode and the processor can be operated in multiprocessor environment. To differentiate
the minimum and maximum mode operations, a set of the 8086 pins change their functions, but other pins
have common functions in both the modes. The pin description of 8086 is as follows:

These lines constitute the time-multiplexed
address/data bus. These lines are low-order address bus. They act as an address bus during the first clock
cycle multiplexed. When AD lines are used to transmit memory/IO address, the symbol A is used of AD. For
example, A represents A15–A0. When data are transmitted through AD lines, the symbol D is used in place of
AD. For example, D represents D7–D0, D15–D8 or D15–D0.

These are high-order address lines and they are time-multiplexed lines. During
T1, these lines can be used as higher order 4 bits of memory address. But in I/O operation, these lines are low.
During T2, T3, and T4 , they carry status signals.

 A16 and A17are time multiplexed with segment identifier signals S3 and
S4. During T1 clock cycle, A16 and A17 are used as address bits. In T2 to T4 clock cycles, these lines carry status
signals. Table 5.5 shows memory segment identification.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

VCC

AD

A /S

A /S

A /S

A /S

/S

MN/

/

/

QS

Qs

READY

RESET

15

16 3

17 4

18 5

19 6

7

0

1

0

0

1

BHE

MX

S

S

RD

RQ GT

RQ GT

Lock

S

TEST

2

1

GND

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

NMI

INTR

CLK

GND

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

HOLD

HLDA

M/

DT/

ALE

WR

IO

R

DEN

INTA

8086

Maximum

mode

Minimum

mode

 S4 S3 Function

 0 0 Extra segment memory access

 0 1 Stack segment memory access

 1 0 Code segment memory access

 1 1 Data segment memory access

A18 is time multiplexed with interrupt status S5. During T1 clock cycle, A18 is
transmitted to the address bus. During other clock cycles (T2, T3 and T4), the status signal S5 is transmitted
through this line. S5 is an interrupt-enable status signal. At the beginning of each clock cycle, the status of the
interrupt enable flag S5 is updated.

A19 is multiplexed with the status signal S6. During T1 clock cycle, A19 is
transmitted to an address bus. During T2 to T4, the status signal S6 is available on this line. It is low during
T2 to T4.

During T1, the bus high enable signal BHE can
be used to enable data onto the most significant half of the data bus D15–D8. An 8-bit device connected to

the upper half of the data bus uses a BHE signal to condition chip select functions. BHE is low during T1 for
read, write and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus.
This pin is multiplexed with the status signal S7. The S7 status signal is available during T2 to T4. The signal
is active low, and floats to 3-state OFF in hold. It is low during T1 for the first interrupt acknowledge cycle.
Table 5.6 shows the function of BHE and A0

 BHE A0 Function

 0 0 Whole word

 0 1 Upper byte from/to odd address

 1 0 Lower byte from/to even address

 1 1 None

This control signal is used for read operation. It is an output signal. It is
active when LOW. The Read signal indicates that the processor is performing a memory or I/O read cycle,
depending on the state of the S2 pin. This signal is used to read devices which reside on the 8086 bus. RD is
active low during T2, T3 and Tw of any read cycle and is guaranteed to remain high in T2 until the 8086 local
bus is floated. This signal floats to 3-state OFF in hold acknowledge.

The addressed I/O or memory devices send acknowledgment through this pin and
it indicates that the data transfer is completed. The READY signal from memory or I/O is synchronized by
the 8284A clock generator to provide READY input to 8086. This signal is active HIGH. The 8086 READY
input is not synchronized. Correct operation is not guaranteed if the set-up and hold times are not met. When
READY is HIGH, it indicates that the peripheral is ready to transfer data.

It is a level-triggered input which is sampled during the last clock
cycle of each instruction to determine if the processor should enter into an interrupt vector-look up table
located in the system memory. It can be internally masked by software, resetting the interrupt enable bit.
INTR is internally synchronized. This signal is active HIGH.

This is used in conjunction with the WAIT instruction. If the TEST input is LOW,
execution continues. Otherwise the processor waits in an idle state. This input is synchronized internally
during each clock cycle on the leading edge of CLK. When it is low, the microprocessor continues execution
otherwise it waits.

This is an edge-triggered input which causes a type 2
interrupt. A subroutine is vectored to via an interrupt vector look-up table located in system memory. NMI is
not maskable internally by software. A transition from LOW TO HIGH initiates the interrupt at the end of the
current instruction. This input is internally synchronized.

The minimum/maximum signal indicates the operating mode of 8086. When it is
high, the 8086 processor operates in minimum mode. If this pin is low, the processor operates in maximum
mode.

 The reset signal is active HIGH. The processor immediately terminates its present
activity and system is reset. The signal must be active HIGH for at least four clock cycles. It restarts execution,
as described in the instruction set, when RESET returns low. RESET is internally synchronised.

The CLK signal provides the basic timing for the processor and bus controller. It is
asymmetric with a 33% duty cycle to provide optimized internal timing. It is a nonmaskable interrupt request.

Power supply, + 5 V dc

Ground

There are two different operating modes for Intel 8086, namely, the minimum mode and the maximum mode.
When only one 8086 processor is to be used in a microcomputer system, the 8086 is used in the minimum
mode of operation. In this mode, the CPU issues the control signals required by memory and I/O devices.
In a multiprocessor system, the 8086 processor operates in the maximum mode. In maximum-mode opera-
tion, control signals are issued by the Intel 8288 bus controller which is used with 8086 for this purpose. The
level of the pin MN/MX decides the operating mode of 8086. When MN/MX is high, the CPU operates in the
minimum mode. When it is low, the CPU operates in the maximum mode. The pins 24 to 31 of 8086 issue
two different sets of signals. One set of signals is issued when the processor operates in the minimum mode.
The other set of signals is issued while the processor operates in the maximum mode. Thus, the pins from
24 to 31 have alternate functions. In this section, the pin description of minimum mode and maximum mode
operations are discussed. The difference between minimum mode and maximum mode operations of 8086
microprocessor is given in Table 5.7.

Min Mode Operation Max Mode Operation

The minimum/maximum MN/MX signal indicates The minimum/maximum MN/MX signal indicates the

the operating mode of 8086. When it is high, the 8086 operating mode of 8086. If this pin is low, the processor

processor operates in minimum mode. operates in maximum mode.

In MIN mode operation, only one microprocessor will In MAX mode operation, there may be more than one

be in the system configuration. microprocessor in the system configuration. But the

other components in the system are the same as in the

minimum mode system.

In this mode, the CPU issues the control signals required In maximum mode operation, control signals are issued

by memory and I/O devices. by the Intel 8288 bus controller which is used with 8086

for this very purpose.

In this mode, PIN numbers 24 to 31 are used as INTA In this mode, PIN numbers 24 to 31 are used as QS1, QS0

(Output) Interrupt acknowledge, ALE (Output) Address (Output) Instruction Queue Status, S2, S1 and S0 (Output)

latch enable, DEN (Output) Data enable, DT/R Status signals, LOCK (Output) RQ/GT0 and RQ/GT1

(Output), Data Transmit/Receive, WR (Output) Write, Request/Grant.

HLDA (Output) HOLD Acknowledge and

HOLD (Input) Hold.

In the minimum-mode operation, the pin MN/MX is connected to 5 V dc supply. The minimum-mode operation
is cheaper as all control signals for memory and I/O are generated by the microprocessor. The schematic pin
diagram of 8086 for minimum-mode operation is illustrated in Fig. 5.16. The functions of all pins except pins
24 to 31 of 8086 are same in this mode. The pin descriptions of 24 to 31 for the minimum mode are as follows:

17

18

19

20

21

22

23

24

40

33

32

31

30

29

28

27

26

25

8086

2-16 and 39

1

34

35-38

AD –AD
15 0

A /S A /S
19 6 16 3

–

RD

BHE/S
7

MN/MX

WR

M/IO

DEN

DT/R

ALE

HOLD

HLDA

TEST

NMI

INTR

CLK

GND

RESET

READY

INTA

V
CC

GND

This signal used as a read strobe for interrupt
acknowledge cycles. It is active low during T2, T3 and Tw of each interrupt acknowledge cycles. On receiving
an interrupt signal, the processor issues an interrupt acknowledge signal. It is active LOW.

This signal is provided by the processor to latch the
address into the 8282/8283 address latch. It is HIGH during T1.

This signal can be provided as an output enable for the 8286/8287
in a minimum system which uses the transceiver. DEN is active low during each memory and I/O access and
for INTA cycles. For a read or INTA cycle, it is active from the middle of T2 until the middle of T4, while for
a write cycle, it is active from the beginning of T2 until the middle of T4. DEN floats 3-state OFF in local bus-
hold acknowledge. When Intel 8286/8287 octal bus transceiver is used, this signal acts as an output enable
signal. It is active LOW.

DT/R signal is required in minimum-mode
operation, when 8286/8287 data bus transceiver is used for data flow. This signal is used to control the
direction of data flow through the transceiver. When it is HIGH, data are sent out. When it is LOW, the CPU
wants to access the I/O device. Logically, DT/R is equivalent to S1 in the maximum mode, and its timing is
same as for M/IO. This signal floats to 3-state OFF in local bus-hold acknowledge.

This pin indicates that the processor is performing a memory write or I/O
write cycle, depending on the state of the M/IO signal. WR is active for T2, T3 and Tw of any write cycle. It
is active LOW and floats to 3 state OFF in local bus hold acknowledge. When it is LOW, the CPU performs
memory or I/O write operations.

This signal is issued by the processor when it receives a
HOLD signal. This is an active HIGH signal. When the HOLD request is removed, HLDA goes LOW.

A HOLD signal indicates that another device (master) in a microcomputer
system is requesting a local bus hold for using the address and data bus. Then the master sends a HOLD
request to processor through this pin. It is an active HIGH signal.

For the maximum mode of operation, the pin MN/MX is grounded. The maximum mode is designed to be
used when a coprocessor exists in the system. The schematic pin diagram of 8086 for maximum-mode opera-
tion is depicted in Fig. 5.17. In this mode, the functions of all pins except pins 24 to 31 of 8086 are same. The
description of the pins from 24 to 31 are as follows:

These two signals are decoded to provide
instruction queue status as given below:

 QS
1 QS

0 Function

 0 0 No operation

 0 1 First byte of opcode from queue

 1 0 Empty the queue

 1 1 Subsequent byte from queue

These signals are connected to the bus controller Intel
8288. The bus controller decodes these signals to generate eight separate memory and I/O access control
signals as depicted in Table 5.9 which shows the logic for status signals.

S2

S1 S0
Function

 0 0 0 Interrupt acknowledge

 0 0 1 Read data from I/O port

 0 1 0 Write data into I/O port

 0 1 1 Halt

 1 0 0 Code access

 1 0 1 Read memory

 1 1 0 Write memory

 1 1 1 Passive

This output indicates that other system bus master are not to gain control of the
system bus while LOCK is active low. The LOCK signal is activated by the LOCK prefix instruction and
remains active until the completion of the next instruction. This signal is active LOW and floats to 3-states
OFF in hold acknowledge.

These pins are used by other processors in a
multiprocessor environment. Local bus masters of other processors force the processor to release the local
bus at the end of the processor’s current bus cycle. Each pin is bidirectional and has internal pull-up resistors.
Hence, they may be left unconnected.

The bus cycle means the Bus Interface Unit (BIU) phenomenon. It is known to us that the EU and BIU work
asynchronously. The EU takes instructions from the instruction queue and executes instructions in a number
of clock periods continuously. These clock periods are not grouped to form machine cycles. Therefore, the
EU does not use machine cycles. The EU waits for the BIU to handover the instruction whenever the program
starts or the program executes any branch instruction or the BIU is executing data memory access for EU.
The BIU fetches the instruction code from the memory, reads data from memory or I/O devices, and writes
data into memory or I/O devices. The clock periods are grouped whenever the BIU accesses the memory and
I/O devices for read and write operations. When any external memory or I/O devices are accessed, only four
clock cycles are required to perform a read or write operation. These four clock cycles are grouped, which is
called bus cycle. In this section, memory and I/O read and write bus cycles for both minimum and maximum
modes are discussed.

RD

RQ/GT
0

RQ/GT
1

LOCK

S
2

S
1

S
0

V
cc

A /S –A /S
19 6 16 3

BHE/S
7

MN/MX

AD –AD
15 0

TEST

NMI

INTR

CLK

GND

RESET

READY

QS
1

GND

QS
0

17

18

19

20

21

22

23

24

25

8086

2–16 and 39

1

33

32

31

30

29

28

27

26

40

34

35–38

Figure 5.18 shows the minimum-mode configuration of 8086. This figure shows a group of ICs which
generate address-bus, data-bus and control-bus signals. The ROM and RAM ICs and I/O ports are connected to
the CPU through these buses. The 8282 Latch ICs are used to latch the address from 8086 processor address/
data bus. A15–A0, A19–A16 and BHE are latched during T1 state. The Output Enable (OE) of 8288 I/O ports
are grounded, therefore the bus will not be floated or have high impedance state. The ALE signal from 8086
is used to strobe address lines in 8282 latches. As the data bus is bidirectional, the bidirectional transceivers
8286 ICs are used. The working principle of 8086 in minimum mode can be explained with a timing diagram.
The opcode fetch cycle is similar to the memory read cycle. In this section, memory read and write cycles are
explained in detail. The types of data transfer depend on M/IO, RD and WR signals as depicted in Table 5.10.

 M/IO RD WR Operation

 0 0 1 I/O read

 0 1 0 I/O write

 1 0 1 Memory read

 1 1 0 Memory write

Latch
8282
2 to 3
Units

Transceivers

G 8286
DIR 2 Units

CS CS

OE

ROM

CS CS

OE

RAM

WR

I/O

Crystal Oscillator

Clock Generator
8284

RESET CLK RDY

MRD

MWR

IORD

IOWR

CSE

CSO

CSE

CSO

Control Signal
Generator

(DMUX)

Chip
Select
Logic

RAM

ROM

CS IO
A A0 19– Address Bus

A0

CSECSO
CSECSO

CS

IORD IOWR

MRD

D D0 15–

MRD MWR

Data Bus

Address/Data

8086

RESET CLK RDY

ALE

AD –AD15 0

A / S A / S19 6 16 3–

DT/R DEN

VCC

INTA

GND

HOLD

HLDA

INTA
BHE

WR

RD

M/IOMN/MX

During minimum-mode operation of
8086 processor, MN/MX is + 5Vdc. The timing diagram for memory read bus cycle is shown in Fig. 5.19. The
following actions take place during four different clock cycles:

During T1 clock
cycle, the 8086 processor sends the 20-
bit address on the address bus. The 16-bit
least significant bits of address sends on
AD15–AD0 and four most significant bits
of address are put on A19–A16 lines.

 ALE is high only during T1.
Address is put in the address
bus. The falling edge of ALE is
used to latch the address from
the address bus.

 BHE is high or low depending
on 8 or 16-bit read from odd/
even address.

 M/IO is high to indicate memory
operation. It remains high dur-
ing the entire bus cycle.

 DT/R is low and remains low
throughout the complete bus
cycle, to indicate the direction of
data transfer as memory to the
processor.

During T2 clock
cycle, the AD15–AD0 go into high-
impedance state. This is indicated by
doted lines as depicted in Fig. 5.19 as bus
drivers are disabled.

 RD goes low during T2. This sig-
nal can be used by the selected memory IC to enable its output buffer. This is a read-control signal.

 When READY signal is high during T2, it indicates that the memory device is ready and the 8086
operates normally according to the bus cycle. The READY signal is used by slow memory devices.
If the memory is not ready to transfer data, it does not make READY signal high, otherwise the
READY is low. If READY is low during T2, the 8086 inserts a wait state between T3 and T4. The 8086
processor always takes necessary steps to read data from the memory only when READY becomes
high.

 DEN goes high to enable the 8286/8287 transceiver.

 BHE goes high.

 During T2 to T4, status signals S3, S4, S5 and S6 are put on the address lines A16/S3 to A19/S6. S3 and
S4 are used to identify the memory segment which is to be accessed as illustrated in Table 5.5. S5
indicates interrupt enable status. The status of the interrupt enable flag bit, S5 is updated at the begin-
ning of each clock cycle.

T1 T2 T3 T4

AD AD15 0–

CLOCK

A / S –A / S19 6 16 3

ALE

BHE/S7

M/IO

DT/R

DEN

RD

BHE

S7

Address A A19 16–

Address A A15 0– D D15 0–

Data from memory

S –S6 3 Status

One Bus Cycle

 DEN is low
 Data is put on lines AD0—AD15.

 M/IO goes low just after T4 clock cycle.

 RD goes high
 All bus signals are deactivated and be prepared for the next bus cycle.

The timing diagram for memory write
bus cycle is shown in Fig. 5.20. The following actions take place during four different clock cycles:

The write cycle is similar
to read cycle, but there are some differences.
During T1 clock cycle, the 8086 processor sends
the 20-bit address on the address bus. The 16-bit
least significant bits of address sends on AD15–
AD0 and four most significant bits of address
put on A16–A19 lines.

 ALE is high only during T1. Address is
put in the address bus. The falling edge
of ALE is used to latch the address
from the address bus.

 BHE is high or low depending on 8-or
16-bit read from odd/even address.

 M/IO is high to indicate memory opera-
tion. It remains high during the entire
bus cycle.

 DT/R is high and remains high through-
out the complete bus cycle, to indicate
the direction of data transfer as the pro-
cessor to memory.

 DEN goes high to enable the 8286/8287
transceiver.

 WR is low as write control signal.

 BHE goes high.
 Bus is turned around.
 Status is put on the A19–A16 lines. The activity starts during T2 and continues till T4.

 Data is put on the AD16–AD0 lines.

 WR becomes high.

 M/IO goes low.

 DEN is low.
 DT/R goes low.

A / S A / S19 6 16 3– Address A A19 16– StatusS S6 3–

Address A –A15 0 D D15 0–

T1 T2 T3 T4

One Bus Cycle

AD AD15 0–

CLOCK

ALE

BHE/S7

M/IO

DT/R

DEN

WR

S7

BHE

Data written to memory

The I/O read bus cycle is similar to the memory read
cycle. The M/IO signal is low for I/O read operation and all other signals are same as memory read operation.
As illustrated in Fig. 5.19, it can be used as I/O read bus cycle by changing the M/IO signal only. The I/O
write bus cycle is also similar to memory write cycle. The M/IO signal is low for I/O write operation and all
other signals are same for memory write operation as depicted in Fig. 5.20.

Figure 5.21 shows the maximum-mode configuration of the 8086 processor. In the maximum mode, MN/MX
pin of 8086 is strapped to grounded and pins 24 to 31 of 8086 are active in maximum mode. In this mode,
microprocessor status signals S2, S1, and S0 are fed to a 8288 bus controller. The bus controller interprets
status signals S2, S1, and S0 to generate bus timing and control signals. Here the 8288 bus controller derive
RD, WR, DEN, DT/R and ALE, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC control output signals.

IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable
I/O read or write operations. MRDC and MWTC are used as memory read and memory write command sig-
nals respectively.

Latch
8282
2 to 3
Units

Transceivers

G 8286
DIR 2 Units

CS CS

OE

ROM

CS CS

RD

RAM

WR

I/O

Crystal Oscillator

Clock Generator
8284

RESET CLK RDY

MRDC

MWTC

IORC

IOWC

CSE

CSO

CSE

CSO

Bus Controller
8288

Chip
Select
Logic

RAM

ROM

CS IO
A A0 19– Address Bus

A0

CSECSO
CSECSO

CS

IORC IOWC

MRDC

D D0 15–

MRDC MWTC

Data Bus

Address/Data

8086

RESET CLK RDY

AD –AD15 0

A / S A / S19 6 16 3–

VCC

INTR

GND

LOCK

RQ/GT1

RQ GT/ 0

BHE

S0

S1

S2

MN/MX

STB

DEN

R

ALE

DT/

In this mode, more than one processor is interconnected within a system. AEN, IOB and CEN pins are
very useful for multiprocessor systems. AEN, and IOB are grounded, but CEN pin is connected with + 5 V.
The MCE/PDEN pin output depends upon the status of the IOB. When IOB is grounded, this pin works as a
master cascade enable to control cascaded 8259A. When IOB is not grounded, this pin acts as a peripheral
data enable. INTA pin is used to generate two interrupt acknowledge signals and fed to the interrupt controller.

The working principle of 8086 in maximum mode can be explained with a timing diagram. The maxi-
mum-mode timing diagram is subdivided into the memory read cycle and memory write cycle. The address/
data and address/status timings are similar to the minimum mode. In this section, memory read and write
cycles are explained in detail.

During minimum mode operation of
8086 processor, MN/MX is grounded. The timing diagram for memory read bus cycle in maximum-mode
operation of 8086 is shown in Fig. 5.22. The following actions take place during four different clock cycles:

 S2, S1 and S0 are set by 8086 in the
starting of clock cycle. These sig-
nals are decoded by the 8288 bus
controller

 ALE is high only during T1. Address
is put in the address bus. The fall-
ing edge of ALE is used to latch the
address from the address bus.

 BHE is high or low depending on
8-or 16-bit read from odd/even
address.

 DT/R goes low

 BHE is high.

 DEN goes high to enable the
8286/8287 transceiver

 MRDC is low for memory read con-
trol signal

 Data is put on address/data lines
from memory

 The status signals S2, S1 and S0
become active

 MRDC is high

 DEN goes low to disable the 8286/8287 transceiver

 DT/R goes high

 The READY signal is sampled at the end of T2. If it is low, wait states are inserted between T3 and T4

AD –AD15 0
Address A –A15 0 D D15 0–

Data from memory

A /S A /S19 6 16 3– Address A A19 16– StatusS –S6 3

T1 T2 T3 T4

CLOCK

One Bus Cycle

ALE

BHE/S7

DEN

DT/R

MRDC

BHE

S7

S S2 0– InactiveActive Active

The timing diagram for memory write
bus cycle in maximum-mode operation of 8086
is shown in Fig. 5.23. The following actions
take place during four different clock cycles:

S2, S1 and S0 are set by
8086 in the beginning of clock cycle. These
signals are decoded by the 8288 bus controller

 ALE is high only during T1. Address
is put in the address bus. The fall-
ing edge of ALE is used to latch the
address from the address bus.

 BHE is high or low depending on 8- or
16-bit read from odd/even address.

 BHE is high

 DEN goes high to enable the
8286/8287 transceiver

 MWTC is low for memory write con-
trol signal

 Data is put on address/data lines
 The status signals S2, S1 and S0 become

active

 MWTC is high

 DEN goes low to disable the 8286/8287
transceiver

The I/O write bus cycle is similar to memory write cycle.
The memory write operation can be performed by write control signals AMWTC, but AIOWC control signal
is used for I/O write. The AMWTC signal is activated during T2 to T4, i.e., one clock cycle earlier than MWTC.
Therefore, in I/O write bus cycle using AIOWC, AMWTC will be replaced by AIOWC as depicted in Fig. 5.23.
Similarly, MRDC will be replaced by IORC in memory read cycle as I/O read bus cycle is similar to memory
read cycle as given in Fig. 5.22.

The 8086 processor offers tremendous flexibility in programming as compared to 8085. Therefore, after the
introduction of 8086, research work was done for a microprocessor chip which has programming flexibility
like 8086 and external interface ICs of 8085, so that all existing circuits of 8085 could be compatible with the
new processor. Then the 8088 processor was developed. The Intel 8088 is an 8-bit microprocessor. Its internal
architecture is same as that of 8086, i.e., architecture of a 16-bit microprocessor. But the 8088 has only 8
data lines and hence it can use 8-bit I/O devices which are cheaper compared to 16-bit I/O devices. Personal
computers based on the 8088 CPU are cheaper compared to personal computers based on 8086 and 80286
CPUs. The clock frequency of 8088 is 5 MHz and that for 8088-2 is 8 MHz. The 8088 microprocessor is

T1 T2 T3 T4

One Bus Cycle

AD –AD15 0 Address A –A15 0

Data written to memory

D D15 0–

A /S A /S19 6 16 3– Address A A19 16– StatusS S6 3–

ALE

BHE/S7

DT/R

AMWC
AIOWC

or

BHE

S7

S S2 0– InactiveActive Active

DEN

High

MWTC
IOWC

or

available in 40-pin IC and operates at + 5 V dc supply. Its register set, instructions and addressing modes are
same as those of 8086. Its CHMOS version 80C88A operates at 8 MHz clock. The instruction queue length
in case of the 8088 processor is of 4 bytes whereas that in 8086 is of 6 bytes. The 8088 CPU uses 8087 math
coprocessor, 20-bit address bus and can directly address up to 1 MB of memory.

A computer built around the 8088 CPU uses 8284 clock generator, 8282 latches, 8286 transceivers, 8288
bus controller, 8087 math coprocessor, 8237 DMA controller, 8259 interrupt controller, etc. The 8088 CPU
was very popular and widely used in personal computers, PC/XT. Presently, 8088-based computers are no
longer manufactured. In this section, the architecture of the 8088 processor, pin description, addressing and
timing diagram are explained.

Figure 5.24 shows the architecture of the 8088 processor. The set of registers of 8088 is approximately same

Address Bus/Status
A /S –A /S19 6 16 3

Address/Data Bus
AD –A7 0D

BIU
(Bus Interface Unit)

Address Generation
and Bus Control

R

Memory Address
Logic

Instruction
Queue

4

3

2

1

Segment
Registers

CS

ES

SS

DS

Instruction Pointer

General
Registers

AX

BX

CX

DX

AH

CH

BH

DH

AL

BL

CL

DL

BP

DI

SI

SP

EU
(Execution Unit)

Internal Data Bus

Arithmetic
Logic Unit

Flags

Control and Timing

H
O
L
D
A

H
O
L
D

C
L
K

R
E
S
E
T

R
E
A
D
Y

M
N
/M
X

TEST

LOCK

INT

NMI

RQ GT/ 0–1

S S S2 1 0

QS –QS0 1

GND VCC

A –A15 8

as that of 8086. The architecture of 8088 is same as 8086 architecture, but there are two changes. The 8088
has a 4-byte instruction queue in place of 6-byte instruction queue in 8086 and the data bus of 8088 is 8-bit.
The other function blocks are the same as the 8086 processor.

The 8088 processor has 1 Mbyte addressing capability and it has a 20-bit address or 20 addressing lines.
The concept of segmented memory and the computational method of physical address are used in the 8088
processor without any change and it is same as the 8086 processor. The memory organization and address-
ing methods of 8088 are similar to 8086. There is no concept of even-address bank and odd-address bank of
memory in 8088. Therefore, the complete memory is consistently addressed as a bank of 1Mbyte memory
locations with the help of the segmented memory conception.

 As the data bus is 8-bit, the 8088 can access only a byte at a time. Therefore, the speed of operation of
8088 will be reduced as compared to 8086, though internal data bus of 8088 is 16 bits and it can process the
16-bit data internally. Due to change in address and data bus structure, the timing diagrams of 8088 are dif-
ferent from 8086.

The pin diagram of 8088 is depicted in Fig. 5.25. The functions of 8088 pins except AD7–AD0, AD15–AD8,
SS0 and IO/M pins are exactly same as the pins of 8086. Consequently, the pins functions of SS0, IO/M
AD7–AD0, A15–A8 are explained in this section.

The
AD7–AD0 lines are operated as time-multiplexed
address/data bus. When the ALE signal is high,
these lines can be used as the address of the
lower-order memory location address or I/O port
address. When ALE is low, these lines are used
as data bus and during T1 clock cycle, the AD7–
AD0 bus is used as address bus. During T2, T3,
and T4 states, these lines are used as data buses.
These lines are in high impedance state in hold
acknowledge and interrupt acknowledge cycles.

The A15–A8

lines are used as lower-order memory location
address throughout the entire bus cycle. During
hold acknowledge, these address lines are tristated
or at high impedance state.

 This pin is newly introduced in the
8088 processor instead of the BHE pin in 8086.
During minimum-mode operation, the pin SS0 is
equivalent to S0. In the maximum mode, SS0 is
always high in maximum mode.

 The IO/M pin is similar to the M/IO pin
of 8086. The function of this pin is to operate the
8088 processor as an 8085 processor, interfacing
of memory and I/O devices.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

V

A

A /S

A /S

A /S

CC

15

16 3

17 4

18 5

A /S

MN/

/GT

/GT

QS

QS

READY

RESET

19 6

0

0

1

2

1

0

0

1

SS

MX

RD

RQ

RQ

LOCK

S

S

S

TEST

GND

A

A

A

A

14

13

12

11

A

A

A

AD

AD

AD

AD

AD

AD

AD

AD

NMI

INTR

CLK

GND

10

9

8

7

6

5

4

3

2

1

0

8088

HOLD

HLDA

/IO

DT/

ALE

WR

M

R

DEN

INTA

T1 T2 T3 T4

CLOCK

One Bus Cycle

AD –AD7 0 Address A –A7 0
D D7 0–

Data from memory

A /S –A /S19 6 16 3 Address A –A19 16 StatusS S6 3–

ALE

DEN

DT/R

RD INTA,

A –A15 8 Address A –A15 8

READY

AD –AD7 0 Address A A7 0– D –D7 0

Data written to memory

T1 T2 T3 T4

CLOCK

One Bus Cycle

A / S A / S19 6 16 3–

A A15 8–

StatusS S6 3–

Address A A15 8–

Address A A19 16–

DEN

READY

DT/R

WR

RD INTA,

ALE

High

In the minimum mode, the operations of the 8088 microprocessor depend on control signals SS0, IO/M
and DT/R as given in Table 5.11. The S0 pin is always high in the maximum-mode operation. The other pin
functions and timings of 8088 are same as 8086.

 IO/M DT/ R SS0 Operation

 0 0 0 Code access

 0 0 1 Read memory

 0 1 0 Write memory

 0 1 1 Passive

 1 0 0 Interrupt acknowledge

 1 0 1 Read I/O port

 1 1 0 Write I/O port

 1 1 1 HALT

Each bus cycle of the 8088 processor consists of four T states: T1, T2, T3 and T4. During the first clock
cycle T1, ALE signal is high and A19/S6–A16/S3 are used as A19–A16 address buses, AD7–AD0 can be
used as A7–A0 address buses. Hence, the leading edge of ALE is used to latch the valid 20-bit address
during T1 states. After T1 state A19/S6–A16/S3 are used as status signals S6–S3, the middle bus A15–A8 are
always active as address buses but AD7–AD0 are tristated. During T3 and T4 data are read from memory and
placed into the data bus. Therefore, AD7–AD0 is used as data bus in T3 and T4 durations. Figure 5.26 shows

IO/M

RD

WR

8086

ALE

AD AD
15 8
–

AD AD
7 0
–

A /S
19 6

A /S
18 5

A /S
17 4

A /S
16 3

BHE/S
7

G

74LS373

OE

G 74LS373 74LS373G

Control

Bus

D D
15 8
–

IO/M

RD

WR

D D
7 0
–

Data

Bus

Address

Bus

A –A
19 16

A A
15 8
–

A A
7 0
–

BHE

the timing diagram for memory read operation of 8088 microprocessor. After T4, the next bus cycle will be
started.

Figure 5.27 shows the timing diagram of 8088 for memory write bus cycles. In memory cycle, data will
be available on the data bus during T2, T3 and T4 and the status signals are valid for T2, T3 and T4 durations.
After T4 address/data bus, AD7–AD0 are tristated.

In 8086/8088 processors, there are three buses: address, data and control buses. The address/data buses are
operated in time-multiplexed mode. The address bus is required to locate memory and I/O devices for data
transfer through memory and I/O read or write cycles. The data bus is used to transfer data from microproces-
sor to memory/I/O devices or vice versa. The control bus provides control signals to memory/I/O devices for
data-transfer operations.

The 8086 microprocessor has time-multiplexed 16-bit address/data bus AD15–AD0 and 4-bit address/status
bus A19/S6–A16/S3. The ALE signal is used to latch the address of 8086. Usually, latch ICs are available with
eight separate latches. Therefore, three latch ICs should be used for demultiplexing 20-bit address lines.
Figure 5.28 shows the circuit diagram for latching 20-bit address lines using three 74LS373 latch ICs. In this
arrangement, two ICs are fully utilised and one latch is partially used.

The 8086 microprocessor has 16-bit time-multiplexed data bus which is available as Address/Data bus,
AD15–AD0.The data bus is always separated from the address bus by using 74245 buffers as depicted in

74244

OE

IO/M

RD

WR

8086

ALE

AD –AD
15 8

AD AD
7 0
–

A /S
19 6

A /S
18 5

A /S
17 4

A /S
16 3

BHE/S
7

DT/R

DEN

IO/M

RD

WR

D D
15 8
–

D D
7 0
–

Buffered

Data

Bus

Control

Bus

A A
7 0
–

A A
19 16
–

BHE

Address

Bus

A A
15 8
–

74LS373

G

74LS373 74LS373G G

74245

74245

Fig. 5.29. The data bus is bi-directional and data can be transferred from microprocessor to memory and
memory to microprocessor for memory write and read operations respectively. The control signals DEN and
DT/R represent the presence of data on the data bus and directional flow of data. These signals are used to
connect the chip enable CE and directional pins of 74245 buffers. While DEN is low, the data is available on
the multiplexed bus.

In 8086 A19/S6–A16/S3, AD15–AD0 and BHE /S7 are multiplexed but in 8088 only A7–A0 and A19/S6–A16/S3
are time multiplexed. The demultiplexing of address bus of the 8088 microprocessor is shown in Fig. 5.30.
Here, 74LS373 latches are used to demultiplex address/data bus. When ALE = 1, the latches pass the inputs
to the outputs. After one clock time T1, ALE becomes logic 0. A19/S6–A16/S3 are connected into the top
latch and A7–A0 are connected into the bottom latch. These address connections can are able to address 1
MB memory space. The 8088 systems require only one data buffer due to the 8-bit data bus as depicted in
Fig. 5.31.

74LS244

G 74LS373 OE

74LS245

D/R G

74LS244

OE

Control

Bus

Buffered

Data

Bus

Address

Bus

74LS373

OE

A /S
19 6

A /S
18 5

A /S
17 4

A /S
16 3

A –A
15 8

ALE

8088

AD AD
7 0
–

DEN

DT/R

IO/M

RD

WR

A A
19 16
–

A -A
15 8

A -A
7 0

D D
7 0
–

IO/M

RD

WR

G

G 74LS373 E

Control

Bus

Data

Bus

Address

Bus

74LS373

G

A /S
19 6

A /S
18 5

A /S
17 4

A /S
16 3

A –A
15 8

ALE

8088

AD AD
7 0
–

IO/M

RD

WR

A A
19 16
–

A A
15 8
–

A A
7 0
–

D D
7 0
–

IO/M

RD

WR

OE

The 8086 processor requires a clock signal with very fast rise and fall times which is about 10 ns and a duty
cycle of 33%. For proper operation, the 8086 processor RESET signal must be synchronised with clock sig-
nal and persist for four T states. Actually, the 8284A clock generator IC meets the requirement of CLOCK
and RESET signals.

Buses of 8086 microprocessors require buffering techniques for reliable data transmission. When any
receiver receives data, it requires a dc load current from the transmitter. Due to this load, the high-level output
voltage VOH will be reduced and low-level output voltage VOL will be increased. Hence noise immunity of the
system will be reduced. In addition, each receiver has an ac load current due to its input capacitance. Truly,
the input capacitor must be charged and discharged whenever the transmitter output state changes from logic
level 1 to 0 or logic level 0 to 1. As the propagation delay time of the transmitted signal increases, the time
availability to the memory and I/O devices will be reduced. Therefore, to minimize the dc as well as ac load-
ing effect, buffers are required for microprocessor buses. Usually, 8286/8287 buffer ICs are commonly used
in microprocessor-based systems.

The 8282 and 8283 are 8-bit bipolar latches with three-state output buffers. These ICs can be used as
latches, buffers or multiplexers. The 8282 provides non-inverted outputs whereas the 8283 inverts the input
data at its output. In the maximum-mode operation, 8086 requires system control signals such as MRDC,
MWTC, AMWC, IORC, IOWC and AIOWC. The 8288 bus controller chip generates all the control signals.

To design any microprocessor-based system, 8284A clock generator, 8286/8287 buffers, 8282/8283 I/O
ports and the 8288 bus controller are used. In minimum- and maximum-mode operation, the first three ICs
are extensively used but the 8288 bus control is used only in maximum mode operation. In this section, the
detailed operation of 8284A clock generator, 8286/8287 buffers, 8282/8283 I/O ports and the 8288 bus con-
troller are discussed in detail.

During fetch and execute instructions, the 8086 and 8088 processors require clock pulse which has about
10 ns rise and fall times. The logic 0 level of the clock is 0.5 V to 0.6 V, logic–1 level is about 3.9 V to 5 V
and the clock duty cycle is about 33%. The 8086 processor has no clock generator inside the chip. So, an
external clock generator IC must be connected with the processor. The 8284A is a clock generator IC and it is
a supporting component to the 8086/8088 processors. The 8284A IC has the following features or additional
basic functions such as clock generation, RESET synchronization, READY synchronization, and a TTL level
peripheral clock signal. The operation of 8284A IC has been explained in this section.

The internal logic of the 8284A clock generator is depicted in Fig. 5.32.
The upper half of the logic diagram represents the clock and reset synchronization section of the 8284A
clock generator. It is depicted in Fig. 5.32 that the crystal oscillator has 2 inputs: Xl and X2. When a crystal
is connected to Xl and X2 terminals, the oscillator generates a square-wave signal and its frequency is same
as the crystal frequency.

The output square-wave signal is fed to an AND gate and it is inverted by using an inverting buffer to
generate the OSC output signal. The OSC signal can be used as an EFI input to other 8284A clock genera-
tors. When F/C is a logic 0, the output of the AND gate is fed to divide-by-3 synchronous counters. If F/C is
a logic1 then EFI is steered through to the counter.

The output of the divide-by-3 synchronous counters generates the ready signal for synchronization. The

Schmitt Trigger

RES

AEN1

AEN2

ASYNC

X1

X2

F/C

EFI

CSYNC

RDY1

RDY2

RESET

OSC

PCLK

CLK

READY

CK

FF2

D Q

CK

FF1

D Q

'3
Sync

'2
Sync

CK

D

QCrystal
oscillator
2 Sync'

CLK signal is buffered before output from the clock
generator. Another divide-by-2 synchronous counter
generates the PCLK signal to the 8086/8088 micro-
processor. When the output of the first 3 synchro-
nous counters is fed to the second 2 synchronous
counters, the two cascaded counters generate 6
outputs at PCLK. Figure 5.33 shows the connec-
tion between 8284A and the 8086/8088 processor.
Usually, F/C and CSYNC are connected with ground
to select the crystal oscillator. Then a 15 MHz crystal
generates the normal 5 MHz CLK clock signal and a
2.5 MHz peripheral clock signal PCLK.

The reset section of the 8284A consists of Schmitt
trigger buffered and a D type flip-flop. The D flip-flop
ensures that the timing requirements of the 8086/8088
RESET input are met. This circuit applies the RESET
output signal of clock generator is fed to the micro-
processor as shown in Fig. 5.32, and it is active on
the negative edge the clocks. Hence, the reset sec-
tion meets the timing requirements of the 8086/8088
microprocessor.

The 8284A is
an 18 pin IC which is specifically designed for 8086/
8088 microprocessors. The pin diagram of the chip is
shown in Fig. 5.34. In this section, the functions of
pins are explained.

CLK

RESET

CLK

RESET

8086

or

8088

8284A

CSYNC

X
2

X
1

1
5
M

H
z

+5V

10K

10µF

F/C

RES

V
CC

X
1

X
2

ASYNC

DEN

EF
1

F/C

OSC

RES

RESET

CSYNC

PCLK

AEN1

RDY1

READY

RDY2

AEN2

CLK

GND

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

8284A

These pins are connected to an external crystal which is used as a clock
frequency source of the clock generator. The external crystal clock frequency will be about three times the
required frequency. If the required frequency is 5 MHz, the crystal frequency will be 15 MHz.

CLK is an output pin that provides the clock (CLK) signal which is used as input signal to the
8086/8088 microprocessor system. The CLK pin has an output signal with 33% duty cycle as required by
the 8086/8088.

This is an alternate clock input when F/C pin is pulled high. The
externally generated clock signal is supplied to EFI whenever the F/C pin is high.

This is a clock output signal that is one sixth of the crystal. PLCK is half of
the clock frequency and has a 50% duty cycle. The PCLK output signal can be used as a clock signal to the
peripheral equipments in 8086/8088 system.

This is an oscillator-output signal which is running at crystal or EFI
frequency. This signal can be used to provide clock signal at EFI to the other 8284 clock generators in some
multiple processor system.

The voltage on this pin determines the clocking source for the 8284A.
If this input pin is high, an external clock at EFI is selected. While it is low, the internal crystal oscillator
provides the clock frequency signal.

This pin is used for synchronization of clock signals in a
multiprocessor system where all processors receive the clock at EFI. If the internal crystal oscillator is used,
this pin must be grounded. When CSYNC is high, the 8284A clock generator stops working.

To reset the 8086 processor, 8284A clock generator should send the RESET signal.
Generally, this pin is connected to an RC network for generating RESET signal at power on.

This signal is connected to the 8086/8088 RESETs input pin. The RESET
signal must be synchronised with the clock.

The slow memory or I/O devices can request for extension of bus cycles using RDYl or
RDY2 pins. These two wait-state ready inputs are provided to support a multibus 8086/8088-based system.

The READY output pin connects to the 8086 READY input which enables the bus cycle period
insertion between T3 and T4. The 8086 READY signal must be synchronized with the RDY1 and RDY2
inputs.

This input pin is used to select either one or two stages of
synchronization for the RDY1 and RDY2 inputs. If it is low, one level is selected. When it is high, two levels
of synchronization are selected.

Two ready inputs RDY1, RDY2 have been provided in the 8284A to support the multibus
system. The 8086 CPU may be connected to two separate system buses, on which data transfer takes place.
The memory or I/O devices of any system bus may like to insert wait states. Hence, each system bus should
have its own ready line. AEN1 and AEN2 are provided to arbitrate bus priorities whenever RDY1 and RD2
are active. The 8284A responds to RDY1 when AEN1 is low. In the same way, clock generator responds to
RDY2 if AEN2 is low.

This pin is connected to + 5 V ±10%.

This pin must be grounded.

The intel 8286 and 8287 are bi-directional system bus buffers-cum-drivers. Figure 5.35 shows the pin dia-
grams of 8286 and 8287 transceivers.

V

T

CC

0B

B

B

B

B

B

B

B

1

2

3

4

5

6

7

A

GND

0

A

A

A

A

A

A

A

1

2

3

4

5

6

7

OE

V

B

T

CC

0

B

B

B

B

B

B

B

1

2

3

4

5

6

7

GND

0A

A

A

A

A

A

A

A

1

2

3

4

5

6

7

OE

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

8286 8287

(a) (b)

These lines are connected to microprocessor data/address bus.

These lines are connected to system bus.

 Output Enable

 Direction Select

 Input Power Supply, + 5 V

 This pin is grounded.

The Intel 8282 and 8283 are unidirectional latch buffers. The difference between the 8282 and 8283 is that the
IC 8282 does not change the data and the IC 8283 inverts the input data. Figure 5.36 shows the pin diagram
of 8282 and 8283 input output ports. The pin functions are given below:

Data input

Data output

Output enable

Input data strobe. If STB is high, the data on output pins track the data on input pins. On high to
low transition of STB, the data is latched. The data remains unchanged when STB is low. The data is latched
internally till OE is low. When OE is low, the data is put on output lines. The 8282 outputs the data unaltered
and the 8283 inverts the data.

Input Power Supply, + 5 V

This pin is grounded.

V

STB

CC

0DO

DO

DO

DO

DO

DO

DO

DO

1

2

3

4

5

6

7

DI0

DI

DI

DI

DI

DI

DI

DI

1

2

3

4

5

6

7

OE

GND

V

DO

STB

CC

0

DO

DO

DO

DO

DO

DO

DO

1

2

3

4

5

6

7

DI

GND

0

DI

DI

DI

DI

DI

DI

DI

1

2

3

4

5

6

7

OE

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

8282 8283

(a) (b)

Figure 5.37 shows the 8288 bus controller which is used in the maximum-mode operation of 8086 CPU. This
IC receives four inputs such as S2, S1, S0 status signals and CLK from 8086. There are two sets of output
command signals.

The first set of output command signals are the MULTIBUS command signals. These are the conven-
tional MEMR, MEMW, IOR and IOW control signals. These signals are renamed as MRDC, MWTC, IORC
and IOWC respectively. Here, C stands for command. AMWC and AIOWC are advanced memory and I/O
write commands. These outputs are enabled one clock cycle earlier than the normal write commands. Some
memory and I/O devices require this wider write pulse width.

MRDC

MWTC

AWTC

IORC

IOWC

AIOWC

INTA

DT/

DEN

MCE/

ALE

R

PDEN

Address
Latch, data
transceiver and
interrupt control
signals

S

S
0

1

S2

CLK

IOB

AEN

CEN

VCC

GND

Status

Signals

Control

Inputs
Control

Logic

Command

Signal

Generator

Status

Decoder
Command

Signal

Generator

Multi-Bus

Command

Signals

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

V

/PDEN

DEN

CEN

CC

0

2

S

S

MCE

INTA

IORC

AIOWC

IOWC

IOB

CLK

DT/

ALE

GND

S

MRDC

AMWC

MWTC

1

R

AEN

8288

These are bus cycle status signals. These are decoded and control
signals are generated.

The second set of output signals of the 8288 are the bus control signals DT/R, DEN, ALE and MCE/

PDEN. MCE/PDEN is an output signal which has two functions depending on the 8288’s mode of operation
such as I/O bus control or system bus control.

The three 8288 control inputs CEN, IOB and AEN determine the operating mode as given in Table 5.12.
When CEN and IOB are high or of logic level 1, the 8288 operates in the I/O bus mode and the MCE/PDEN
output acts as a peripheral data enable. The function of MCE/PDEN is identical to DEN but it is active only
during I/O instructions. This allows the 8288 to control two sets of buses such as the normal system buses and
a special I/O bus dedicated to the processor.

During the system-bus mode, the control signals are active only while the address enable signal AEN and
IOB inputs are low. In this mode of operation, several 8288s IC and 8086 processors can be interfaced to the
same set of bus lines. The bus mediator selects the active processor after enabling only one 8288 bus control-
ler through an AEN signal. The MCE/PDEN signal becomes MCE (Master Cascade Enable). In this mode,
the MCE/PDEN signal is used to read the address from a master priority interrupt controller, PIC.

CEN IOB AEN Operations

0 x x All command outputs and the DEN and PDEN outputs are disabled or open-circuited

1 0 0 System bus mode and all control signals are active. The bus is free for use and MCE/

PDEN=MCE

1 0 1 System-bus mode but all control signals are disabled. The bus is busy, and is controlled by

another bus master

1 1 x I/O bus mode; all control lines are enabled and MC/PDEN = PDEN

The pin diagram of the 8288 bus controller is shown in Fig. 5.38. The functions of the pins are described
in this section.

This is an input signal. It is connected to CLK output of the clock generator 8284.

These are bus priority and mode control signals. AEN (bus priority control/enable),
CEN(Command Enable) , and IOB (mode control) signals are used to generate various control signals.

These command signals are used to load the content of
memory location on the data bus.

These command signals are used to store the available
data on the data bus to the specified memory location.

The I/O device is able to put the available data of the addressed
port on the data bus.

The I/O device is able to accept the available data port on the
data bus and send to the addressed port.

This signal is activated one clock period earlier
than MWTC .

 This signal is activated one clock period earlier than IOWC.

 Cascade/Peripheral data Enable. This signal is used in Priority Interrupt Controller 8259A.

This is used as output signal during two interrupt acknowledge bus
cycles and is used as memory read control signal.

Address Latch Enable signal.

 Data Direction Control signal.

Data buffer control signal.

Power Supply Input + 5 V.

This pin is connected system ground.

 In this chapter, the architectures of the 8086 and 8088 processors have been presented. The functional
details such as registers, flags, segment memory and pin descriptions of 8086 and 8088 have been
discussed.

 The minimum-mode and maximum-mode operations of 8086 microprocessors are explained briefly.
The timing diagram for memory read, write, I/O read and write operations are discussed elaborately.

 The functions of 8284A clock generator, 8288 bus controller, 8286 bi-directional bus transceiver, 8-bit
input–output port 8282 and comparisons between 8085, 8086 and 8088 are also incorporated.

5.1 The 8086 has a

 (a)16-bit data bus and 20-bit address bus
 (b) 8-bit data bus and 20-bit address bus
 (c) 16-bit data bus and 16-bit address bus
 (d) 8-bit data bus and 16-bit address bus

5.2 The 8088 has a

 (a) 16-bit data bus and 20-bit address bus
 (b) 8-bit data bus and 20-bit address bus
 (c) 16-bit data bus and 16-bit address bus
 (d) 8-bit data bus and 16-bit address bus

5.3 The 16-bit register of 8086 consists of

 (a) 16 flags (b) 8 flags
 (c) 9 flags (d) 7 flags

5.4 The instruction queue of 8086 consists of

 (a) 6 data (b) 8 data
 (c) 4 data (d)10 data

5.5 The Instruction queue of 8088 consists of

 (a) 6 data (b) 8 data
 (c) 4 data (d) 10 data

5.6 The 8086 has

 (a) 6 memory segments
 (b) 8 memory segments
 (c) 4 memory segments
 (d) 10 memory segments

5.7 The physical memory of 8086 is

 (a) 1 MB (b) 64 KB
 (c) 2 MB (d) 4 MB

5.8 The memory map of 8086 is

 (a) 0000H to FFFFH (b) 00000H to FFFFFH
 (c) 0000H to FFFFH (d) 0000H to FFFFH

5.9 The segment memory capacity of 8086 is

 (a) 1 MB (b) 64 K
 (c) 2 MB (d) 4 MB

5.10 Control signals are generated from RD, IO/M,
and WR

 (a)

MRD, MWR, IORD

 (b) MWR, IRD, IOWR

 (c)

MWR, IRD, IOWR

 (d) MRD, MWR, IORD, IOWR

5.11 8086 has the following units:

 (a) EU and BIU (b) EU only
 (c) BIU only (d) CU and BIU

5.12 Physical address of 8086 is

 (a) 8-bit (b) 16-bit
 (c) 20-bit (d) 32-bit

5.13 Clock frequency of 8086 and 8088 is

 (a) 5–10 MHz (b) 2–3 MHz
 (c) 1–3 MHz (d) 2–5 MHz

5.14 Clock generator has output frequency

 (a) 15–10 MHz (b) 2–3 MHz
 (c) 1–3 MHz (d) 2–5 MHz

5.15 The 8086/88 can be operated in single step
when

 (a) TF set (b) DF set
 (c) SF set (d) AF set

5.16 The physical address when DS = 2345H and IP
= 1000H is

 (a) 23450H (b) 24450H

 (c) 12345H (d) 2345H

5.1 What are the general-purposes registers of the 8086 and 8088 microprocessors?

5.2 What are the functions of index registers, pointer registers and instruction pointers?

5.3 Write the differences between (a) 8085 and 8086, and (b) 8086 and 8088.

5.4 What is the purpose of the queue? How many bytes can be stored in the queue of 8086 and 8088?

5.5 What is pipelined architecture? How is it implemented in 8086?

5.6 Explain the concept of segmented memory. What are its advantages?

5.7 How do you select the minimum and maximum modes of operation in the 8086/8088?

5.8 Determine the physical address when CS = 6000H and offset address = 2300H.

5.1 Draw the schematic block diagram of 8086 and explain the function of each block.

5.2 Define logical address and physical address. What are the differences between the logical and physical
memory of the 8086?

5.3 What is the content of DS and IP to locate the physical address location 35678H? Assume the value of
offset address.

5.4 Why is the 8086 memory organized into two banks of even and odd addresses? Explain how the even
and odd bank are selected using the BHE and A0 signals.

5.5 Draw the pin diagram of the 8086 microprocessor. Explain the function of the following pins of 8086:

 (i) ALE (ii) NMI (iii) INTR (iv) HOLD (v) HLDA (vi) BHE (vii) LOCK (viii) M/IO (ix) DEN (x) DT/R

5.6 Draw the minimum-mode system configuration of 8086 with memory and I/O interface and give a list
about the functions performed by each chip.

5.7 Draw bus-cycle timing diagrams for memory read and write operations in minimum mode and explain
briefly.

5.8 Draw the maximum-mode system configuration of 8086 with memory and I/O interface and a list the
functions performed by each chip.

5.9 Draw bus-cycle timing diagrams for memory read and write operation in the maximum mode and
explain briefly.

5.10 Draw the schematic block diagram of 8088 and explain the function of each block. Write the differences
between 8086 and 8088.

5.11 What is demultiplexing of buses in 8086? Explain demultiplexing of address bus in 8086 and 8088.

5.12 What are the fun ctions of the 8284 clock generator in the 8086/8088 systems? If a crystal of frequency
15 MHz frequency is attached to the 8284, what will be the frequency of signals at CLK and PCLK
pins?

 5.1 (a) 5.2 (b) 5.3 (c) 5.4 (a) 5.5 (c) 5.6 (c) 5.7 (a) 5.8 (b) 5.9 (b)

 5.10 (d) 5.11 (a) 5.12 (c) 5.13 (a) 5.14 (d) 5.15 (a) 5.16 (b)

An instruction is a basic command given to a microprocessor to perform a specified operation with given
data. Each instruction has two groups of bits. One group of bits is known as operation code (opcode), which
defines what operation will be performed by the instruction. The other field is called operand, which speci-
fies data that will be used in arithmetic and logical operations. The addressing mode is used to locate the
operand or data. There are different types of addressing modes depending upon the location of data in the
8086 processor.

The instruction format should have one or more number of fields to represent instruction. The first field
is called operation code or opcode fields, and other fields are known as operand fields. The microprocessor
executes the instruction based on the information of opcode and operand fields.

In this chapter, the general instruction format and different addressing modes of 8086/8088 processor
along with examples are discussed. All types of instructions with examples are discussed elaborately. This
chapter creates a background for assembly-language programming in 8086/8088 processor.

An instruction is divided into operation code (opcode) and operands. The opcode is a group of bits which
indicates what operation can be performed by the processor. An operand is also known as data (datum) and
it can identify the source and destination of data. The operand can specify a register or a memory location in
any one of the memory segments or I/O ports. Figure 6.1 shows a general instruction format which consists

OPCODE MOD OPCODE R/M Lower byte DISP Higher byte DISP

Lower byte Data Higher byte Data

Byte 1 Byte 2 Byte 3 Byte 4

Byte 6Byte 5

D7 D0 D7
D6 D5 D3 D2 D0 D7 D0 D7 D0

D7 D0 D7 D0

of six bytes. Some instructions have only an opcode and such instructions are called single-byte instructions.
Some instructions contain one- or two-or three- or four-byte operands. The detailed operation of instruction
sets is explained in Section 6.3.

There are different ways to specify an operand. Each way of how an operand can be specified is called
an addressing mode. The different addressing modes of 8086 microprocessors are as follows:

 Immediate addressing

 Register addressing

 Memory addressing

 Branch addressing

In this mode of addressing, the 8-bit or 16-bit operand is a part of the instruction. For example, MOV AX,
4000H. In this instruction, the data 4000H can be loaded to the AX register immediately. Some other exam-
ples are given below:

MOV BX, 7000H; load 7000H in BX register

MOV CX, 4500H; store 4500H in CX register

In the 8086 microprocessor, some instructions are operated on the general-purpose registers. The data is in
the register specified by the instruction. The format for register addressing is

MOV Destination, Source

In this instruction, the data from the source register can be copied into the destination register. The 8-bit
registers (AL, AH, BL, BH, CL, CH, DL, DH) and 16-bit registers (AX, BX, CX, DX, SI, DI, SP, BP) may be
used for this instruction. The only restriction is that both operands must be of the same length. For example,

MOV AL, BL; Copies the value of BL into AL

MOV AX, BX; Copies the contents of BX into AX

Memory addressing requires determination of physical address. The physical address can be computed from
the content of segment address and an effective address. The segment address identifies the starting location
of the segment in the memory and effective address represents the offset of the operand from the beginning
of this segment of memory. The 20-bit effective address can be made up of base, index, and displacement.
The basic formula for the 16-bit effective address (EA) and the 20-bit physical address (PA) is given below:

16-bit EA = Base + Index + Displacement

20-bit PA = Segment × 10 + Base + Index + Displacement

Memory addressing has the following combinations:

 Direct addressing

 Register indirect addressing

 Based addressing

 Indexed addressing

 Based Indexed addressing

 Based Indexed with displacement addressing

In this mode of addressing, the instruction operand specifies the memory
address where data is located. This addressing mode is similar to the immediate addressing mode, but
the opcode follows an effective address instead of data. This is the most common addressing mode. The
displacement-only addressing mode consists of an 8-bit or 16-bit constant that specifies the offset of the
actual address of the target memory location. For example, MOV AX, [5000] copies 2 bytes of data starting
from memory location DS × 10 + 5000H to the AX register. The lower byte is at the location DS × 10 +
5000H and the higher byte will be at the location DS × 10 + 5001H. Another example is MOV AL, DS:
[5000H]. In this instruction, the content of the memory location DS × 10 + 5000H loads into the AL register.

The instruction MOV DS:[2000H], AL means that the content of the AL register will move to memory
location DS × 10 + [2000H]. The computation of memory location for the operand is illustrated in Fig. 6.2. In
this figure, the effective address (EA) is 2000H and the physical address (PA) is PA = DS × 10 + EA = 4000
× 10 + 2000 = 42000. The physical address (PA) computation for other segment registers with same effective
address is given below:

PA = CS × 10 + EA, PA = SS × 10 + EA, and PA = ES × 10 + EA.

Generally, all displacement values or offsets
are added with the data segment to determine
the physical address. If something other than a
data segment is required, we must use a segment
override prefix before the address. For example,
to access memory location 4000H in the Stack
Segment (SS), the instruction will be MOV AX,
SS: [2000H]. Similarly, to access the memory
location in the Extra Segment (ES), the instruc-
tion will be written as MOV AX, ES: [2000H].

This instruction specifies a register containing an address,
where data is located. The effective address of the data is in the base register BX or an index register that is
specified by the instruction. This addressing mode works with index registers SI, DI, and base registers BX
and BP registers.

The examples of this addressing mode in the 8086 microprocessor are as follows:

MOV AL, [BX]

MOV AH, [DI]

MOV AL, [SI]

MOV AH, [BP]

The BX, BP, SI, or DI registers are using the DS segment by default. The base pointer uses stack segment
by default. The segment override prefix symbols are used to access data in different segments. The examples
of segment override instructions are as follows:

MOV AL, CS: [BX]

MOV AL, DS: [BP]

MOV AL, SS: [SI]

MOV AL, ES: [DI]

The effective address EA may either be in a base register (BX or BP) or in an index register (SI and DI).
The physical address can be computed based on contents of segment register, BX, BP, SI and DI registers as
given below: PA = CS × 10 + BX, PA = DS × 10 + BP, PA = SS × 10 + DI, and PA = ES × 10 + SI.

40000H

22

AL

42000H22
42000H2000

MEMB

DS

4000

2000

DS × 10 = 40000H

+
+

The general physical address expression for register indirect memory operand is depicted in Fig. 6.3. The
content of BX is 1000H and CS is 2000. Then the physical address is CS × 10 + BX = 2000 × 10 + 1000 =
21000H. After executing the MOV AL, [BX] instruction, the contents of the memory location 21000H is 44H
which will be stored in the AL register.

The 8-bit or 16-bit
instruction operand is added to the contents of a
base register (BX or BP), the resulting value is
a pointer to the location where the data resides.
The effective address in based addressing mode
is obtained by adding the direct or indirect
displacement to the contents of either the base
register BX or the base pointer BP. The effective
address and physical address computation are
given below:

EA = BX + 8-bit displacement EA = BP + 8-bit displacement

EA = BX + 16-bit displacement EA = BP + 16-bit displacement

PA = Segment × 10 + BX + 8-bit displacement, PA = Segment × 10 + BP + 8-bit displacement

PA = Segment × 10 + BX + 16-bit displacement, PA = Segment × 10 + BP + 16-bit displacement

Segment will be any one of the segments CS, DS, SS and ES. Figure 6.4 shows the physical address
computation in base addressing mode. When 16-bit displacement DISP = 0025H, the contents of the BX
register is 0500H and the contents
of the DS register is 4000H, the
physical address = DS × 10 + BX
+ DISP = 4000H × 10 + 0500 +
0025 = 40525H. After execution
of MOV AL, DS: [BX+DISP]
instruction, the contents of the
memory location 40525H will
be copied into the AL register.
The examples of base address-
ing mode instructions in the 8086
microprocessor are

MOV AL, [BX+8-bit DISP]

MOV AH, [BX+8-bit DISP]

MOV AL, [BP+8-bit DISP]

MOV AH, [BP+8-bit DISP]

These addressing modes can work similar to the based addressing mode.
The 8-bit or 16-bit instruction operand is added to the contents of an index register (SI or DI), and the
resulting value is a pointer to the location where the data resides.

The displacement value is used as a pointer to the starting point of an array of data in memory and the
contents of the specified register is used as an index. The EA and PA in the indexed addressing are as follows:

20000H

44

AL

21000H44
21000H1000

BX

CS

2000

1000

CS × 10 = 20000H

+
+

AL

4545 40525H40525H

40000H
DS × 10 = 40000H

+

+ +

DISP

BX

DS

4000

0500

0025

EA = SI + 8-bit displacement EA = DI + 8-bit displacement

EA = SI + 16-bit displacement EA = DI + 16-bit displacement

PA = Segment × 10 + SI + 8 bit displacement PA = Segment × 10 + DI + 8 bit displacement

PA = Segment × 10 + SI + 16 bit displacement PA = Segment × 10 + SI + 16 bit displacement

Segment will be any one of segment registers (CS, DS, SS and ES).

The index addressing modes generally involve BX, SI, and DI registers with the data segment. The [BP+
DISP] addressing mode uses the stack segment by default. In the register indirect addressing modes, the seg-
ment override prefixes can be used to specify different segments. The examples of these instructions are as
follows:

MOV AL, SS: [BX + DISP] MOV AL, ES: [BP + DISP]

MOV AL, CS: [SI + DISP] MOV AL, SS: [DI + DISP]

Figure 6.5 shows the physical address
computation in index addressing mode. When
16-bit displacement DISP = 0055H, the con-
tents of SI is 0100H and the contents of DS
register is 4000H, the physical address = DS ×
10 + SI + DISP = 4000H × 10 + 0100 + 0055
= 40155H. If MOV AL, DS: [SI + 0025] is
executed, the contents of the memory location
40155H, FF will be loaded into the AL register.
Figure 6.5 shows the indexed addressing.

The
contents of a base register (BX or BP) is added
to the contents of an index register (SI or DI),
the resulting value is a pointer to the location
where the data resides. The effective address is the sum of a base register and an index register which are
specified in the instruction. The based indexed addressing modes are simply combinations of the register
indirect addressing modes. These addressing modes form the offset by adding together a base register (BX or
BP) and an index register (SI or DI). The EA and the PA computation are given below:

EA = BX + SI, EA = BX + DI

EA = BP + SI, EA = BP + DI

PA = Segment × 10 + BX + SI

PA = Segment × 10 + BX + DI

PA = Segment × 10 + BP + SI

PA = Segment × 10 + BP + DI

Figure 6.6 shows the physical
address computation in based indexed
addressing mode. For example, if the
content of BX register is 0200H and SI
contains 0100H. Then the instruction
MOV AL, [BX + SI] loads the content
of the memory location DS × 10 + BX +

AL

FFFFH 40155H40155H

40000H
DS × 10 = 40000H

+

+ +

DISP

SI

DS

4000

0100

0055

+
++

40300H

40300H

6666

AL

40000H
DS × 10 = 40000H

0100

0200

4000

SI

BX

DS

SI into the AH register. If DS = 4000H, the memory location address is 4000 × 10 + 0200 + 0100 = 40300H
whose content 66H will be loaded into the AH register. The examples of this addressing mode instruction are
as follows:

 MOV AL, [BX + DI] MOV AL, [BX + SI]

 MOV AL, [BP + SI] MOV AL, [BP + DI]

The 8-bit or 16-bit instruction operand
is added to the contents of a base register (BX or BP) and index register (SI or DI), the resulting
value is a pointer to the location where the data resides. The effective address is the sum of an 8-bit or
16-bit displacement and based index address. The computation of EA and the PA are given below:

EA = BX + SI + 8-bit or 16-bit instruction EA = BX + DI 8-bit or 16-bit instruction

EA = BP + SI + 8-bit or 16-bit instruction EA = BP + DI 8-bit or 16-bit instruction

PA = Segment × 10 + BX + SI + 8-bit or 16-bit instruction

PA = Segment × 10 + BX + DI + 8-bit or 16-bit instruction

PA = Segment × 10 + BP + SI + 8-bit or 16-bit instruction

PA = Segment × 10 + BP + DI+ 8-bit or 16-bit instruction

Figure 6.7 shows the physical
address computation in based indexed
with displacement addressing mode.
When 16-bit displacement DISP =
0020H, the contents of BX register
is 4000H, the contents of SI is 0300
and the contents of DS register is
5000H, the physical address = DS ×
10 + BX + SI + DISP = 5000H × 10 +
4000 + 0300 + 0020 = 54320H. When
MOV AL, DS:[BX + SI + DISP] is
executed, the content of the mem-
ory location 54320H will be copied
into the AL register. The examples of
this addressing mode instruction are as
follows:

MOV AL, [BX + DI + DISP] MOV AL, [BX + SI + DISP]

MOV AL, [BP + SI + DISP] MOV AL, [BP + DI + DISP]

String is a sequence of bytes or words which are stored in memory.
Stored characters in word processors and data table are examples of string. Some instructions are designed to
handle a string of characters or data. These instructions have a special addressing mode where DS : SI is used
as a source of string and ES:DI is used to locate the destination address of the string. For example, MOV SB
instruction is used to move a string of source data to the destination location.

When any MOV instruction is executed, data is always transferred from source to destination. The MOV
instruction for different addressing modes is depicted in Table 6.1. The effective address computation depends

+
+
++

54320
54320H 2222

AL

50000H
DS × 10 = 50000

0020

0300

4000

5000

DISP

SI

BX

DS

on MOD and R/M bit patterns as shown in Table 6.2. Segment registers for different addressing modes may
be different and its selection also depends on MOD and R/M as illustrated in Table 6.3.

Addressing Symbolic Destination of Source of

mode Mnemonic Operation Operand Operand Functions

Immediate MOV AX, AH 20H; AX register Data 2000 Source of data is within

addressing mode 2000H AL 00 instruction

Register MOV AX, AX BX AX register BX register Source and destination

addressing mode BX of data are registers of

 microprocessors

Direct addressing MOV AH, AH [0400H] AH register 0400H = Memory address is

mode [0400] Displacement available within the

 instruction.

Register indirect MOV AX, [SI] AL [SI]; AX register SI + DS × 10 Memory address is

addressing mode AH [SI + 1] = memory supplied in any index or

 location pointer registers.

Indexed MOV AX , AL [SI + 6]; AX register [SI + 06] + DS Memory address is the

addressing [SI + 06] AH [SI + 7] × 10 = memory sum of the indexed regi-

mode location ster and a displacement

 within the instruction.

Based addressing MOV AX, AL [BP] ; AX register BP + DS × 10 Memory address is the

mode [BP] AH [BP + 1]. = memory content of BX or BP

 location register within

 instruction.

Based and MOV [BX + [BX + SI] AL; BX + SI + DS AX register Memory address is the

indexed addres- SI], AX. [BX + SI + 1] × 10 = memory sum of an index register

sing mode AH. location and a base register.

Based and MOV AX, AL [BX + AX register [BX + SI + 10] Memory address

indexed with [BX + SI SI + 10]: + DS × 10 = is the sum of an index

displacement + 10] AH [BX + memory register, a base register

addressing mode SI + 11] location and a displacement

 within instruction.

String MOV SB [ES : DI] DI + ES × 10 = SI + DS × 10 = The memory source

addressing mode [DS : SI] memory location memory address is the SI register

 If DF = 0, then location in the data segment.

 SI SI + 1; The memory destination

 DI DI + 1. address is the DI register

 If DF = 1, then in the extra segment.

 SI SI – 1;

 DI DI – 1.

 MOD 11

R/M MOD 00 MOD 01 MOD 10 W = 0 W = 1

000 [BX] + [SI] [BX] + [SI] + 8-bit DISP [BX]+[SI] +16-bit DISP AL AX

001 [BX]+[DI] [BX]+[DI] + 8-bit DISP [BX]+[DI] +16-bit DISP CL CX

010 [BP]+[SI] [BP]+[SI] + 8-bit DISP [BP]+[SI] +16-bit DISP DL DX

011 [BP]+[DI] [BP]+[DI] + 8-bit DISP [BP]+[DI] +16-bit DISP BL BX

100 [SI] [SI] + 8-bit DISP [SI] +16-bit DISP AH SP

101 [DI] [DI] + 8-bit DISP [DI] +16-bit DISP CH BP

110 [Direct [Direct Address] [Direct Address] DH SI

 Address] + 8-bit DISP +16-bit DISP

111 [BX]+[SI] [BX]+[SI] + 8-bit DISP [BX]+[SI] +16-bit DISP BH DI

 Memory Mode Register Mode

R/M MOD 00 MOD 01 MOD 10 Segment Register

000 [BX] + [SI] [BX] + [SI]+8-bit DISP [BX] + [SI] +16-bit DISP DS

001 [BX] + [DI] [BX] + [DI] + 8-bit DISP [BX] + [DI] +16-bit DISP DS

010 [BP] + [SI] [BP] + [SI] +8-bit DISP [BP] + [SI] +16-bit DISP DS

011 [BP] + [DI] [BP] + [DI] +8-bit DISP [BP] + [DI] +16-bit DISP DS

100 [SI] [SI] + 8-bit DISP [SI] +16-bit DISP DS

101 [DI] [DI] + 8-bit DISP [DI] +16-bit DISP DS

110 [Direct Address] [Direct Address] + 8-bit DISP [Direct Address] +16-bit DISP DS or SS

111 [BX] + [SI] [BX] + [SI] + 8-bit DISP [BX]+[SI] + 16-bit DISP DS

8-bit DISP = 8-bit displacement 16-bit DISP = 16-bit displacement

The basic types of branch addressing are shown in Fig. 6.8. The intrasegment mode is used to transfer the
control to a destination that lies in the same segment where the control transfer instruction itself resides. In
the intersegment mode, address is used to transfer the control to a destination that lies in a different segment.

For the branch-control transfer instructions, the addressing modes depend upon whether the destination
location is within the same segment or in a different one. It depends upon the method of passing the destina-
tion address to the processor. There are two types of branch control instructions: intersegment and intraseg-
ment addressing modes.

During execution of program instruction, when the location to which the control to be transferred lies in a
different segment other than the current one, the mode is called intersegment mode. If the destination location
lies in the same segment, the mode is called intrasegment mode.

The effective branch address is sum of an 8-bit or 16-bit displacement
and the current contents of IP. When the displacement is
8-bit long, it is referred to as a short jump. Intrasegment
direct addressing is what most computer books refer to as
relative addressing because the displacement is computed
‘relative’ to the IP. It may be used with either conditional
or unconditional branching, but a conditional branch
instruction can have only 8-bit displacement.

Figure 6.9 shows intrasegment direct addressing. In
the intrasegment direct mode, the destination location to
which the control is transferred lies in the same segment
where the control-transfer instruction lies and appears directly in the instruction as an immediate displace-
ment value. The displacement is relative to the contents of the IP. The expression for effective address in
which the control is transferred is given below:

EA = Contents of IP + 8- or 16-bit displacement.

The effective branch address is the contents of a register or memory
location that is accessed using any of the above data-related addressing modes except the immediate mode.
The contents of IP are replaced by the effective branch address. This addressing mode may be used only in
unconditional branch instructions. Figure 6.10 shows intrasegment indirect addressing.

Control Transfer Instructions

Intrasegment
Control Transfer Instructions

Intersegment
Control Transfer Instructions

Intrasegment
Direct

Intrasegment
Indirect

Intersegment
Direct

Intersegment
Indirect

8-bit or 16-bit
Displacement

IP

Effective
Address (EA)

Instruction

Addressing Modes
Effective Address Computed

according to Addressing Modes

Effective Branch Address
Instruction

Register

Effective Branch Address

Memory

In this mode, the control to be transferred lies in the same segment where the control instruction lies and
is passed indirectly to the instruction. It uses unconditional branch instructions. The effective branch address
is that of the register or memory location that is accessed using any of the above data-related addressing
modes except the immediate mode. The contents of the IP are replaced by the effective branch address.

This replaces the contents of IP
with a part of the instruction and the contents of CS with another part
of the instruction. The purpose of this addressing mode is to provide
a means of branching from one code segment to another. Figure 6.11
shows intersegment direct addressing.

If the location to which the control is to be transferred lies in
the different segment, than in which the control transfer instruction
lies, it is called intersegment. This addressing mode provides the facility of branching from one segment to
another segment. The CS and IP specify the destination address directly in the instruction. It replaces the
contents of IP with the part of the instruction and the contents of CS with another part of the instruction.

This mode replaces the contents of IP and CS with the contents of two
consecutive words in memory that are referenced using any of the above data-related addressing modes
except the immediate and register modes. Figure 6.12 shows intersegment indirect addressing.

The location to which the control is to be transferred lies in the different segment than the segment where
the transfer control instruction lies and is passed to the instruction indirectly, i.e., it replaces the contents of
IP and CS with the contents of 2 consecutive words in the memory. The starting address of the memory block
may be referred using any of the addressing modes except immediate.

Segment

8-bit or 16-bit
Displacement

CS

IP

Addressing Modes
Effective Address Computed

According to Addressing Modes

Branch Address Offset

Segment Address

Instruction

Two Consecutive Words in Memory

Find the addressing modes of the following instructions:

 (i) MOV CX, BX

 (ii) MOV BX, 1234

 (iii) MOV AX, [SI]

 (iv) MOV [Offset Address], 2345

 (v) MOV CX, [BX+SI]

 (vi) MOV AX, [BX+SI+1234]

 (i) MOV CX, BX instruction is an example of register addressing mode

 (ii) MOV BX, 1234 instruction is an example of immediate addressing mode

 (iii) MOV AX, [SI] instruction is an example of indexed addressing mode

 (iv) MOV [offset address], 2345 instruction is an example of memory addressing mode

 (v) MOV CX, [BX + SI] instruction is an example of based indexed addressing mode

 (vi) MOV AX, [BX + SI +1234] instruction is an example of based indexed with displacement addressing
mode

Determine the memory location accessed by the following instructions:

 (i) MOV AL, [0100]

 (ii) MOV CL, [BX + 0200] Assume CS = 2300, BX = 1000H, SI = 0100

 (i) Physical address of the memory location accessed by MOV AL, [0100] is CS × 10 + 0100 = 2300 ×
10 + 0100 = 23100H

 (ii) Physical address of the memory location accessed by MOV CL, [BX + 0200] is CS × 10 + BX + 0200
= 2300 × 10 + 1000 + 0100 = 24100H

The contents of different registers are AX = 1000H, BX = 2000H, SI = 3000H,

 DI = 4000H, BP = 5000H, SP = 6000H, CS = 8000H, DS = 1000H, SS

 = 2000H, IP = 7000H.

Determine the 16-bit effective addresses and 20-bit physical address for the following addressing
modes:

 (i) Direct addressing

 (ii) Register indirect addressing

 (iii) Based Indexed addressing

 (iv) Based Indexed with displacement addressing

Assume Offset (displacement) = 0500H

 (i) Direct addressing mode

 MOV AX, [0100H] is the example of direct addressing mode instruction. The 16-bit effective
addresses = 0500 and 20-bit physical address = CS × 10 + 0500 = 8000 × 10 + 0500 = 80500H

 (ii) Register indirect addressing

 MOV AX, [BX] is the example of register indirect addressing mode instruction. The 16-bit effective
addresses is the content of BX register = 2000 and 20-bit physical address = CS × 10 + BX = 8000 ×
10 + 2000 = 82000H

 (iii) Based indexed addressing

 MOV AX, DS:[BX + SI] is the example of base indexed addressing mode instruction. The 16-bit
effective addresses is the content of BX plus SI register = BX + SI = 2000 + 3000 = 5000H and 20-bit
physical address = DS × 10 + BX + SI = 1000 × 10 + 2000 + 3000 = 15000H

 (iv) Based indexed with displacement addressing

 MOV AX, DS:[BX + SI + DISP] is the example of base indexed addressing mode instruction. The
20-bit physical = DS × 10 + BX + SI + DISP

 = 1000 × 10H + 2000H + 3000H = 0500H
 = 15500H

If SI = 0200H, what will be the content of the register AH after the execution

 of MOV AX, [SI] instruction? Assume DS = 4000H.

 As DS = 4000H and the content of SI pointer register is 0200, the content of memory location
40200H (DS × 10 + SI = 4000 × 10 + 0200) will be copied into the AL register. Then the content
of memory location 40201H (DS × 10 + [SI + 1] = 4000 × 10 + 0201) will be copied into the AH
register.

Determine the starting and ending address for data segment and code segment.

 Assume DS = 5000H and CS = 7000H.

 The starting address is found by multiplying 10 with the content of the segment register. The ending
address can be determined after adding FFFFH (64K) with the starting address. Then the starting
address of data segment memory = DS × 10 = 5000 × 10 = 50000H and the ending address of data
segment memory is equal to = 50000 H + FFFFH = 5FFFFH. Similarly the starting address of code
segment memory = CS × 10 = 7000 × 10 = 70000H and the ending address of code segment memory
is equal to = 70000H + FFFFH = 7FFFFH.

What physical address can be accessed by the instruction MOV [BP], AL if BP
 = 2500H. Assume the content of stack segment register is 4578H.

 The physical address accessed by the instruction MOV [BP], AL is SS × 10 + BP = 4578 × 10 +
2500H = 47C80H.

The Intel 8086 Instruction Set is the core of the entire series of processors created by Intel. Some instructions
have been added to this set to accommodate the extra features of later designs, but the set shown here contains
the basic instructions understood by all of the processors. The 8086 instruction set consists of the following
instructions:

 Data Transfer Instructions move, copy, load exchange, input and output

 Arithmetic Instructions add, subtract, increment, decrement, convert byte/word and compare

 Logical Instructions AND, OR, exclusive OR, shift/rotate and test

 String Manipulation Instructions load, store, move, compare and scan for byte/word.

 Control Transfer Instructions conditional, unconditional, call subroutine and return from subroutine

 Input/Output Instructions

 Other Instructions setting/clearing flag bits, stack operations, software interrupts, etc.

The instruction format consists of opcode and operand. Depending upon the opcode and number of
operand present in an instruction, instructions are one byte to six bytes long. The general format of an
instruction is illustrated in Fig. 6.13.

The first byte of any instruction is the opcode. The bits D7 to D2 specify the operation which will be car-
ried out by the instruction. D1 is the register direction bit (D). This bit defines whether the register operand is
in byte 2 or is the source or destination operand. While D = 1, the register operand is the destination operand.

If D = 0, the register operand is source operand. D0 represents data size (W), whether the data is 8-bit or
16-bit. When W = 0, data is 8-bit and if W = 1, data will be 16-bit.

The second byte of the instruction specifies whether the operand is in the memory or in the register.
This byte consists of Mode (D7–D6 bits), Register (D5, D4, D3 bits) and R/M (D2, D1, D0). The third and
fourth bytes of the instruction specifiy lower 8-bit displacement and higher 8-bit displacement of the memory
respectively. Then last two bytes (fifth and sixth) represent lower 8-bit data and higher 8-bit data.

Instructions are performed operations with 8-bit data and 16-bit data. 8-bit data can be obtained from a reg-
ister or a memory location or input port. In the same way, 16-bit data may be available from any register pair
or two consequent memory locations. Hence binary codes of instructions are different. Due to different ways
of specifying data for instructions, the machine or binary codes of all instructions are of different lengths.
The Intel 8086/8088 instructions are classified into the following groups based on number of bytes in the
instruction as given below:

 One-byte instructions

 Two-byte instructions

 Three-and four-byte instructions

 Five-and six-byte instructions

An one-byte instruction is used as opcode as well as data or operand.
The least three bits of the opcode are used to specify the register operand as shown in Fig. 6.14

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D0 D7 D0

D7 D0 D7 D0

OP CODE D W MOD REG R/M
Lower byte DISP Higher byte DISP

Lower byte DATA Higher byte DATA

Byte 6Byte 5

Byte 4Byte 3Byte 1 Byte 2

D7

One-byte instruction–implied operand

D0

OP Code

D7

One-byte instruction–register mode

D D3 2 0D

OP Code

Byte 1

REG

Byte 1

Examples of one-byte instructions are XLAT, LAHF, SAHF, PUSH AX, POP DS, PUSHF and POPF.
The opcodes of these instructions are

D7 for XLAT,

9F for LAHF,

9E for SAHF,

50 for PUSH AX, 1F for POP DS,

9C for PUSHF,

9D for POPF

Register-

to-register and register to/from memory with

no displacement instructions are two bytes long

as shown in Fig. 6.15. In a register-to-register

instruction, the first byte of the code specifies

the instruction operation (D7–D2) and width of

the operand is specified by D1–D0 (W). The

second byte represents the register operand and

R/M field as given in Table 6.2.

The register to/from memory with no displacement instructions are same as register to register instruc-

tions except MOD field as depicted in Fig. 6.14. The MOD field can be used to represent different modes of

addressing as given in Table 6.4.

MOD Mode of addressing

00 Memory addressing without displacement

01 Memory addressing with 8-bit displacement

10 Memory addressing with 16-bit displacement

11 Register addressing with W = 0 for 8-bit and W = 1 for 16-bit

Examples of two-byte instructions are MOV AX, BX; MOV AL, BL; IN AL, 01; and OUT 02, AL, etc.

The opcodes and operands of these instructions are as follows:

89 D8 for MOV AX, BX

88 D8 for MOV AL, BL

E4 01 for IN AL, 01

E6 02 for OUT 02, AL

Register to/from memory with displacement and

immediate operand to register instructions are four-byte instructions as depicted in Fig. 6.16. The register to/

from memory with displacement instruction consists of one or two additional bytes for displacement and the

2 bytes of the register to/from memory without displacement as given below:

Register to Register

Register to/from memory with Displacement

OP Code D W MOD REG R/M

Byte 1 Byte 2

D D D D07 2 1 D D D D37 6 5 2 0D D

OP Code D W 11 REG R/M

Byte 1 Byte 2

D D D D07 2 1 D D D D37 6 5 2 0D D

Register to/from Memory with Displacement

OP Code MOD REG R/M

Byte 1 Byte 2

D D07 D D D D37 6 5 2 0D D

Lower-order DISP

Byte 3

D7 0D

Higher-order DISP

Byte 4

D7 0D

When the instruction consists of one-byte immediate data, it acts as a three-byte instruction. If the
instruction has two bytes of immediate data, it works as a four-byte instructions. Examples of three-byte
instructions are MOV SI, 0300; MOV CX, 0005; MOV DI, 0100; MOV AL, [0300], and MOV [0400], AL,
etc. The opcodes and operands of these three-byte instructions are given below:

BE 00 03 for MOV SI, 0300

B9 05 00 for MOV CX, 0005

BF 00 01 for MOV DI, 0100

A0 00 03 for MOV AL, [0300]

A2 00 04 for MOV [0400], AL

The four-byte instructions are MOV [BX + SI + 1000], AX; MOV [BX + DI + 0447], CL; MOV [BX +
SI + 0300], SP; MOV [BP + SI + 0400], DL; and MOV [BP + DI + 0100], BL. The opcodes and operands of
these four-byte instructions are as follows:

89 80 00 10 for MOV [BX + SI + 1000], AX

88 89 47 04 for MOV [BX + DI + 0447], CL

89 A0 00 03 for MOV [BX + SI + 0300], SP

88 92 00 04 for MOV [BP + SI + 0400], DL

88 9B 00 01 for MOV [BP + DI + 0100], BL

Immediate operand to memory with 16-bit displacement
instructions are six-byte instructions. The first two bytes represent OPCODE, MOD, OPCODE and R/M
fields. The other four bytes consists of 2 bytes for displacement and 2 bytes for data as given below:

Immediate Operand to Register

OP Code 11 REG R/M

Byte 1 Byte 2

D D07 D D D D37 6 5 2 0D D

Lower-byte Data

Byte 3

D7 0D

Lowre-byte Data

Byte 4

D7 0D

In immediate operand to register instruction, the first byte and the three bits D5–D3 of the second byte are
used for opcode. This instruction consists of one or two bytes of immediate data. The format of the instruction
is given below:

Immediate Operand to Memory with 16-bit displacement

OP Code MOD OPCODE R/M

Byte 1 Byte 2

D D07 D D D D37 6 5 2 0D D

Lower byte DISP

Byte 3

D7 0D

Higher byte DISP

Byte 4

D7 0D

Lower-byte Data

Byte 5

D7 0D

Higher-byte Data

Byte 6

D7 0D

The example of five byte instructions are MOV [BX + SI] + DISP, 22; MOV [BX + DI] + DISP, 66; MOV
[SI] + DISP, 44, etc. The opcodes and operands of these three byte instructions are given below:

C6 80 DISPL DISPH 22 for MOV [BX + SI] + DISP, 22

C6 81 DISPL DISPH 66 for MOV [BX + DI] + DISP, 66

C6 84 DISPL DISPH 44 for MOV [SI] +DISP, 44

The six-byte instructions are MOV [BX + SI + 1000], 2345; MOV [BX + DI + 0447], 2000; MOV [SI +
0300], 4466. The opcodes and operands of these four byte instructions are as follows:

C7 80 00 10 45 23 for MOV [BX + SI + 1000], 2345

C7 81 47 04 00 20 for MOV [BX + DI + 0447], 2000

C7 84 00 03 66 44 for MOV [SI + 0300], 4466

The 8086 instruction set can be divided into different categories based on their functions as follows:

These types of instructions are used to transfer data from the source
operand to the destination operand. All copy, store, move, load, input and output instructions fall in this
category. Examples of instructions of this group are MOV, LDS, XCHG, PUSH and POP.

All the instructions performing arithmetic, logical, increment,
decrement, compare and scan instructions belong to this category. For example, ADD, SUB, MUL, DIV,
INC, CMP and DAS, AND, OR, NOT, TEST, XOR.

These instructions transfer control of execution to the specified address. All
CALL, JUMP, interrupt and return instructions belong to this category.

These instructions have REP prefix with CX used as count register, and they can
be used to implement unconditional and conditional loops. The LOOP, LOOPNZ and LOOPZ instructions
belong to this category. Usually, these instructions are used to implement different delay loops.

These instructions control the machine status. CLC, CMC, CLI,
STD, STI, NOP, HLT, WAIT and LOCK instructions are example of machine control instructions.

All these instructions which directly affect the flag register come
under this group of instructions. Instructions like CLD, STD, CLI, STI, etc; belong to this category.

These instructions involve the bitwise shifting OR rotation in either
direction with or without a count in CX. The examples of instructions are RCL, RCR, ROL, ROR, SAL, SHL,
SAR and SHR.

These instructions involve various string manipulation operation like load, move,
scan, compare, store, etc. These instructions are only operated upon the strings. The examples of string
instructions are MOVS, LODS and STOS.

The data-transfer instructions are used to transfer data between registers, registers and memory, registers and
immediate data, or memory and immediate data. All data-transfer instructions are explained in this section.

(Copy data from source to destination)

Destination Source, Flag affected: None

The instruction perform datas movement between registers, registers and memory, registers and immedi-
ate data, memory and immediate data, between two memory locations, between I/O port and registers and
between the stack and memory or a register. Both 8-bit and 16-bit data registers are used in data transfer
instructions.

In case of immediate addressing mode, a segment register cannot be a destination register. Direct loading
of the segment registers with immediate data is not permitted. To load the segment registers with immediate
data, one will have to load any general-purpose register with data and then it will have to be moved to that
particular segment register.

 Destination Source

 Register Immediate data

 Memory Immediate data

 Register Register

 Register Memory

 Memory Register

 Segment Memory

 Memory Segment

 Register Segment

 Segment Register

The MOV instruction will not be able to

 set the value of the CS and IP registers

 copy the value of one segment register to another segment register (should copy to general register
first).

 copy an immediate value to segment register (should copy to general register first)

This instruction moves immediate 8-bit/16-bit data to the
specified register. Its object code is either 2 or 3 bytes based on data.
The format of its object code is as follows:

w = 0 for 8-bit data
 1011 w r r r 8-bit Data

w = 1 for 16-bit data

 1011 w r r r Lower 8-bit Data Higher 8-bit Data

r r r = address of register as illustrated in Table 6.2

For example, MOV AL, 8-bit data

object code is 1011 w r r r = 1011 0000 = B0 as w = 0 and r r r = 000

If the instruction is MOV AL, FFH, the object code will be B0, FF H

When this instruction is executed, immediate 8-bit or 16-bit data moves to
a specified register or a memory location(s) though this instruction is not used to transfer immediate data to
a register. The format of its object code is given below:

w = 0 for 8 bit data
 1100 011w Mod 000 R/M 8-bit Data
w = 1 for 16 bit data
 1100 011w Mod 000 R/M Lower -8 bit Data Higher -8 bit Data

Mod R/M and data are explained in Section 6.2.

In this instruction, memory location can be addressed directly or by a register or a combination of register
and displacement.

For example, MOV [0345], 23H

When this instruction is executed, 23H will be loaded into the memory location DS × 10 + 0345. The
object code is as follows:

 1100 011w Mod 000 R/M 8 bit data

This instruction is direct addressing of a memory location. As per Table 6.2, for direct addressing Mod = 00,
R/M = 110 and w = 0 for 8-bit operation. Then object code is

1100 0110 00 000 110 23

= C6, 06, 23

Another example is MOV [0345], 2345H

When this instruction is executed, 45H will be loaded into the memory location DS × 10 + 0345 and 23H will
be loaded into DS × 10 + 0346. The object code format of this instruction as given below:

 1100 011w Mod 000 R/M Lower 8-bit Data Higher 8-bit Data

This instruction is direct addressing of a memory location. As per Table 6.2, for direct addressing Mod = 00,
R/M = 110. w = 1 for 16-bit operation.

Then object code

 1100 0111 00 000 110 46 23

 = C7, 06, 46, 23

The example of MOV[reg], data instruction is MOV [BX], 45H. When this instruction is executed, data will
be moved to the memory location specified by the content of BX register. The object code is

 1100 011 w Mod 000 R/M 8-bit Data

Here, Mod = 00, R/M = 111 and w = 0 for 8-bit operation. Then object code is

 1100 0110 00 000 111 45

 = C6, 07, 45

When MOV ACC, Memory instruction is executed, the 8-bit data moves
from a memory location to AL, or 16-bit data moves from two consecutive memory locations to AX register.
The object code of this instruction is

 1010 000w 16-bit offset address

For w = 0, Object code = A0, Offset address

For w = 1, Object code = A1, Offset address

For example, MOV AL, [2340]. This instruction moves the content of offset address 2340H to AL and
the object code is A0, 40, 23. If the content of the memory location is 25H, after execution of MOV AL,
[2340], 25 will be stored in AL.

The content of the accumulator will be stored into the memory. This means
that the content of AL is stored in memory and contents of AX will be stored in two consecutive memory
locations. The object code is

1010 001w 16-bit Offset Address

For w = 1, Object code = A3, offset address
For w = 0, Object code = A2, offset address

For example, MOV [4000], AL Content of AL is stored in the memory location represented by offset
address 4000H. Then object code is A2, 00, 40.

Another example is MOV [4000], AX. Content of AX is stored in the two consecutive memory locations
represented by offset address 4000H.

This instruction is used to move 8-bit or 16-bit
data from one register to another register, memory to register and register to memory. This instruction cannot
be used for data transfer from memory to memory. The object code is

1010 10 Mod reg R/M

The direction flag d is either 0 or 1. When d = 0, the specified register is the source of the operand. The
Mod and R/M are used for the first operand (the content of memory/register-1) and reg represents the second
operand (the content of memory/register-2). If d = 1, register specifies a register which works as the destina-
tion of the operand. The Mod and R/M are also used for the second operand (memory/register-2) and reg
defines the first operand (mem/register-1).

For example, MOV BX, CX

This instruction is used for CX register to BX register data transfer. If d = 0, register specifies a register
which is the source for the operand. When d = 0, Mod and R/M are used for the first operand, i.e., BX. As
per Table 6.2 for BX, Mod = 11, R/M = 011. The register defines the second operand, CX (source for the
operand). Then reg is 001 and w = 1. In that case the object code is

1010 1001 Mod reg R/M

= 1000 1001, 11 001 011 = 89, CB

 Mod reg R/M

 for for for

 BX CX BX

When d = 1, reg specifies a register which is used as the destination for the operand. If d = 1, Mod and
R/M are used for the second operand CX; and reg stands for the first operand BX as destination and w = 1.
Then object code is 1000 1011, 11 011 001 = 8B, D9

 Mod reg R/M

 for for for

 CX BX CX

Hence both codes 89, CB and 8B, D9 are valid for MOV BX, CX instruction.

Another example is MOV CX, [0500]. The object code of this instruction is

 1000 10 dw Mod reg R/M

In this case, reg will specify register CX which acts as destination for the operand when d = 1. If d = 1,
Mod and R/M are used direct addressing.

The mod = 00, R/M = 111, CX = 001 and w = 1

Then the object code is 1000 1011, 00 001 111 = 8B, 0F

Write instructions for the following operations:

 (i) Move the content of DX register into SS register

 (ii) Load 16-bit data from memory location offset address 0300 to AX

 (iii) Load 8-bit data, FF in the BL register

 (iv) Source index address 0100 is stored in SI

 (v) Destination index address 0400 is stored in DI

 (i) MOV SS, DX; Move the content of the DX register into the SS register

 (ii) MOV AX, [0300]; Load 16-bit data from memory location offset address 0300 to AX

 (iii) MOV BL, FF; Load 8-bit data, FF in the BL register

 (iv) MOV SI, 0100; Source index address 0100 is stored in SI

 (v) MOV DI, 0400; Destination index address 0400 is stored in DI

(Exchange data between source to destination)

Destination Source, Flag affected: None

Destination Source

Accumulator register

Memory register

Register register

This instruction is used to exchange the contents of the specified source and destination operands, which
may be registers or a memory location. But the exchange of contents of two memory locations is not allowed.
Immediate data is not allowed in XCHG instructions. For example, XCHG [4000], AX exchange data
between AX and a memory location represented by offset address 5000 H with the content of data segment.
XCHG AX, BX instruction exchanges data between AX and BX. The data format for register to register and
register to memory is

 1000 011 w Mod reg R/M

and the data format for register to accumulator is

 1001 0 reg

The object code of XCHG AX,BX is 1000 011w Mod reg R/M = 1000 0111 11 000 011 = 87 C3 as w =
1, Mod = 11, reg = 000 and R/M = 011. Similarly the object code of XCHG AL, [BX] = 1000 0110, 00 000
111 = 86, 07 where w = 0, Mod = 00, reg = 000 and R/M = 111

(Loads the lower flags byte into AH)

AH Flags, Flag not affected: O A C Z P

Loads the low byte of the flags word into the AH register. Provides support for 8085 processor. Load AH
from 8 low bits of flags register. This instruction loads the AH register with the lower byte of the flag register.
This command may be used to observe the status of all the condition code flags at a time. The LAHF instruc-
tion followed by a PUSH AX instruction has the same effect of PUSH PSW instruction in 8085

AH = flags register

AH bit: 7 6 5 4 3 2 1 0

[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

Here bits 1, 3, and 5 are reserved.

The object code of LAHF instruction is 9F

1001 1111

(Saves AH into lower flags byte)

Flags AH, Flag affected: None

Saves the AH register bit pattern into the low byte of the flags register

The lower byte of 8086 flag register is exactly same as flag register of 8085. The SAHF instruction
replaces the equivalent flag byte of 8085 with a byte from the AH register. POP PSW instruction of 8085
will be translated to POP AX SAHF on a 8086 processor. SAHF changes the flags in the lower byte of flag
register. The object code of SAHF instruction is 9E

1001 1110

(Input data from I/O device)

byte: AL port

word: AL [port]; AH [port+1] or AX (DX) Flag affected: None

This instruction is used to read data from an input port. The address of the input port can be specified
within the instruction directly or indirectly. AL and AX registers can be used as destinations for 8-bit and
16-bit input operands respectively. DX is the only register which is allowed to carry the port address. It
fetches a byte or word into AL or AX from an 8-bit port or the 16-bit address contained in DX. The 8-bit
port supports the I/O technique of earlier processors such as 8085. Input a byte or word from direct I/O ports
00H to FFH (0 to 255). When the port address consists of 16 bits, it must be addressed by DX. Input a byte
or word from indirect I/O ports 0000H to FFFFH (0-65535); port address is in DX and flags are not affected.
The object code of this instruction is

For fixed port 1110010 w port

For variable port 1110110 w

The examples of IN instructions are

IN AL, 01; Load the content of 8-bit port address 01H to AL register. The object code of IN AL, 01 is
1110010w, port address = E4, 01 as w = 0.

IN AX, DX; Read data from a 16-bit port address specified by DX register and stores it in AX register.
The object code of IN AX, DX is 1110 110w = ED as w = 1.

(Output data to I/O device)
byte: [port] AL

word: [port] AL [port+1]*AH or (DX AX)

Flag affected: None

This instruction is used to write on an output port. The address of the output port may be specified in the
instruction directly or implicitly in DX. Therefore, the contents of AX or AL are transferred to a directly or
indirectly addressed port after execution. This instruction can output a byte or word to direct I/O ports 00H
to FFH (0 to 255).

It can send a byte or word to an 8-bit port address or the 16-bit port address contained in DX. The reg-
isters AL and AX are the allowed source operands for 8-bit and 16-bit operations respectively. If the port
address is of 16-bit, it must be in DX. Output a byte or word to indirect I/O ports 0000H to FFFFH (0 to
65535); port address is in DX and flags are not affected. The object code of this instruction is

For fixed port 1110 011w port

For variable port 1110 111w

The examples of OUT instructions are OUT 02, AL and OUT DX, AX.

OUT 02, AL

After execution of this instruction, sends the content of AL to a port address 02H. The object code of
OUT 02, AL is 1110 011w, port address = E6, 02 as w = 0.

OUT DX, AX

This instruction sends data available in AX to a port address which is specified by the DX register. The
object code of OUT DX, AX is 1110 111w = EF as w = 1.

Write instructions for the following operations:

 (i) Exchange the byte between memory location offset address 0300 and the AL register

 (ii) Load 8 bits of flags in the AH register

 (iii) Exchange the word between DX and AX registers

 (iv) Copy a byte from the port address 03 to the AL register

 (v) Output the content of accumulator to port address 01

 (i) XCHG AL, [0300]; Exchange the byte between memory location offset address 0300 and the AL
register

 (ii) LAHF; Load 8 bits of flags in the AH register

 (iii) XCHG DX, AX; Exchange the word between DX and AX registers

 (iv) IN AL, 03; Copy a byte from the port address 03 to the AL register

 (v) OUT 01, AX; Output the content of accumulator to port address 01

(load effective address)

reg16 effective address (offset) of addr. Flag affected: None

Loads the effective address or offset of memory variable into reg16. This type of data-transfer operation
is important to load a segment or general-purpose register with an address directly from memory. The LEA
instruction is used to load a specified register with 16-bit offset address. This instruction is very useful for
assembly language. The object code is

1000 1101 Mod reg R/M

For example, LEA SI, address states that the 16-bit effective address loads in the SI register.

LEA BX, ADR

Effective address of ADR will be transferred to BX register. The object code of LEA BX, [0245] = 1000
1101 00 000 001 45 02 = 8D 1E 45 02.

(load data segment)

reg16 [memory16]; DS [memory16+2] Flag affected: None

Loads the DS register and reg16 from memory with the segment and offset values. This instruction loads
the specified register in the instruction with the content of the memory location specified as source in the
instruction. It also loads the contents of the memory locations following the specified memory locations into
DS register. The object code is

1100 0101 Mod reg R/M

 = C5, mod reg r/m

The example of LDS instruction is LDS AX, [BX]

Load the contents of memory locations specified by the content of BX register into AX. Here, Mod for
[BX] = 00, R/M for [BX] = 111 and reg for AX = 000. Then the object code = C5, 00000111 = C5, 07

(Load extra segment)

reg16 [mem16]; ES [mem16 + 2] Flag affected: None

Loads the ES register and reg16 with the segment and offset values for the variable in memory. The
object code is

1100 0100 Mod reg R/M

The example of LES instruction is LES CX, [4000]. The object code of LES CX, [4000] instruction is
1100 0100 00 001 110 00 40 = C4 0E 00 40.

(Translate byte in AL by table look-up)

AL DS: [BX+AL], Flag affected: None

This instruction is used to translate the byte in the AL register by adding it to a base value in BX
which has been set to locate the look-up table and the byte located is returned in AL. The physical address
of memory location of look-up table is computed from DS: [BX+AL]. After execution of XLAT, the data
from the memory location of the look-up table is loaded into the AL register. Using look-up table technique,
this instruction is able to find out the codes in case of code-conversion problems. The object code of XLAT
instruction is 1101 0111 = D7.

Write instructions for the following operations:

 (i) Load the content of specified memory location represented by BX into the AX register.

 (ii) Load the content of specified memory location represented by SI into the AL register.

 (iii) Load the content of specified memory location represented by SI into the AX register.

 (iv) Replace a byte in the AL register with a byte from the of look-up table

 (i) LDS AX, [BX]; Load the content of specified memory location represented by BX into the AX
register

 (ii) LODSB; Load the content of specified memory location represented by SI into the AL register

 (iii) LODSW; Load the content of specified memory location represented by SI into the AX register

 (iv) XLAT; Replace a byte in AL register with a byte from the of look-up table.

These instructions are used to manipulate stack-related operations. All stack instructions are explained in this
section.

Push source register onto stack

SP = SP-2; SS:[SP] source register, Flag affected: None

After execution of this instruction, the content of a specified register is pushed on to the stack. The Stack
Pointer (SP) is decremented by 2 after execution, and then stores the two-byte contents of the operand onto
stack. Initially the higher byte is pushed and then the lower byte is pushed, so that the higher byte is stored

in the higher address and the lower byte is stored in the lower address. The actual operation of PUSH BX
instruction is shown in Fig. 6.15. The sequence of PUSH operation is as follows:

 The current stack top is already occupied in the stack segment memory, so that SP is decrement by
one then store the content of BH into the address pointed by SP and the stack segment SS.

 Again, decrement SP by one and store BL into the memory location pointed by SP and the stack
segment SS.

In this way, SP is decrement by 2 and BH-BL contents are stored in the stack as shown in Fig. 6.18.

Thereafter, the contents of SP point to a new stack
top. Assume the content of BX = 1234, SS = 4000 and SP
= 01FF. Then content of BH, 12H is stored in 410FEH
and content of BL, 34H is also stored in 410FDH.

The object code of PUSH instruction is

For register/memory

 1111 1111 Mod 110 R/M

For register 01010 reg

For segment register 000 reg 110

The examples of these instructions are PUSH AX,
PUSH BX, PUSH CX, PUSH DS, and PUSH [4000].
The object code for PUSH AX is 50H , for PUSH BX is
53H, for PUSH CX is 51H, for PUSH DS is 1E, for PUSH [4000] is FF 36 00 40.

(Push flags word onto stack)

SP = SP-2; SS: [SP] flags, SP = SP-2; SS:[SP] Source, Flag affected: None

The push flag instruction pushes the content of the flag register on the stack. First the upper byte FLAGU
and then the lower byte FLAGL is pushed on it. The SP is decremented by 2 for each push operation. The
general operation of this operation is similar to the PUSH operation. The object code of PUSHF is 100 111
00 = 9C.

(Pop word at top of stack to destination)

Destination SS:[SP]; SP = SP + 2, Flag affected: None

When this instruction is executed, it loads the specified register/memory location with the contents of
the memory location of which the address is formed using the current stack segment SS and the stack pointer
SP. The stack pointer is incremented by 2. The operation of POP instruction is exactly opposite the PUSH
instruction. The actual operation of POP BX instruction is shown in Fig. 6.16. The sequence of POP opera-
tion is as follows:

 The content of stack-top memory location is stored in the BL register and SP is incremented by one.

 Then contents of memory location as pointed by SP are copied to the BH register and SP is also
incremented by 1.

Hence SP is incremented by 2 and points to the next stack top as depicted in Fig. 6.19. Assume 12H is
stored in 410FEH and 34H is stored in 410FDH, the content of SS = 4000 and SP = 01FD. After execution
of POP BX instruction, the content of the memory location 410FDH is copied into BL and content of the
memory location 410FEH is also copied into BH.

Physical
Address

401FDH

401FEH

401FFH

SP = 01FF H
SS = 4000 H

PUSH BX

BH BL

12 34

34

12

XX

The object code of POP is

For register/memory 1000 1111 Mod 000 R/M

For register 0101 1 reg

For Segment register 000 reg 111

The examples of POP instructions are POP AX,
POP BX, POP CX, POP DS, and POP [4000]. The object
code for POP AX is 58H, for POP BX is 5BH, for POP
CX is 59H, for POP DS is 1F, for POP [4000] is 8F 06
00 40.

(Pop word at top of stack to flags register)

flags SS:[SP]; SP = SP + 2, Flag affected: All

The pop flags instruction loads the flag register com-
pletely from word contents of the memory location cur-
rently addressed by SP and SS. The SP is incremented
by 2 for each pop operation.

The object code of POPF is 100 111 01 = 9D

Write instructions for the following operations:

 (i) Push the content of AX register on to the stack.

 (ii) Push the content of memory location offset address 0500 on to the stack.

 (iii) Store the content of stack top memory locations in AL and AH registers.

 (iv) Store the16-bit flags on to the stack.

 (v) Pop the top of the stack into the 16-bit flag word.

 (i) PUSH AX; Push the content of the AX register on to the stack.

 (ii) PUSH [0500]; Push the content of memory location offset address 0500 on to the stack.

 (iii) POP AX; Store the content of stack-top memory locations in AL and AH registers.

 (iv) PUSHF; Store the 16-bit flags on to the stack.

 (v) POPF; Pop the top of the stack into the 16-bit flag word.

These instructions perform the arithmetic operations such as addition, subtraction, increment, decrement,
negation, multiplication, division and comparing two values. The ASCII adjustment and decimal adjust
instructions also belong to this type of instructions. The 8086/8088 instructions that handle these operations
are ADD, ADC, SUB, SBB, INC, DEC, NEG, MUL, IMUL, DIV, IDIV, and other instructions such as AAA,
AAD, AAM, AAS, DAA, and DAS. In this section, all arithmetic instructions are discussed below in signifi-
cant details.

(Add two operands, result remains in destination)

Destination (Source + Destination), Flag affected: O S Z A P C

Physical
Address

401FDH

401FEH

401FFH

SP = 01FD
SS = 4000 H

POP BX

BH BL

12
34

34

12

The ADD instruction adds the contents of source operand (register or a memory location) specified in
the instruction or an immediate data to the contents of destination (another register or memory location).
After addition, the result is in the destination operand. But both the source and destination operands cannot
be memory operands. It means that memory-to-memory addition is not possible. After addition, the condition
code flags O, S, Z, A, P and C are affected, depending upon the result. The object code of the ADD instruc-
tion is as follows:

Register/Memory with Register 0000 00dw Mod reg R/M

Immediate to register/memory 1000 00sw Mod 000 R/M data data

Immediate to Accumulator 0000 010w data data

For example, ADD AX, 0100H instruction can add 16-bit immediate data (0100H) with the content of
AX register and result is stored in the AX register. The object code 0000 010w, 16-bit data. Here w = 1, the
object code is 05, 00, 01.

The example of other ADD instructions are ADD AL, 22H, ADD AX, BX, ADD AL, [BX], ADD
[BX],CL and ADD [BX],CX. The object code for ADD AL, 22H is 04 22, for ADD AX, BX is 01 D8, for
ADD AL, [BX] is 02 07, for ADD [BX], CL is 00 0F and for ADD [BX], CX is 01 0F.

(Add two operands with carry from previous add)

Destination (Source + Destination + CF), Flag affected: O S Z A P C

The ADC instruction performs the same operation as ADD instruction, although the carry flag bit is
added with the result. All the condition flags are affected after execution of this instruction. The object code
of ADC instructions are as follows:

Register/Memory with Register 0001 00dw Mod reg R/M

Immediate to register/memory 1000 00sw Mod 010 R/M data data

Immediate to Accumulator 0001 010w data data

The examples of ADC instructions are ADC AX, 1234H; ADC AX, CX; ADC AX, [SI]; ADC AX,
4000]; ADC [SI], AX; and ADC [4000], BX. The object code for ADC AX, 1234H is 15 34 12; for ADC AX,
CX is 11 C8; for ADC AX, [SI] is 13 04; for ADC AX, [4000] is 13 06 00 40; for ADC [SI], AX is 11 04; and
for ADC [4000], BX is 11 1E 00 40.

(Subtract source from destination, store result in destination)

Destination (Destination-Source), Flag affected: O S Z A P C

The SUB destination, source instruction subtracts the source operand from the destination operand and
the result is stored in the destination operand. The source operand may be a register, memory location or
immediate data. The destination operand may be a register or a memory location. But in an instruction,
source and destination operands both will not be memory operands and the destination operand must not be
an immediate data. After execution of this instruction, all the condition code flags, O, S, Z, A, P and C are
affected.

The object code of SUB instruction is as follows:

Register/Memory with Register 0010 10dw Mod reg R/M

Immediate to register/memory 1000 00sw Mod 101 R/M data Data

Immediate to Accumulator 0010 110w data data

For example, SUB AX, 0100 Load 0100H to the AX register immediately. The object code is

 0010 110w data data

Here w = 1, object is 0010 1101, 16-bit data = 2D, 00, 01H

The other examples of SUB instructions are SUB AL, 44H; SUB AX, BX; SUB AL, [BX]; SUB [BX],
CL and SUB [BX], CX. The object code for SUB AL, 44H is 2C 44; for SUB AX, BX is 29 D8; for SUB AL,
[BX] is 2A 07; for SUB [BX], CL is 28 0F and for SUB [BX], CX is 29 0F.

(Subtract source and the carry flag bit from destination)

Destination ((Destination–Source)-CF) Flag affected: O S Z A P C

The SBB represents subtract with borrow. In this instruction, subtracts the source operand and the bor-
row flag which is the result of the previous operations, from the destination operand. The subtraction with
borrow means that subtract 1 from the subtraction obtained by SUB. After subtraction, if carry is generated,
carry flag is set. The result is stored in the destination operand. All the flags O, S, Z, A, P and C are affected
by this instruction. The object code is

Register/Memory with Register 0001 10dw Mod reg R/M

Immediate to register/memory 1000 00sw Mod 011 R/M data Data

Immediate to Accumulator 0000 111w data data

For example, SBB AX, 0010. Subtract 0010H and the carry flag from AX register immediately. The
object code is

 0000 111w data data

Here w = 1, object is 0000 1111, 16-bit data = 0F, 00, 01H

The other examples of SBB instructions are SBB AX, BX; SBB AL, [BX]; SBB [BX], CL and SBB
[BX], CX, and SBB AX, [4000]. The object code for SBB AX, BX is 19 D8; for SBB AL, [BX] is 1A 07; for
SBB [BX], CL is 18 0F; for SBB [BX], CX is 19 0F and for SBB AX, [4000] is 1B 06 00 40.

Write instructions for the following operations:

 (i) Add 2345 to the contents of the AX register

 (ii) Add 22H to the content of the specified memory location represented by the contents of the BX
register

 (iii) Subtract the content of the AX register from the AX register

 (iv) Subtract immediately 2345 from the BX register with borrow

 (v) Subtract immediately 1000 from memory with offset address 0100H

 (i) ADD AX, 2345; Add 2345 to the contents of the AX register

 (ii) ADD [BX], 22; Add 22H to the content of the specified memory location by the BX register

 (iii) SUB AX, BX; Subtract the content of the AX register from AX register

 (iv) SBB AX, 2345; Subtract immediately 2345 from BX register with borrow

 (v) SUB [0100], 1000; Subtract immediately 1000 from memory with offset address 0100H

(Add 1 to destination)

Destination (Destination +1), Flag affected: O S Z A P

When this instruction is executed, the contents of the specified register or memory location increases by
1. After execution, the condition flags O, S, Z, A and P are affected but the carry flag is not affected by this
instruction. In this instruction, immediate data cannot be operand. The object code of instruction is

Register/Memory 1111 111w Mod 000 R/M

Register 01 000 reg

For example, INC AX. The object code is 01 000 reg

Here reg = 000 for the AX register. Then object code is 0100 0000 = 40

Other examples of INC instructions are INC BX; INC CX; INC DX and INC [BX]. The object code for
INC BX is 43; for INC CX is 41; for INC DX is 42 and for INC [BX] is FF 07.

(Decrement destination by 1

Destination (Destination - 1), Flag affected: O S Z A P C

This instruction decrements the contents of the specified register or memory location by one or subtracts
1 from the contents of the specified register or memory location. After execution, all the condition flags O,
S, Z, A, P and C are affected depending upon the result. But the carry flag is not affected. In this instruction,
immediate data can not be used as operand. The object code of instruction is

Register/Memory 1111 111w Mod 001 R/M

Register 01 001 reg

For example, DEC AX. The object code is 01 001 reg

Here reg = 000 for AX register. Then object code is 0100 1000 = 48

Other examples of INC instructions are DEC BX; DEC CX; DEC DX and DEC [BX]. The object code
for DEC BX is 4B; for DEC CX is 49; for DEC DX is 4A and for DEC [BX] is FF 0F.

(Changes the sign of an operand (Negate))

Destination (0-Destination), Flag affected: O S Z A P C

This instruction performs a 2’s complement of destination. To obtain 2’s complement, it subtracts the
contents of the destination from zero. Then result is stored in the destination operand which may be a regis-
ter or a memory location. After execution of this instruction, all the condition flags O, S, Z, A, P and C are
affected. While OF is set, it means that the operation has not been completed successfully. The object code is

 1111 011w Mod 011 R/M

The example of this instructions are NEG AX; NEG BX; NEG CX; NEG DX; NEG AL; NEG BL; NEG
CL and NEG DL. The object code for NEG AX is F7 D8; for NEG BX is F7 DB; for NEG CX is F7 D9; for
NEG DX is F7 DA; for NEG AL is F6 D8; for NEG BL is F6 DB; for NEG CL is F6 D9 and for NEG DL
is F6 DA.

(Compare by subtracting source from destination)
Destination-Source; Flag affected: O S Z A P C
This instruction performs a nondestructive subtraction of source from destination but the result is not

stored. Actually, the source operand and destination operand are compared. The source operand will be a
register or an immediate data or a memory location and the destination operand may be register or a memory
location. After comparison, the result will not be stored anywhere but the flags are affected depending upon
the result of the subtraction. When both the source and destination operands are equal, zero flag is set. While
the source operand is greater than the destination operand, carry flag is set; otherwise carry flag is reset. The
object code is

Register/Memory with Register 0011 10dw Mod reg R/M

Immediate to register/memory 1000 00sw Mod 111 R/M data data

Immediate to Accumulator 0011 110w data data

For example, CMP AX, 0100 Compare 0100H with the content of AX register immediately. The object
code is

 0011 110w data data

Here w = 1, object is 0011 110w, 16-bit data = 0011 1101, 16-bit data = 3D, 00, 01H

The other examples of CMP instructions are CMP BX, 1234; CMP AL, 22; CMP BX, [SI]; CMP [0100],
BX and CMP [BX], CX. The object code for CMP BX, 1234 is 81 FB 34 12; for CMP AL, 22 is 3C 22; for
CMP BX, [SI] is 3B 1C; for CMP [0100], for BX is 39 1E 00 01 and for CMP [BX], CX is 39 0F.

Write instructions for the following operations:

 (i) Compare 16-bit immediately available data (4567H) from the AX register

 (ii) Increment the contents of the CX register by one

 (iii) Decrement the contents of memory location specified by the BX register

 (iv) 2’s complement of the accumulator

 (v) Compare 8-bit immediately available data (FFH) from contents of memory location specified by
source index address 0400

 (i) CMP AX,4567 ; Compare 16-bit immediately available data (4567H) from the AX register

 (ii) INC CX; Increment the contents of the CX register by one

 (iii) DEC [BX]; Decrement the contents of memory location specified by the BX register

 (iv) NEG AX; 2’s complement of the accumulator

 (v) MOV SI,0400; load 0400 in SI

 (vi) CMP [SI],FF; Compare 8-bit data (FFH) with the contents of memory location specified by source
index

(Multiply 8- or 16-bit source by 8-bit (AL) or 16-bit (AX) value (unsigned)
AX (AL * source 8)
DX:AX (AX * source16), Flag affected: O C; the S, Z, A, and P flags are left in an indeterminate

condition

This instruction is an unsigned byte or word multiplication by the contents of AL or AX. An 8-bit source
is multiplied by the contents of AL to generate a 16-bit result in AX. A 16-bit source is multiplied by the
contents of AX to generate a 32-bit result. The most significant word of the result is stored in DX and the
least significant word of the result is stored in AX. The unsigned byte or word will be one of the general pur-
pose registers or memory locations. All the flags are modified depending upon the result. In this instruction
immediate operand is not allowed.

The object code of MUL instruction is 1111 011w Mod 100 R/M

Here, mod and R/M are for memory/register; i.e., for the second operand. The first operand is always in
AL or AX.

The example is MUL BL. Assume the content of the AL register is 22, and register of BL is 11H

The object code = 1111 011w, mod 100 R/M = 1111 0110, 11 100011 = F6, E3 as Mod and R/M for BL
are 11 and 011 respectively and w = 0 .

The other examples of MUL instructions are MUL CL; MUL BX; MUL CX; MUL DX and MUL
[BX+10]. The object code for MUL CL is F6 E1; for MUL BX is F7 E3; for MUL CX is F7 E1; for MUL
DX is F7 E2 and for MUL [BX + 10] is F7 67 10.

(Multiply 8-bit or 16-bit source by 8-bit (AL) or 16-bit (AX) value (signed))

AX (AL * source 8)

DX: AX (AX * source 16), Flag affected: O C; the S, Z A and P flags are left in an indeterminate
condition.

This instruction is a signed multiplication of two signed numbers. A signed byte in source operand is
multiplied by the contents of AL to generate a 16-bit result in AX. The source can be a general-purpose regis-
ter, memory operand, index register or base register, but it cannot be an immediate data. A 16-bit source oper-
and is multiplied by the contents of AX to generate a 32-bit result. In case of 32 bit results, the higher-order
word or the higher 16 bits is stored in DX and the lower-order word or the lower 16 bits is stored in AX. The
AF, PF, SF and ZF flags are undefined after IMUL. If AH and DX contain parts of 16-bit and 32-bit results
respectively, CF and OF both will be set. AL and AX are the implicit operands in case of 8-bit and 16-bit mul-
tiplications respectively. The unused higher bits of the result are filled by the sign bit and CF, AF are cleared.

The object code of IMUL is 1111 011w Mod 101 R/M

Here, Mod and R/M are for the second operand which is either memory or register. The first operand
is always in AL or AX. During 8-bit multiplication, 7 bits are used to represent a number and the eighth bit
represents its sign. When the sign bit is 0, it represents a positive number. If the sign bit is 1, it represents a
negative number. In case of 16-bit multiplication, 15 bits are used to represent a number and the sixteenth bit
represents its sign.

The example of IMUL instruction is IMUL BL. Here w = 0, Mod and R/M for BL are 11, R/M = 001
respectively. Then object code = 1111 011w, mod 101 R/M = 1111 0110, 11 101 011 = F6, EB

The other examples of IMUL instructions are IMUL CL; IMUL BH; IMUL BX; IMUL CX; IMUL DX
and IMUL [BX+10]. The object code for IMUL CL is F6 E9; for IMUL BH is F6 EF; for IMUL BX is F7
EB; for IMUL CX is F7 E9; for IMUL DX is F7 EA and for IMUL [BX+10] is F7 2F 10.

(Divide of 16-bit or 32-bit number by 8- or 16-bit number (unsigned))

AL (AX ÷ Source 8)

AH Remainder

AX (DX: AX ÷ Source 16)

DX Remainder

Flag affected: The O, S, Z, A, P, and C flags are left in an inderterminate condition.

This is an unsigned divide instruction. This instruction is used to divide a 16-bit unsigned number by an
8-bit unsigned number. When a 16-bit number in AX is divided by an 8-bit source operand, the quotient is
stored in AL and the remainder is stored in AH. If the result is too big to fit in AL, a divide by zero (type 0)
interrupt is generated.

This instruction is also used to divide a 16-bit unsigned number by a 16-bit or 8-bit operand. The divided
must be in AX for 16-bit operation and divisor may be specified using any one of the addressing modes
except immediate. A 32-bit number in DX: AX is divided by a 16-bit source with the quotient remaining in

AX and the remainder in DX. When the quotient of a 16-bit operation is greater than FFFFH, a divide-by-
zero (type 0) interrupt is generated. This instruction does not affect any flag.

The object code DIV instruction is 1111 011w Mod 110 R/M

The example of DIV instruction is DIV BL. This instruction consists of 8-bit divisor in BL and AX con-
tains 16-bit dividend. The object code is 1111 011w, Mod 110 R/M = 1111 0110, 11 110011 = F6, F3 as Mod
= 11and R/M = 011 for BL and w = 0.

The other examples of DIV instructions are DIV CL; DIV BX; DIV CX; DIV DX and DIV [BX+10].
The object code for DIV CL is F6 F1; for DIV BX is F7 F3; for DIV CX is F7 F1; for DIV DX is F7 F2 and
for DIV [BX+10] is F7 37 10.

(Divide of signed 16-bit or 32-bit number by 8- or 16-bit number (signed)
AL (AX ÷ source 8)
AH Remainder
AX (DX: AX ÷ source 16)
DX Remainder

Flag affected: The O, S, Z, A, P, and C flags are left in an indeterminate condition.

This is a signed divide. This instruction performs the same operation as DIV instruction. A 16-bit value
in AX is divided by an 8-bit source with the quotient remaining in AL and the remainder in AH. If the result
is too big to fit in AL, a divide by zero (type 0) interrupt is generated.

A 32-bit number in DX: AX is divided by a 16-bit source with the quotient remaining in AX and the
remainder in DX. Divide by 0 interrupt is generated, if the result (quotient) is too big to fit in AX, a divide by
zero (type 0) interrupt is generated. All the flags are undefined after IDIV instruction.

The object code of IDIV is 1111 011w Mod 111 R/M

The example of IDIV instruction is IDIV BL. The operation of this instruction is dividing AX by CL,
both operands are signed numbers. The object code is 1111 011w, Mod 111 R/M = 1111 0110, 11 111011 =
F6, FB as Mod = 11and R/M = 011 for BL and w = 0.

The other examples of DIV instructions are IDIV BH; IDIV CL; IDIV BX; IDIV CX ; IDIV DX and
IDIV [BX+10]. The object code for IDIV BH is F6 FF; for IDIV CL is F6 F9; for IDIV BX is F7 FB; for
IDIV CX is F7 F9; for IDIV DX is F7 FA and for IDIV [BX+10] is F7 3F 10.

Write instructions for the following operations:

 (i) Multiply the content of AL by the content of CL

 (ii) Multiply the content of AX by the content of CX

 (iii) Signed multiplication of AL and DL

 (iv) Divide AX by the content of memory location represented by BX

 (v) Signed division of AX and BL

 (i) MUL CL; Multiply the content of AL by the content of CL

 (ii) MUL CX; Multiply the content of AX by the content of CX

 (iii) IMUL DL; Signed multiplication of AL and DL

 (iv) DIV [BX]; Divide AX by the content of memory location represented by BX

 (v) IDIV BL; Signed division of AX and BL

(Decimal adjustment after addition)

AL (AL adjusted for BCD addition), Flag affected: S Z A P C; the O flag is left in an indeterminate
condition.

The DAA instruction is used to transfer the result of the addition of two packed BCD numbers to a valid
BCD number. The result will be stored in the AL register only. If after addition, the lower nibble is greater
than 9, AF is set. Then 06 will be added to the lower nibble in AL. After addition of 06 in the lower nibble of
AL, if the upper nibble of AL is greater than 9 or if the carry flag is set, 60H will be add to AL through DAA
instruction. After execution of this instruction, AF, CF, PF, and ZF flags are affected. The OF is undefined.

The object code of DAA is 00100111 = 27H

Write instructions to add two numbers 54 and 26 and use DDA for
 adjustment of the result.

 (i) MOV AL, 54; 54 in AL.

 (ii) MOV BL, 26; 26 in BL.

 (iii) ADD AL, BL; add AL and BL, content of AL = 7A.

 (iv) DAA; adjust result in BCD. AL 80 = 7A + 06

(Decimal adjust for subtraction)

AL (AL adjusted for BCD subtraction); Flag affected S Z A P C; the O flag is left in an indeterminate
condition.

The DAS instruction is used to convert the result of subtraction of two packed BCD numbers to a valid
BCD number. The subtraction will be stored in the AL register only. While the lower nibble of AL is greater
than 9, 06 will be subtracted from lower nibble of AL. If the result of subtraction sets the carry flag or if the
upper nibble is greater than 9, 60H will be subtracted from AL. AF, CF, SF, PF and ZF flags are affected after
execution of this instruction. The OF is undefined after DAS instruction.

The object code of DAS is 00101111 = 2FH

(ASCII adjust for addition)

AL (AL adjusted for ASCII addition); Flag affected: A, C;

the O, S, Z, and P flags are left in an indeterminate state.

This instruction follows an addition of ‘unpacked’ ASCII data. After execution of ADD instruction, this
AAA instruction is executed for ASCII adjustment of result of addition of two numbers. The result will be
stored in the AL register. The AAA instruction converts the resulting contents of AL to unpacked decimal dig-
its. When the AAA instruction is executed, the lower 4 bits of AL will be checked whether it is a valid BCD
number in the range 0 to 9. If the lower 4 bits of AL is between 0 to 9 and AF is zero, AAA sets the higher
order 4 bits of AL to 0. The content of AH must be cleared before addition. If the value in the lower 4 bits of
AL is greater than 9 then the AL is incremented by 06, AH is incremented by 1, the AF and CF flags are set
to 1, and the higher 4 bits of AL are cleared to 0. After the addition of 05H and 09H, the result 0E is stored
in AL. As lower nibble of AL (E) is greater than 9, the AL is to be incremented by 06 and AH is incremented
by 1. Hence the content of AL is 04H and the content of AH is 01H.

The object code of AAA is 00110111 = 37H.

(ASCII adjust for subtraction)

AL (AL adjusted for ASCII subtraction); Flag affected: A C; the O, S, Z, and P flags are left in an
indeterminate state.

This instruction follows a subtraction of ‘unpacked’ ASCII data. The AAS instruction is used to convert
the result in the AL register after subtracting two unpacked ASCII operands. The result is stored in the AL
register which is an unpacked decimal number. When the lower 4 bits of the AL register are greater than 9 or
the AF flag is set or 1, the AL will be decremented by 6 and the AH register is decremented by 1, the CF and
AF are set to 1. If not, the CF and AF are set to 0, the result does not require any correction. Hence, the upper
nibble of AL is 0 and lower nibble may be any number from 0 to 9.

The object code of AAS is 00111111 = 3FH.

(ASCII adjust for multiplication)

AH: AL (AH: AL adjusted for ASCII multiplication); Flag affected: S Z P; the O, A, and C flags are
left in an indeterminate condition.

The AAM instruction is executed to convert the product available in AL into an unpacked BCD for-
mat. The AMM (ASCII Adjustment after multiplication) instruction follows a multiplication instruction that
multiplies two unpacked BCD numbers, i.e., and higher nibbles of the multiplication number should be 0.
Usually, the multiplication is performed using MUL instruction and the result of multiplication is available in
AX. After execution of AAM instruction, the content of AH is replaced by tens of the decimal multiplication
and the content of AL is replaced by ones of the decimal multiplication. The object code of AAM is 1101
0100 0000 1010 = D4 0A.

Write instructions to multiply two unpacked BCD numbers 4 and 6 and use
 AAM for adjustment of the result.

 (i) MOV AL, 04; 04 in AL.

 (ii) MOV CL, 06; 06 in CL.

 (iii) MUL CL; multiply AL by CL, content of AL = 18.

 (iv) AAM; adjust result in BCD. AH 01 and AL 08.

(Convert from byte to word (16-bit 8-bit)

AH (filled with bit-7 of AL), AX (AL * source 8) Flag affected: None

This instruction converts a signed byte in AL to a signed word in AX. Actually, it copies the sign bit of a
byte to be converted to all the bits in the higher byte of the result word. Flags are not affected after execution
of CBW. The object code of CBW is 1001 1000 = 98H.

(Convert from word to double word)

DX (filled with bit-15 of AX), AX (AL * source 8), Flag affected: None

Converts a 16-bit word in AX to a 32-bit word in DX: AX by sign extension of bit 15 of AX through DX.
Usually, this operation is to be done before signed division. Flags are not affected after execution of CWD.
The object code of CWD is 1001 1001 = 99H.

These type of instructions are used for

 Basic logical operations such as NOT, AND, OR, and XOR;

 Bit by bit shift operations such as SHL (shift logical left), SHR (shift logical right), SAL (shift arith-
metic left), and SAR (shift arithmetic right); and

 Rotate operations such as ROR (rotate right without carry), ROL (rotate left without carry), RCR
(rotate right through carry), and RCL (rotate left through carry).

After execution of above instructions, all the condition-code flags are affected depending upon the result.
In this section, the operations of logical and bit manipulation instructions are discussed in detail.

(1’s complement of destination)

Destination (~Destination), Flag affected: None
Converts 1’s to 0’s and 0’s to 1’s in destination.

The NOT instruction is used to generate complement of the contents of an operand register or a memory
location, bit by bit.

The object code of NOT is 1111 011w Mod 010 R/M

The example of NOT instruction is NOT AL. The object code of NOT AL is 1111 011w 1101 000 = F6
D0 as Mod = 11 and R/M = 000 for AL and w = 0. The other NOT instructions are NOT BL, NOT CL NOT
DL, NOT AX, NOT BX, NOT CX, and NOT [BX]. The object code for NOT BL is F6 D3; for NOT CL is
F6 D1; for NOT DL is F6 D2; for NOT AX is F7 D0; for NOT BX is F7 D3; for NOT CX is F7 D1, and for
NOT [BX] is F7 17.

(Logical AND)

Destination (Destination AND Source)

This instruction performs a bitwise logical AND of source and destination with the result remaining in the
destination. The source operand may be immediate data or a register or a memory location and the destina-
tion operand may be a register or a memory location. For AND operation, at least one of the operands must
be a register or a memory operand. For this instruction, both the operands will not be memory locations and
immediate operands and a destination operand should not be an immediate operand.

The object code of AND instruction is as follows:

Register/Memory with register 0010 00dw Mod reg R/M

Immediate to register/memory 1000 000w Mod 100 R/M data Data

Immediate to accumulator 0010 010w data data

The example of AND instruction is AND AX, 045B and it object code is 0010 010w 5B 04 = 25 5B 04 as
w = 1. The other examples are AND AX, BX; AND CX, DX; AND AX, [BX] and AND AX, [SI]. The object
code for AND AX, BX is 21 D8; for AND CX, DX is 21 D1; for AND AX, [BX] is 23 07 and for AND AX,
[SI] is 23 04.

(Logical OR)

Destination (Destination OR Source)

The OR instruction performs a bitwise logical OR of source and destination with the result remaining
in the destination. The OR operation is same as described in case of AND operation. The limitations of OR
instruction based on source and destination operands are also the same as in case of AND operation.

The object code of OR instruction is as follows:

Register/Memory with Register 0000 10dw Mod reg R/M

Immediate to register/memory 1000 000w Mod 001 R/M data data

Immediate to accumulator 0000 110w data data

The example of OR instruction is OR AX, 2345 and its object code is 0000 110w 45 23 = 0D 45 23 as w
= 1. The other examples are OR AX, BX; OR CX, DX; OR AX, [BX] and OR AX, [SI]. The object code for
OR AX, BX is 09 D8; for OR CX, DX is 09 D1; for OR AX, [BX] is 0B 07 and for OR AX, [SI] is 0B 04.

(Exclusive logical OR)

Destination (Destination XOR Source)

The XOR instruction performs a bitwise logical exclusive OR of source and destination with result
remaining in destination. This instruction is carried out in a similar way to the AND and OR operation. The
limitations of XOR instruction are also the same as in case of AND/OR operation.

The object code of XOR instruction is as follows:

Register/Memory with Register 0011 00dw Mod reg R/M

Immediate to register/memory 1000 000w Mod 110 R/M data Data

Immediate to Accumulator 0011 010w data data

The example of XOR instruction is XOR AX, 1234 and its object code is 0011 010w 34 12 = 35 34 12 as
w = 1. The other examples are XOR AX, BX; XOR CX, DX; XOR AX, [BX] and XOR AX, [SI]. The object
code for XOR AX, BX is 31 D8; for XOR CX, DX is 31 D1; for XOR AX, [BX] is 33 07 and for XOR AX,
[SI] is 33 04.

(Non-destructive logical AND)

Flags (Destination AND Source)

The TEST instruction performs a nondestructive bitwise logical AND of source and destination, setting
flags and leaving destination unchanged. The result of this ANDing operation will not be available, but the
flags are affected. Generally, OF, CF, SF, ZF and PF flags are affected. The source operands may be a register
or a memory or immediate data and the destination operands may be a register or a memory.

The object code of TEST is given below:

Register/Memory and Register 1000 010w Mod reg R/M

Immediate data and register/memory 1000 000w Mod 110 R/M data data

Immediate data and Accumulator 1010 100w data data

The example of TEST instruction is TEST AX, 6789 and its object code = 1010 100w 89 67 = A9 89 67
as w = 1. The other example of TEST instructions are TEST AX, BX; TEST CX, DX; TEST AX, [BX]; TEST
AX, [DI]. The object code for TEST AX, BX is 85 C3; for TEST CX, DX is 85 CA; for TEST AX, [BX] is
85 07; and for TEST AX, [DI] is 85 05.

Write instructions for the following operations:

 (i) 1’s complement of the content of the DX register

 (ii) AND 1234H with the content of the AX register

 (iii) XOR operation between AL and DL registers

 (iv) OR operation between BX and CX registers

 (v) Perform TEST operation between AL and BL registers

 (i) NEG DX; 1’s complement of the content of the DX register

 (ii) AND AX, 1234; AND 1234H with the content of the AX register

 (iii) XOR AL,DL; XOR operation between AL and DL registers

 (iv) OR BX,CX; OR operation between BX and CX registers

 (v) TEST AL,BL; Perform TEST operation between AL and BL registers

(Shift Logical/ Arithmetic Left)
An +1 An, A15 A14, A0 0, CF A15, All flags are affected

These instructions shift each bit in the destination operand (word or byte) to the left and insert zeros in
the newly introduced least significant bits. The highest order bit shifts into the carry flag as shown in Fig.
6.20. The common format of SHL/SAL instruction is SAL Operand-1, Operand-2.

The operand-1 will be the content of register or the content of memory. The number of shifts is set by
operand-2. The operand-2 will be an immediate data or content of CL register. The object code of SHL/SAL
instruction is

 1101 00vw Mod 100 R/M

The example of SHL instructions are SHL AX, CL and SHLAX, 1. Since shifting an integer to the left
one position is equivalent to the multiplication of specified operand by 2. Actually, the shift left instruction
for multiplication by powers of two as given below:

SHL AX, 1; Result is equivalent to AX*2

SHL AX, 2; Result is equivalent to AX*4

SHL AX, 3; Result is equivalent to AX*8

SHL AX, 8; Result is equivalent to AX*256

Assume the content of AX register is 1010 1010 1010 1010 = AAAA. After execution of SHL AX, 1 the
content of AX will be 5554 and CY flag set. The object code of SHL AX, 1 is D1 E0. After execution of SHL
AX, 2 the content of AX will be AAA8. All flags are affected depending upon the result.

A
15

CF

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

0

An An+1, CF A0, A15 0, All flags are affected

This instruction performs bitwise right shifts on the destination operand word or byte and inserts zeros
in the shifted positions The general format of SHR instruction is SHR Operand-1, Operand-2. The operand-1
may be a register or a memory location. The number of shifts is set by operand-2. The operand-2 will be an
immediate data or content of CL register. The result is always stored in the destination operand. Figure 6.21
shows the shift right operation.

The object code of SHR instruction is

 1101 00vw Mod 101 R/M

The example of SHR instructions are SHR AX, CL and SHR AX, 1. If the SHR instruction shifts an
integer to the right one position, it performs an unsigned division of the destination operand by 2. Actually,
each shift to the right is equivalent to dividing the value by 2 as given below:

SHR AX, 1; Result is equivalent to AX/2

SHR AX, 2; Result is equivalent to AX/4

SHR AX, 3; Result is equivalent to AX/8

SHR AX, 8; Result is equivalent to AX/256

When the content of the AX register is 1010 1010 1010 1010 = AAAA, after execution of SHR AX, 1
the content of AX will be 5555. The object code of SHR AX,1 is D1 E8. After execution of MOV CL, 02 and
SHR AX, CL the content of AX will be 2AAA. All flags are affected depending upon the result. This shift
operation shifts the operand through the carry flag.

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 CF

An An + 1, CF A0, A15 A15, All flags are affected

The SAR instruction performs right shifts all the bits in the destination operand (word or byte) to the right
one bit. This instruction is replicating the most significant bit of the operand in the newly inserted positions.

The common format of SAR instruction is SAR Operand-1, Operand-2. The operand-1 may be a register
or a memory location. The number of shifts is set by the operand-2. The operand-2 will be an immediate data
or content of the CL register. The result is always stored in the destination operand. Figure 6.22 shows the
arithmetic shift right operation.

The object code of SAR instruction is

 1101 00vw Mod 111 R/M

The example of SAR instructions are SHR AX, CL and SAR AX,1. If the SHR instruction shifts an inte-
ger to the right one position, it performs an unsigned division of the destination operand by 2. Actually, each
shift to the right divides the value by 2 as given below:

SAR AX, 1; Result is equivalent to signed division by 2

SAR AX, 2; Result is equivalent to signed division by 4

SAR AX, 3; Result is equivalent to signed division by 8

SAR AX, 8; Result is equivalent to signed division by 256

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

CF

If the content of the AX register is 1010 1010 1010 1010 = AAAA, after execution of SAR AX, 1 the
content of AX will be D555. The object code of SAR AX, 1 is D1 F8. After execution of SAR AX, 2 the
content of AX will be EAAA. All flags are affected depending upon the result. This shift operation shifts the
operand through the carry flag.

An An + 1, A15 A0, CF A0, All flags are affected

The ROR instruction rotates the contents of the destination operand to the right bit wise either by one or
by the count specified in CL without carry. The least significant bit is stored into the carry flag and simulta-
neously it is transferred into the most significant bit position after each shift operation as shown in Fig. 6.23.

The common format of ROR instruction is ROR Operand-1, Operand-2. The operand-1 may be a register
except segment register or a memory location. The operand-2 will be an immediate data or content of the
CL register. The number of shifts is set by operand-2. The result is always stored in the destination operand.

The object code of ROR instruction is

 1101 00vw Mod 001 R/M

The example of ROR instructions are ROR AX, CL and ROR AX, 1.

The PF, SF and ZF flags are left unchanged by this instruction.

Consider the content of the AX register is 1010 1010 1111 1010 = AAFA. After execution of ROR AX,
1 the content of AX will be 557D. The object code of ROR AX, 1 is D1 C8. After execution of MOV CL, 02
and ROR AX, CL the content of AX will be AABE.

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

CF

An + 1 An, A0 A15, CF A15, All flags are affected

The ROL instruction rotates the content of the destination operand to the left by one or by the specified
number of bits in CL without carry. The most significant bit is pushed into the carry flag as well as the least
significant bit position after each bit shift operation. The other bits are shifted left subsequently as depicted
in Fig. 6.24. The PF, SF, and ZF flags are left unchanged by this operation. Its format is same as ROR. The
object code of ROL instruction is

 1101 00vw Mod 000 R/M

The example of ROL instructions are ROL AX, 1 and ROL AX, CL.

Assume the content of AX register is 1010 1010 1111 1010 = AAFA. After execution of ROL AX, 1 the
content of AX will be 55F5. The object code of ROL AX,1 is D1 C0. After execution of MOV CL, 02 and
ROL AX, CL the content of AX will be ABEA

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

CF

An An+1, A15 CF, CF A0; All flags are affected

This instruction rotates the contents of the destination operand bits right by one or by the specified num-
ber of bits in CL through the Carry Flag (CF). After each rotate operation, the carry flag is pushed into the
MSB of the operand and the LSB is pushed into carry flag and the other bits are subsequently shifted right
as given in Fig. 6.25. The SF, PF, ZF are left unchanged. Its format is same as ROR. The object code of RCR
instruction is

 1101 00vw Mod 011 R/M

The example of RCR instructions are RCR AX, 1 and RCR AX, CL.

When the content of AX register is 1010 1010 1111 1010 = AAFA, after execution of RCR AX, 1 the
content of AX will be 557D. The object code of RCR AX, 1 is D1 D8. After execution of MOV CL, 02 and
RCR AX, CL the content of AX will be 2ABE.

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

CF

An + 1 An, CF A15, A0 CF All flags are affected

The RCL instruction rotates the contents of the destination operand left by one or by the specified num-
ber of bits in CL through Carry Flag (CF). After each rotate operation, the carry flag is pushed into LSB and
the MSB of the operand is pushed into carry flag. The remaining bits are subsequently shifted left as shown
in Fig. 6.26. The SF, PF, ZF are left unchanged. The object code of RCL instruction is

 1101 00vw Mod 010 R/M

The example of RCL instructions are RCL AX, 1 and RCL AX, CL.

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

CF

When the content of AX register is 1010 1010 1111 1010 = AAFA, after execution of RCL AX, 1 the
content of AX will be 55F4. The object code of RCL AX, 1 is D1 D0. After execution of MOV CL, 02 and
RCL AX, CL the content of AX will be ABE9.

Write instructions for the following operations:

 (i) Shift content of BL left two times.

 (ii) Rotate content of BX left without carry one time.

 (iii) Shift logical right of the memory location represented by CS: SI one time.

 (iv) Rotate right without carry of AX registers three times.

 (i) MOV CL, 02

 SHL BL, CL; Shift content of BL left two times

 (ii) ROL BX, 1; Rotate content of BX left without carry one time

 (iii) SHR [SI], 1; Shift logical right of the memory location represented by CS:SI one time

 (iv) MOV CL, 03

 ROR AX, CL; Rotate right without carry of AX registers three times

The jump instructions are generally used to change the sequence of the program execution. There are two
types of jump instructions, namely, conditional and unconditional. The conditional jump instructions transfer
the program to the specified address when condition is satisfied only. The unconditional jump instructions
transfer the program to the specified address unconditionally. All conditional and unconditional jump instruc-
tions are discussed in this section.

This jump instruction unconditionally
transfers the control of execution to the specified address using an 8-bit or 16-bit displacement or CS: IP.
After execution of this instruction, no flags are affected. The jump instructions have different formats to
specify the jump address.

Sort: IP (IP + (target displacement sign-extended))

Near: IP (IP + (target displacement))

Indirect: IP (register or value in memory)

Far: CS targ_seg;

IP targ_offset, AX (AL * source 8)

Flag affected: None

Short jumps are within ±128 bytes of JMP instruction–only IP is affected.

Near jumps are within same segment–only IP is affected. Near jump allows a jump within ±32 KB

Indirect jumps are within the same segment–only IP is affected.

Far jumps are to a different segment–both CS and IP are affected.

The object code of unconditional JMP instruction is

Direct with segment 1110 1001 disp-low disp-high

Direct within segment short 1110 1011 disp

Indirect within segment 1111 1111 Mod 100 R/M

Direct intersegment 1110 1010 Offset-low Offset-high

 Seg-low Seg-high

Indirect intersegment 1111 1111 Mod 101 R/M

Flag affected: None
The object codes of JCXZ jump on CX zero instructions are

 1110 0011 disp

IP (IP+(8-bit displacement sign-extended to 16 bits)), Flag
affected: None

If conditional jump instructions are executed, program control can be transferred to the address specified
by instruction itself. If the condition is not satisfied, instructions are executed sequentially. Here, condition is
the status of flag. After execution of these instructions, no flags are affected. The address will be specified in
the instruction which will be varied from-80H (-128) bytes to 7FH(127) bytes. Therefore, only short jumps
can be implemented using conditional branch instructions. The conditions of jump instructions are given in
Table 6.5.

Instruction Condition Operation

JO O = 1 Jump on overflow set

JNO O = 0 Jump on overflow clear

JB / JNAE C = 1 Jump if below / Jump if not above or equal

JAE / JNB C = 0 Jump if above or equal / Jump if not below

JE / JNZ Z = 1 Jump if equal / Jump if not zero

JNE / JNZ Z = 0 Jump if not equal / Jump if not zero

JBE / JNA C = 1or Z = 1 Jump if below or equal / Jump if not above

JA / JNBE C = 0 and Z = 0 Jump if above / Jump if not below or equal

JS S = 1 Jump on sign set

JNS S = 0 Jump on sign clear

JP / JPE P = 1 Jump on parity bit set (parity even)

JNP / JPO P = 0 Jump on parity bit clear (parity odd)

JL / JNGE S = 1 or O = 1 Jump if less / Jump if not greater than or equal to

JGE / JNL S = O Jump if greater than or equal to / Jump if not less

JLE / JNG Z = 1 or S and O = 1 Jump if less than or equal to / Jump if not greater than

JG / JNLE Z = 0 or S = O Jump if greater than / Jump if not less than or equal to

The object codes of all conditional jump instructions are as follows:

JE/JZ Jump on equal/zero 0111 0100 disp

JL/JNGE Jump on less/not greater or equal 0111 1100 disp

JLE/JNZ Jump on less or equal/not greater 0111 1110 disp

JB/JNAE Jump on below/not above or equal 0111 0010 disp

JBE/JNA Jump on below or equal/not above 0111 0110 disp

JP/JPE Jump on parity/parity even 0111 1010 disp

JO Jump on overflow 0111 0000 disp

JS Jump on Sign 0111 1000 disp

JE/JZ Jump on equal/zero 0111 0100 disp

The LOOP instruction executes the part of the program from the level or address specified in the instruction
up to the loop instruction, CX number of times. After each iteration, CX is decremented automatically. If

the content of CX is not zero, the LOOP instruction transfers control to starting address of the LOOP for
execution. If CX is zero, the execution of LOOP instruction is completed and then the next instruction of the
program will be executed. The LOOP instruction can be explained with an example as follows:

 LEA SI, 0100; Load SI with source address of data

 LEA DI, 0200; Load DI with destination address of data

 MOV CX, 0009; Number of bytes 9 is loaded in CX register

START LODSB; Data byte to AL and increment SI by 1

 STOSB; The content of AL is stored in destination address represented by DI and and

 increment DI by 1

 LOOP START; repeat until CX = 0

The above example shows how a string of bytes can be shifted from one memory block specified by SI to
other memory block specified by DI using LOOP instructions.

The LODSB instruction is equivalent to

 MOV AL, [SI]

 INC SI

The STOSB instruction is equivalent to

 MOV [DI], AL

 INC DI

And the LOOP instruction is equivalent to

 DEC CX

 JNZ START

In this case, LODSB and STOSB instructions are executed 9 times and a block of 9-byte data will be copied
from source memory to destination memory sequentially.

CX (CX-1); Jump if CX ! = 0 . The CX
register is decremented by 1. If CX now is not equal to 0, the loop is back to target. Otherwise, continue.

The object code of LOOP is 1110 0010 DISP

CX (CX-1); jump if
CX! = 0 and ZF = 1. The CX register is decremented by 1. If CX is not equal to 0 or if the Z bit is set, the
loop is back to short target.

The object codes of all conditional jump instructions are 1110 0001 DISP

CX (CX-1); jump if CX! = 0 and ZF = 0
The CX register is decremented by 1. If CX is not equal to 0 or if the Z bit is clear, the loop is back to short
target.

The object codes of all conditional jump instructions are 1110 0000 DISP

The CALL and RET (return) instructions are used to call a subroutine or a procedure that can be executed
several times from a main program. The starting address of the subroutine or procedure can be specified

directly or indirectly depending upon the addressing mode. There are two types of procedures, namely, intra-
segment and intersegment. The subroutine within a segment is known as intrasegment subroutine or NEAR
CALL. The subroutine from one segment to another segment is known as intersegment subroutine or FAR
CALL. These instructions are unconditional branch instructions. After execution of these instructions, the
incremented IP and CS are stored onto the stack and loads the CS and IP registers with the segment and offset
addresses of the procedure to be called. For NEAR CALL, only the IP register is stored on stack. But for FAR
CALL, both IP and CS are stored onto the stack. Hence the NEAR and FAR CALLs can be discriminated
using opcode. The operation of CALL and RET instructions are explained below:

Near call: PUSH IP, JMP to target

SP IP, SP SP-2, IP IP + DISP

Far call: PUSH CS, PUSH IP, JMP to target :Flag affected: None

SP CS, SP SP-2, SP IP, SP SP-2, IP 16 bit DATA

CS 16-bit DATA

The syntax for a near call (same segment) is CALL target.

The syntax for a far call (different segment) is CALL FAR target.

The object code of call instructions are given below:

Direct within segment 1110 1000 disp-low disp-high

Direct Intersegment 1001 1010 Offset-low Offset-high

 Seg-low Seg-high

Indirect within segment 1111 1111 Mod 010 R/M

Indirect Intersegment 1111 1111 Mod 011 R/M

RET (Return from procedure)

RET n (return from procedure and add n to SP)

Near return: POP IP

IP SP, SP SP + 2

The syntax for a near return is RET.

Far return: POP IP, POP CS; Flag affected: None

IP SP, SP SP + 2, CS SP, SP SP + DISP

The syntax for a far return is RET FAR.

During execution of CALL instruction, initially the IP and CS of the next instruction is pushed onto
stack, then the control is transferred to the procedure. At the end of execution of procedure, RET instruction
must be executed. When RET instruction is executed, the previously stored content of IP and CS along with
flags are retrieved into CS, IP and flag registers from the stack respectively. After that the execution of the
main program again starts. Usually, the procedures are two types, namely, a near procedure or a far proce-
dure. While in case of NEAR procedure, the current contents of SP points to IP but for a FAR procedure, the
current contents of SP points to IP and CS at the time of return. Actually, the RET instructions are of four
types such as

 Return within segment

 Return within segment adding 16-bit immediate displacement to the SP contents

 Return intersegment

 Return intersegemnt adding 16-bit immediate displacement to the SP contents

The object codes of RET instructions are as follows:

Within segment 1100 0011

Within Seg Adding Immed to SP 1100 0011 disp-low disp-high

 1001 1010 Offset-low Offset-high

 Seg-low Seg-high

Indirect within segment 1111 1111 Mod 010 R/M

The RET n form adds n to the SP to compensate for stack growth when arguments are pushed onto the
stack prior to a procedure call.

PUSHF; IF 0; TF 0; PUSH CS; PUSH IP

IP 0000: [type * 4];

CS 0000: [(type * 4) + 2]; Flag affected: IT

INT n is a software interrupt to be serviced. The flags and current CS: IP are pushed onto the stack.
The CS: IP stored in the vector indicated by the interrupt number are then loaded and the next instruction is
fetched from that interrupt service routine address. There are 256 interrupts corresponding to the types from
00H to FFH in the interrupt structure of 8086. When an INT n instruction is executed, the TYPE byte n is
multiplied by 4 and the contents of IP and CS of the interrupt service routine will be taken from the hexadeci-
mal multiplication (n × 4) as offset address and 0000 as segment address.

If OF = 1, then perform INT through vector 4; Flag affected: None

Interrupts the system if the overflow bit is set following a mathematical instruction. This indicates a carry
from a signed value.

This instruction is executed, when the overflow flag OF is set. The new contents of IP and CS are taken
from the address 0000: 0010 as explained in INT type instruction. This is equivalent to a type 4 interrupt
instruction.

The object code of INTO instruction is

Interrupt on overflow 1100 1110

IRET (Return from interrupt service routine)

POP IP; POP CS; POPF AX (AL * src8); Flag affected: All

When an interrupt service routine is to be called, before transferring control to it, the IP, CS and flag
register are stored on to stack to indicate the location from where the execution is to be continued after the
ISR is executed. This instruction appears at the bottom of all Interrupt Service Routines (ISR).

When IRET is executed, the values of IP, CS and flags are retrieved from the stack to continue the execu-
tion of the main program.

The object code of IRET instruction is

 1100 1111

Usually, a series of data bytes is known as a string of bytes and a series of data words is known as a string
of words. For moving a string of bytes or words, 8086/8088 processors have five instructions such as STOS
(store string byte or word), LODS (load string byte or word), MOVS (move string byte or word), SCAS (scan

string byte or word) and CMPS (compare string byte or word). For these instructions, a source of string byte
or word is DS : SI and destination of string byte or word is ES : SI. After execution of these instructions, the
offset memory pointer SI and DI are incremented or decremented by one or two depending upon direction
flag. In this section STOS, LODS, MOVS, SCAS and CMPS are explained.

ES: [DI] DS: [SI]; DI = DI ± 1; SI = SI ± 1; Flag affected: None.

Moves a string a byte at a time from source memory DS : SI to destination memory ES: DI. SI and DI
are incremented or decremented by 1, depending on Direction Flag(DF). The object code of MOVSB is 1010
010w = A4 as w = 0.

ES: [DI] DS: [SI]; DI = DI ± 2; SI = SI ± 2; Flag affected: None

Moves a string a word at a time from source memory DS: SI to destination memory ES: DI. SI and DI
are incremented or decremented by 2, depending on Direction Flag (DF). The object code of MOVSW is
1010 010w = A5 as w = 1.

ES: [DI] AL; DI = DI ± 1; Flag affected: None

Moves a string one byte at a time from AL to destination memory address ES: DI. DI is then incremented
or decremented by 1, depending on Direction Flag (DF). The object code of STOSB is 1010 101w = AA as
w = 0.

ES: [DI] AX; DI = DI±2; Flag affected: None

Moves a string one word at a time from AX to destination memory address ES: DI. DI is then incre-
mented or decremented by 2, depending on Direction Flag (DF). The object code of STOSW is 1010 101w
= AB as w = 1.

AL DS: [SI]; SI = SI±1; Flag affected: None

Moves a string one byte at a time from source memory address DS: SI to AL. Then SI is incremented or
decremented by 1, depending on Direction Flag (DF). The object code of LODSB is 1010 110w = AC as w
= 0.

AX DS: [SI]; SI = SI±2; Flag affected: None

Moves a string one word at a time from source memory address DS: SI to AX. Then SI is incremented
or decremented by 2, depending on Direction Flag (DF). The object code of LODSW is 1010 110w = AD as
w = 1.

Flags (result of CMP DS: [SI], ES: [DI]); DI = DI±1; SI =
SI±1; Flag affected: as CMP

The byte or 8-bit data at DS: SI is compared with the byte or 8-bit data at ES:DI and the flags are set
accordingly. Both SI and DI are incremented or decremented by 1, depending on the Direction Flag (DF).
This instruction is combined with a REP prefix, so that we can compare two strings and we can also find at
what point two strings no longer are equal. The object code of CMPSB is 1010 011w = A6 as w = 0.

Flags (result of CMP DS: [SI], ES: [DI]); DI = DI ± 2; SI
= SI ± 2; Flag affected: as CMP

The word or 16-bit data at DS: SI is compared with the word or 16-bit data at ES: DI and the flags are
set accordingly. Both SI and DI are incremented or decremented by 2, depending on the Direction Flag (DF).

This instruction is combined with REP prefix, so that we can compare two strings and we can also locate at
what point two strings no longer are equal. The object code of CMPSW is 1010 011w = A7 as w = 1.

Flags (result of CMP ES: [DI], AL); DI = DI ± 1; Flag affected:
same as CMP instruction

The byte or 8-bit data at ES: DI is compared to the contents of AL and correspondingly flags are set. DI
is incremented or decremented by 1 depending upon the Direction Flag (DF). The SCASB can be combined
with a REP prefix, so that we can be able to scan a string looking for the first occurrence of a particular byte.
The object code of SCASB is 1010 111w = AE as w = 0.

Flags (result of CMP ES: [DI], AX); DI = DI ± 2; Flag affected:
same as CMP instruction

The word or 16-bit data at ES: DI is compared to the contents of AX and correspondingly flags are set
and correspondingly flags are set. DI is incremented or decremented by 2 depending upon the Direction Flag
(DF). The SCASW can be combined with a REP prefix, so that we can be able to scan a string looking for the
first occurrence of a particular word. The object code of SCASW is 1010 111w = AF as w = 1.

The string instructions are used to operate on large blocks of data. To
refer a string, two parameters are required such as (i) starting/end address of the string, and (ii) length of
the string. Usually starting/end address of the string is represented by DS: SI and the length of a string is
stored as count in the CX register. After each iteration, the incrementing or decrementing of the pointer (SI
or DI) depends upon the direction flag (DF) and the counter is decremented by one. To perform the string
instructions repeatedly, REP (repeat) instructions are used. Hence the string instruction with the REP prefix
is executed repeatedly until the CX register becomes zero. If CX becomes zero, the execution proceeds to
the next instruction in sequence. The most commonly used REP instructions are REP (repeat), REPE (repeat
while equal), REPZ (repeat while zero), REPNE (repeat while not equal), and REPNZ (repeat while not zero)
which are explained below.

CX (CX-1); until CX = 0;
Flag affected: Z

This is a prefix byte that forces a string operation to be repeated as long as CX is not equal to 0. CX is
decremented once for each repetition. The object code of REPZ/REPE instruction is 1111 001Z = F3 as Z = 1.

ZF 0; CX
 (CX-1); String Operation repeats while (CX! = 0 and ZF! = 0); Flag affected: Z. This is a prefix byte

that keeps a string operation repeating while CX is not zero and Z! = 0. The object code of REPNZ/REPNE
instruction is 1111 001Z = F2 as Z = 0.

Write instruction to move a string of 9 bytes from source address DS:SI to destina-
tion address ES:DI. Assume DS = 4000H, ES = 6000H, SI = 0100H, DI = 0200H

MOV AX, 4000; Load 4000H in the AX register

MOV DS, AX; Load data segment address 4000H

MOV AX, 6000; Load 6000H in the AX register

MOV ES, AX; Load extra segment address 6000H

MOV CX, 0009; Store number of data in the CX register

MOV SI, 0100; SI register is loaded with 0100H

MOV DI, 0200; DI register is loaded with 0200H

CLD; Clear direction flag DF

REP MOVSB; move a string of 9 bytes from source address DS:SI to destination address ES:DI.

These instructions control the operation of processor and set or clear the status indicators. These instructions
are classified into two types such as flag-manipulation instructions and machine-control instructions. The
flag-manipulation instructions directly change some flags of the 8086 processor but the machine-control
instructions control the system bus functions.

The Carry (CF), Direction (DF) and Interrupt (IF) flags can be set or reset directly and the carry flag
can be inverted by these instructions. The DF and IF are processor control bits. DF is used with the string
instructions to change the content of pointer registers. When DF = 0, pointer register (DI) is incremented.
When DF = 1, the pointer register (DI) is decremented. The STD (set direction flag) and CLD (clear direction
flag) instructions are used to set or clear this flag. The STI (set interrupt flag) and CLI (clear interrupt flag)
are used to enable or disable maskable interrupts on INTR line. When TF (trap flag) is set, a type 1 interrupt
is generated after execution of each processor instructions. There are no specific instructions to set or reset
the TF. POPF and SAHF instructions, which are termed as data-transfer instructions are used to modify flags.
The machine-control instructions are HLT, WAIT, NOP ESC and LOCK. Some instructions are specially
used for coprocessors. There are three coprocessor instructions as WAIT, LOCK and ESC. In this section all
processor control instructions are explained.

CF 0; Flag affected: C.

The CLC instruction is used in the carry flag low. The object code of CLC instruction is 1111 1000 = F8

CF ~CF; Flag affected: C

The CMC instruction is used to complement the carry flag. The object code of CMC instruction is 1111
0101 = F5

CF 1; Flag affected: C

The CMC instruction is used to set the carry flag. The object code of STC instruction is 1111 1001 = F9

DF 0; Flag affected: D

Clear direction flag to 0. When DF = 0, pointer register (SI or DI) is automatically incremented by 1.

The object code of CLD instruction is 1111 1100 = FC

DF 1; Flag affected: D
Sets direction flag to 1. When DF = 1, pointer register (SI or DI) is automatically decremented by 1.

The object code of STD instruction is 1111 1101 = FD

IF 0; Flag affected: IF

Clears the interrupt enable flag which disables interrupts.

The object code of CLI instruction is 1111 1010 = FA

IF ! 1; Flag affected: IF

Sets the interrupt enable flag which enables interrupts. The object code of STI instruction is 1111 1011 = FB

Flag affected: None.

Halt instruction is used to ask the processor to stop execution. Actually, it hangs the processor in a series

of self-inflicted NOP’s until an interrupt occurs. The object code of HLT instruction is 1111 0100 = F4

Flag affected: None.

It causes the processor to wait for a completion signal from the coprocessor. The object code of WAIT

instruction is 1001 1011 = 9B

Flag affected: None.

This instruction is used to avoid any other processors. Actually, it locks the bus attached to LOCK pin of

device while a multicycle instruction completes The object code of LOCK instruction is 1111 0000 = F0

When NOP instruction is executed, this instruction does not allow the

processor to perform any operation except for incrementing the IP by one. The object code of NOP instruction

is 1001 0000 = 90

The TEST input is examined by a WAIT instruction. When the WAIT instruction is executed,

it holds the operation of the processor with the current status till the logic level on the TEST pin is low.

Therefore, the processor remains in idle state and the TEST pin goes low.

The ESC instruction is used as a prefix to the coprocessor instructions. The 8086

processor puts the source operand on the data bus but no operation further takes place. The coprocessor

continuously examined the data bus content and it is activated by ESC instruction and it reads two operands

and thereafter starts execution. The detailed operation is illustrated in coprocessor chapter.

 In this chapter the different addressing modes of 8086/8088 microprocessors are explained with exam-

ples. The 8086 microprocessor instruction format is discussed in detail.

 The instruction set can be classified into different categories depending upon its functions such as

data-transfer instruction, arithmetic instruction, logical instruction, string instruction, bit-manipulation

instruction, control transfer instruction and machine/processor control instruction.

 In this chapter, all data-transfer instruction, arithmetic instruction, logical instruction, string instruc-

tion, bit-manipulation instruction, control transfer instruction and machine/processor control instruc-

tions are discussed with examples.

6.1 What is the addressing mode of the instruction
MOV AX, [BX]?

 (a) Register direct
 (b) Register indirect
 (c) Immediate addressing
 (d) Indirect addressing

6.2 What is the addressing mode of the instruction
MOV AX, [BX+SI+06] ?

 (a) Index addressing
 (b) Base addressing
 (c) Base index addressing
 (d) Base index displacement addressing

6.3 Which of the following instructions is immedi-
ate addressing?

 (a) MOV AX, [2000]
 (b) MOV BX, 2000
 (c) MOV AX, [SI]
 (d) MOV AX, BX

6.4 Which of the following instruction is base with
16-bit displacement addressing?

 (a) MOV AX, [BX + 06]
 (b) MOV AX, [BP + 2000]
 (c) MOV AX, [BP + 06]
 (d) MOV AX, [BP]

6.5 Which of the following instruction is a four-
byte instruction?

 (a) MOV AX, 2345
 (b) MUL BX
 (c) DIV CL
 (d) ADD AX, [BP + 0200]

6.6 Which of the following instruction is a six-
byte instruction?

 (a) MOV [BX + DI + 0200], 2345
 (b) MOV [SI], 5665
 (c) DIV CL
 (d) ADD BX, [BP + 0200]

6.7 Which of the following instruction is a logical
instruction?

 (a) DIV AB (b) TEST
 (c) CALL (d) AAM

6.8 Which of the following instruction affects
carry flag?

 (a) RCR (b) MUL AB
 (c) JZ (d) INC AX

6.9 Which of the following instruction is an arith-
metic instruction?

 (a) DIV AB (b) ROR
 (c) STI (d) WAIT

6.10 The example of the string instruction is
 (a) MOV DX, [SI] (b) XLAT
 (c) MOVSB (d) AAD

6.11 Which of the following instructions is not
true?

 (a) MOV [2000], [4000]
 (b) MOV AX, [2000]
 (c) MOV [2000], AX
 (d) MOV AX, BX

612 2’s complement instruction is
 (a) NEG (b) NOT
 (c) CMP (d) CMC

6.13 Direction flag is used with which of the fol-
lowing instructions?

 (a) Data transfer
 (b) Branch control instructions
 (c) String instructions
 (d) Logical instructions

6.14 Which of the following instruction does not
allow the interrupt request signal to interrupt
the instruction which follows NOP ?

 (a) ESC (b) HALT
 (c) WAIT (d) LOCK

6.15 Which of the following instruction is used to
read a string of bytes and send it to another
memory location?

 (a) SCASB (b) MOVSB
 (c) LODSB (d) LODSB

6.16 A procedure can be called using the instruction
 (a) JMP (b) CALL
 (c) RET (d) INT n

6.17 To return a procedure, we use the instruction
 (a) JMP (b) CALL
 (c) RET (d) INT n

6.18 The LODSB instruction is used which of the
following register combinations?

 (a) ES:SI (b) ES:DI
 (c) DS:SI (d) DS:DI

6.19 When PUSH instruction is executed, initially
 (a) upper byte of data is stored on stack and

SP = SP – 1

 (b) upper byte of data is stored on stack and
SP = SP + 1

 (c) lower byte of data is stored on stack and
SP = SP – 1

 (d) lower byte of data is stored on stack and
SP = SP + 1

6.20 Coprocessor control instructions are
 (a) WAIT, LOCK, ESC
 (b) HALT, STC, CLC
 (c) ROR, RCR, ROL
 (d) DAA

6.1 What is an instruction format? What are the types of instructions of 8086 microprocessors based on
format?

6.2 Write the classification of 8086 instructions based on functions. Give a list of examples of different
instructions.

6.3 Explain the difference between FAR CALL and NEAR CALL instructions.

6.4 Which registers are affected by the MUL, IMUL, DIV, and IDIV instructions?

6.5 Which of the shift, rotate, and logical instructions do not affect the zero flag?

6.6 Why does the SAR instruction always clear the overflow flag?

6.7 What does the NEG instruction do? What instruction is most similar to CMP? What instruction is
most similar to TEST?

6.1 Define addressing modes of 8086 processors. What are the different addressing modes of 8086
microprocessors? Explain each addressing mode with examples.

6.2 Write the procedure to determine physical address for the following instructions as given below:
 (i) MOV AX, [SI + 03] (ii) MOV AL, CS:[BX + 0400]
 (iii) MOV AX, [3000] (iv) MOV AL, [BX+SI + 22]
 Assume CS = 4000H, IP = 2300, SI = 02300 and DS = 5000

6.3 Write the difference between the following instructions:
 (i) MUL and IMUL (ii) DIV and IDIV
 (iii) JUMP and LOOP (iv) Shift and Rotate

6.4 Give a list of processor control instructions and explain briefly.

6.5 Explain the execution of data-transfer instructions with suitable examples.

6.6 What is a procedure? What are the different types of procedure in 8086? Discuss each type procedure
with examples.

6.7 Discuss string instructions with suitable examples. Explain why REP prefix is added with string
instructions. Which string instruction should be used to ensure that two strings in the memory are
equal?

6.8 Explain operation of the following instructions:
 (i) ADD AX, [BX] (ii) INC SI (iii) MUL BX (iv) IMUL DX
 (v) NEG AL (vi) DEC DI (vi) XLAT (vii) PUSH and POP

6.9 Write the difference between following instructions
 (i) CBW and CWD (ii) MOV reg, immediate and LEA reg, address
 (iii) DEC AX and SUB AX, 1 (iv) RCL and ROL (v) IRET and RET (far)

6.10 Explain the operation of the LOOP, LOOPE/LOOPZ, and LOOPNE/LOOPNZ instructions. What
does the INT n instruction push onto the stack that the CALL FAR instruction does not? What is
the JCXZ instruction typically used for?

6.11 Explain the operation of the 80x86 CALL and RET instructions. Describe step by step with suitable
examples.

6.12 Explain how the XLAT instruction is used to convert an alphabetic character in the AL register from
lower case to upper case and leave all other values in AL unchanged.

6.13 Find the object codes for the following instructions
 (i) MOV AX, 2345 (ii) MOV [BX +SI], 4444 (iii) ADD AL, FF (iv) ADD [BX], 45 67
 (v) MUL CL (vi) IMUL CX (vii) DIV BX (viii) IDIV CL

6.14 Write instructions to perform the following operations:
 (i) Copy content of BX to a memory location in the data segment with offset 0234H
 (ii) Increment content of CX by 1
 (iii) Multiply AX with 16 bit data 2467H
 (iv) Rotate left the content of AL by two bits

6.15 Write results after execution of following instructions:
 (a) MOV AL, 22; MOV BL, 44; ADD AL, BL;
 (b) MOV AX, 1002; MOV BX, 44; MUL AX, BL;
 (c) MOV CL, 34; MOV AL, FF; SUB AL, CL;
 (d) MOV AX, 8796; MOV CL, 2; ROR AX, CL;

 6.1 (b) 6.2 (d) 6.3 (b) 6.4 (b) 6.5 (d) 6.6 (a) 6.7 (b) 6.8 (a) 6.9 (a)

 6.10 (c) 6.11 (a) 6.12 (a) 6.13 (c) 6.14 (b) 6.15 (b) 6.16 (b) 6.17 (c) 6.18 (c)

 6.19 (a) 6.20 (a)

Machine-language programming is coding of a program in terms of 0 and 1. During this programming,
the memory control is directly in the hands of the programmer and the programmer is able to manage the
memory of the system more efficiently. But the programming, coding and memory-management techniques
in machine-language programming are very tedious. As the programmer writes all functions in terms of 0
and 1, the possibility of human errors is more. To write and understand the programs, the programmer should
have thorough knowledge about the architecture and instruction set of the processor. The disadvantages of
machine-language programming are given below:

 Writing a program is very complicated and time consuming.

 Possibility of errors in programming are large and a human can only feed the program byte by byte
into the system.

 Debugging the program is very difficult.

 Only a program designer is able to understand the program. Therefore, such programs are not user
friendly.

Assembly-language programming is comparatively simpler than machine-language programming. In the
assembly-language programs, instruction mnemonics are used to write programs directly. These programs
are more readable and understandable than machine-language programs. In assembly language, the address
values and the constants can be identified by labels. As the labels are clear, the program becomes more under-
standable. The tedious byte handling and manipulations are reduced as address and constants are available
inside the program, and it is not required to remember them. However, different logical segments and routines
may be assigned with the labels rather than the different addresses. The memory-control feature of machine-
language programming is left unchanged by providing storage defined facilities in assembly-language pro-
gramming. The documentation facility is now available in assembly language.

An assembler is a program which converts any assembly-language program into the equivalent machine
codes. During conversion, firstly the address of each label is initialised and the values for each of the con-
stants and variables are substituted. Thereafter, the assembler generates the equivalent machine code for all
mnemonics and data. The assembler also generates information about syntax errors in the program but the
assembler cannot find out any logical errors in the program. The advantages of an assembler are as follows:

 Writing a program in assembly language is comparatively easier than machine level language
programming.

 The chances of errors during editing a program are less as mnemonics are used to write program.

 It is very easy to enter the program in assembly language.

 Debugging is also easier than machine code programming as mnemonics are purpose suggestive.

 Such programs are more user friendly as the constants and memory address locations can be labelled.
Macros make the task of programming easier.

 After execution, the results of programs are stored in a more user-friendly form.

 Flexibility of programming in assembly language is more than in machine language.

In any assembly-language program, the programmer should mention constants, variables, logical names
of the segments, types of the different routines and modules, and end of file. Such help is given to the assem-
bler using predefined alphabetical strings called assembler directives. Actually, assembler directives help the
assembler understand the assembly-language programs properly and generate the machine codes. Usually,
the following directives are commonly used in assembly-language programming:

DB: Define Byte

DW: Define Word

DQ: Define Quadword

DT: Define Ten Bytes

ASSUME: Assume Logical Segment Name

END: End of Program

ENDP: End of Procedure

ENDS: End of Segment

EQU: Equate

LABEL: Label

LENGTH: Byte Length of a Label

NAME: Logical Name of a Module

OFFSET: Offset of a Label

ORG: Origin

PROC: Procedure

SEG: Segment of a label

To edit an assembly-language program on an IBM PC in the DOS operating system, different text editors
such as Norton’s Editor (NE.Com), Microsoft Assembler (MASM.EXE), Linker (LIINK.EXE) and Debugger
(DEBUG.EXE) are commonly used. In this section, the basic operations of these editors are explained briefly.

To start Norton’s Editor, type NE after C and enter the directory.

C > NE

Enter File name

Norton’s Editor
Press any key to continue

File name ABC.ASM

Norton’s Editor
Press any key to continue

ABC.ASM

After pressing the enter key, Norton’s Editor’s opening page
will be displayed as shown in Fig. 7.1. Then type the file name.
For example, assume the file name is ABC and the screen display
is shown in Fig. 7.2. When any key is pressed, the ABC.ASM file
will be opened as depicted in Fig. 7.3. After that, enter text to edit
the assembly-language program. A sample program ABC.ASM is
edited to subtract two numbers as shown in Fig. 7.4. If we want to
open a file directly, the command is C>NE ABC.ASM. Then ABC.
ASM file will be opened and displayed on the CRT screen. After
editing the program or modifying the existing program, the F3-E
command is used to save the program and exit from Norton’s Editor
by using the F3-Q command.

The Microsoft Assembler MASM is a most popular assembler and
it is very easy to use. To enter an assembly-language program, the
command is

C > MASM ABC

or

C > MASM ABC.ASM

When the above commands are executed, Fig. 7.5 will be displayed on screen. If we enter the Command
C > MASM , Fig. 7.6 will be displayed as the opening page of MASM.

In Fig. 7.6, the source filename should be typed in the source filename with or without extension the
.ASM. Then valid filename will be accepted if the enter key is pressed. Thereafter enter the .OBJ file name
which creates the object file of the assembly-language pro-
gram. The listing file is identified by the source filename and
an extension .LST. This file consists of Levels, Offfset Address,
Mnemonics, Directives and other necessary assembly-language
related information. The cross-reference filename is also entered
in the same way as the listing file. This file is used for debug-
ging the source program. The .CRF file contains information
such as size of the file in bytes, number of labels, list of labels,
and routines of the source program. After entering the cross-
reference file name, the assembly-language process starts. Then
syntax errors of the program are displayed using error code

C>MASM ABC
Microsoft Macro assembler Version 5.10
Copy right Microsoft Corp. 1981,1989

Object filename [FILE.OBJ]:
List filename [NUL.LST]:
List filename [NUL.CRF]:

ASSUME

DATA

DATA

CODE

LABEL

CODE

ABC.ASM

CS:CODE DS:DATA

SEGMENT

DATA1 DW 3567 H

DATA2 DW 1235 H

RESULT DW 01H

ENDS

SEGMENT

MOV AX,DATA

MOV DS,AX

MOV AX,DATA1

MOV BX,DATA2

SUB AX,BX

MOVE AH,4CH

INT 21H

ENDS

END LEVEL

number and the corresponding line number, if the program has
any syntax errors. When the programmer removes all syntax
errors, the assembly process will be completed successfully.
After successful assembly process, the .OBJ, .LST and .CRF
files, are generated and these files can be linked by the linker
programmer to link the object modules and generate an execut-
able (.EXE) file.

The LINK. EXE file links the different object modules of the
source program and function library routines to generate exe-
cutable code of the source program. The input to the linker is
the .OBJ file. The linker program is executed by the command
C > LINK or C>LINK ABC.OBJ and the display on the
screen is shown in Fig. 7.7.

DEBUG.COM is a program which allows the programmer to
write, execute, debug and trouble-shoot assembly-language
programs. This command is used to examine the contents of
registers and memory. It can also be used to execute a program,
but one instruction at a time. To start DEBUG, it is required to
type DEBUG after the DOS prompt as given below:

C: \ > DEBUG

After typing the above command, press the ‘enter key. Then the
DEBUG command is executed and a hyphen which is known as DEBUG prompt – (dash) will be displayed
as given below:

C: \>DEBUG

-

Any valid command such as –R, -M, -A and –U, etc., is accepted using the enter key. All the valid commands
of DEBUG are discussed in the next section.

DEBUG has a number of valid commands which are used to write, execute and debug programs. Each com-
mand is designed to perform an important task. There are commands to assemble and execute programs,
display the contents of registers and memories, to run a program in single-step mode, etc. Generally, the
DEBUG command is represented by a one-letter symbol such as A for assemble, E for entry, D for display,
etc.

The A command is used to enter mnemonics of an assembly-language program and convert it into machine
codes. When the A command is executed, the machine codes are generated and directly stored in the memory.

C>LINK
Microsoft Linker Version 3.64
Copy right Microsoft Corp. 1981,1989

Object Module [.OBJ]:
List File [.EXE]:
List filename [NUL.LST]:
Libraries [LIB]:

C>MASM
Microsoft Macro assembler Version 5.10
Copy right Microsoft Corp. 1981,1989

Object filename [.ASM]:
List filename [FILE.OBJ]:
List filename [NUL.LST]:
List filename [NUL.CRF]:

After getting DEBUG prompt, the starting address is initialized as-A address. Assume the starting offset
address as 1000H, then the assemble can be written as

- A 1000

When the above instruction is executed, the display on the screen will be

17DA : 1000

Here, 17DA is the content of the Code Segment (CS) register and the offset address will be 1000H.

When offset is not written after the A command, the DEBUG command will be executed assuming the offset
address 1000H.

To edit some instructions, write instruction after address as given below:

Load 16-bit data 2045H in the AX register and another 16-bit data 6545 in
the BX register.

C: \>DEBUG

- A 1000

17DA : 1000 MOV AX,2045; Load 16-bit data 2045H in the AX register

17DA : 1003 MOV BX,6545; Load 16-bit data 6545H in BX register

17DA : 1006 HLT

17DA : 1007

The U command is used to disassemble machine codes of specified memory locations and generates cor-
responding mnemonics and machine codes. This command displays machine codes and mnemonics on the
screen. The default register is CS : IP and the general format is

-U address range

In Example 7.1, the program is written from 17DA: 1000 to 17DA: 1006. To display machine codes on
the screen the U command can be written as follows:

-U 1000 1006

After execution of the above command, the display on the screen will be as given below:

17DA : 1000 B8 45 20 MOV AX, 2045

17DA : 1003 BB 45 65 MOV BX, 6545

17DA : 1006 F4 HLT

-

When the U command is applied without specifying any address range, DEBUG un-assembles the first 32
bytes starting from the address which is located by the content of IP register or it un-assembles 32-bytes since
the last U. The default register for U command is the CS: IP. For example, the display is shown on the screen
after execution of U command without mentioning the address.

Assume the following instructions are stored in the memory locations from 17DA: 1000 to 175A:1020

C: \>DEBUG

- A 1000

17DA : 1000 MOV AX,2045; Load 2045H in the AX register

17DA : 1003 MOV BX,6545; Load 6545H in the BX register

17DA : 1006 MOV CX,1234; Load 1234H in the CX register

17DA : 1009 MOV DX,1234; Laod 1234H in the DX register

17DA : 100C ADD AX, BX; Add content of BX with AX

17DA : 100E ADD AX, CX; Add content of CX with AX

17DA : 1010 ADD AX, DX; Add content of DX with AX

17DA : 1012 MOV SI, 0100; Store 0100 in SI register

17DA : 1015 MOV DI, 0100; Store 0100 in DI register

17DA : 1018 NEG AX ; 2’s complement of AX

17DA : 101A NEG BX; 2’s complement of BX

17DA : 101C NEG CX ; 2’s complement of CX

17DA : 101E NEG DX; 2’s complement of DX

17DA : 1020 HLT

17DA : 1021

If we execute the –U 1000 command, the display on screen will be

-U 1000

17DA : 1000 B8 45 20 MOV AX,2045

17DA : 1003 BB 45 65 MOV BX,6545

17DA : 1006 B9 34 12 MOV CX,1234

17DA : 1009 BA 34 12 MOV DX,1234

17DA : 100C 01 D8 ADD AX, BX

17DA : 100E 01 C8 ADD AX, CX

17DA : 1010 01 D0 ADD AX, DX

17DA : 1012 BE 00 01 MOV SI, 0100

17DA : 1015 BF 00 02 MOV DI, 0100

17DA : 1018 F7 D8 NEG AX

17DA : 101A F7 DB NEG BX

17DA : 101C F7 D9 NEG CX

17DA : 101E F7 DA NEG DX

The register command R can be used to display the contents of one or more registers. This instruction also
displays the status of the flags. The general format of the R command is

-R register name

For example, the execution of –R AX command, the DEBUG displays the content of the AX register as
follows:

C: \>DEBUG

- A 1000

17DA : 1000 MOV AX, 2045; Load 2045H in AX register

17DA : 1003 MOV BX, 6545; Load 6545H in BX register

17DA : 1006 HLT

17DA : 1007

-GCS: 1006

AX = 20445 BX = 6545 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 0100 NV UP EI PL NZ NA PO NC

17DA : 1006 F4 HLT

-R AX

AX 2045

:

When the name of a register is given after the R command, the name and the content of that register is dis-
played in the next line. A colon is then displayed as a prompt in the subsequent line. If a new value after the
colon is typed and enter key pressed for execution, the content of the register will be changed. After that the
debug prompt is displayed. Again to see the content of the register, write the R command with register name
as given below.

-R AX
AX 2045
:5000
AX 5000
:

Usually, the R command is given without the name of a register; the DEBUG displays the contents of all
registers including status flags.

-R
AX = 5000 BX = 6545 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 0100 NV UP EI PL NZ NA PO NC
17DA : 1006 F4 HLT

The status flags with their codes for RESET and SET are illustrated in Table 7.1.
F is the flag register-name to visualise the status of flags. When -R F command is executed, the status of the
flags are displayed in the beginning of the next line. At the end of the list of status of the flags, a hyphen (-)
is displayed as given below. If we want to change status flags, after the hyphen type the desired flags in any
order as per requirement, and then press the enter key.

-R F
After execution, the flag register will display the format as given below:

NV UP EI PL NZ NA PO NC-

If we want to change NC to CY, enter desired status of the desired flags after the hyphen as given below:

NV UP EI PL NZ NA PO NC-CY

To check the changed condition after giving R F command, we execute -R F command and the display on
screen will be
- R F
OV UP EI NG ZR AC PO CY-

 Name of the flag Reset Set

 Overflow NV OV

 Direction UP DN

 Interrupt DI EI

 Sign PL NG

 Zero NZ ZR

 Auxiliary Carry NA AC

 Parity PO PE

 Carry NC CY

The Go command is used to execute any program. The general format of the G command is G = address. The
equal sign (=) is put before the specified address which indicates the starting address of the program. The
default register for G command is CS. A program for addition of two 16-bit numbers which are loaded in AX
and BX registers is written from

C: \>DEBUG
- A 1000
17DA : 1000 MOV AX, 2000; Load 2000H in AX register
17DA : 1003 MOV BX, 3000; Load 3000H in BX register
17DA : 1006 ADD AX, BX; Add the content of BX with AX
17DA : 1008 HLT
17DA : 1009
-G=1000
Program terminated normally

To execute the above program and to visualize the results, we should write the command as follows:

-G 1008

In the above command, 1008 is the end address of the program.

Then the program will be starting from the address CS: 1000 and the contents of all registers and flags will
be displayed as given below:

AX = 5000 BX = 3000 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 NV UP EI PL NZ NA PE NC
17DA:1008 F4 HLT

Sometimes, GCS command is used to execute the program. The general format of GCS command is
-GCS: end address of program. The example of GCS command for execution of above program is given
below:

C:\>DEBUG
-A1000
17DA: 1000 MOV AX, 2000; Load 2000H in AX register
17DA:1003 MOV BX, 3000; Load 3000H in BX register
17DA:1006 ADD AX, BX; Add the content of BX with AX
17DA:1008 HLT

17DA:1009
-GCS: 1008
After execution, the result will be displayed as given below:
AX = 5000 BX = 3000 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 NV UP EI PL NZ NA PE NC
17DA:1008 F4 HLT

The trace command T is used to run a program in single-step mode. The default register is the CS: IP and the
general format of trace command is

-T = address

To testing the trace command, we should write a simple program as given below:

C:\>DEBUG
-A1000
17DA:1000 MOV AX, 2456; Load 2456H in AX register
17DA:1003 MOV BX, 6000; Load 6000H in BX register
17DA:1006 ADD AX, BX; Add the content of BX with AX
17DA:1008 HLT
17DA:1009

To execute the above program in single-step mode, we should enter the command

-T = 1000

When the enter key is pressed after T=1000 command, the first instruction of the program will be executed
and the result will be displayed on the screen as given below:

AX = 2456 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 1003 NV UP EI PL NZ NA PO NC
17DA: 1003 BB0060 MOV BX, 6000

The last line of the display is the next instruction which will be executed. To execute the next instruction, the
T command is used in the following format as given below:

-T
AX = 2456 BX = 6000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 1006 NV UP EI PL NZ NA PO NC
17DA: 1006 01D8 ADD AX, BX
-

When the T command is entered and the enter key pressed, 17DA: 1003 address instruction MOV BX,
6000 will be executed by default as the content of IP is 0103 and the results are displayed as given above.

To execute any instruction of the program use T = address command. For example, if we want to execute
the third instruction at the memory location 17DA: 1006 ADD AX, BX, we should write the following
command:

-T = 1006
AX = 8456 BX = 6000 CX = 0000 DX = 0000 SP=FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 1008 OV UP EI NG NZ NA PE NC
17DA:1008 F4 HLT
-

Before typing the T command, the contents of AX and BX registers are 2456 and 6000 respectively. After
execution of the T command, the third instruction will be executed and result will be stored in the AX register
as shown above.

If want to execute more than one instruction by a single command in single-step mode, the common format
of the T command is

-T = address location value

Here address location is the starting address of first instruction from which execution will be started and value
= n, the number of instructions to be executed by single command in single-step mode. Suppose we want to
execute the first and second instructions of a program as illustrated by single command in single-step mode,
we write the command as given below:

C:\>DEBUG

-A 1000
17DA:1000 MOV AX, 1234; Load 1234H in AX register
17DA:1003 MOV BX, 3456; Load 3456H in BX register
17DA:1006 ADD AX, BX; Add the content of BX with AX
17DA:1008 HLT
17DA:1009

-T=1000 02

AX = 1234 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 1003 NV UP EI PL NZ NA PO NC
17DA:1003 BB0060 MOV BX,6000

AX = 1234 BX = 3456 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 1006 NV UP EI PL NZ NA PO NC
17DA: 1006 01D8 ADD AX, BX

After applying the T=1000 02 command, the first instruction 17DA: 1000 MOV AX, 1234 will be executed
and the result will be displayed on screen. After that the second instruction 17DA:1003 MOV BX, 3456 will
be executed and again the result will be displayed on screen as shown above.

The D command is used to display the contents of specified memory locations. The default register is DS. The
general format of the D command is

-D or -D address
C:\>DEBUG
-A1000
17DA:1000 MOV AX, 2000; Load 2000H in AX register
17DA:1003 MOV BX, 3000; Load 3000H in BX register
17DA:1006 HLT
17DA:1007
-D

The display on screen will be from starting address 17DA: 0100 by default as given below:

17DA:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Each line can display about 16 bytes. There is a hyphen between the eighth and ninth bytes.
When the –D 1000 is executed, the following data will be displayed on the screen.

17DA:1100 B8 00 20 BB 00 30 F4 00-00 00 00 00 00 00 00 00
17DA:1110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:1120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:1130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:1140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:1150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:1160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
17DA:1170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The other format of the D command is

-D address range

The D command incorporating address range is written as D 1000 1005, the display on screen will be

17DA: 1100 B8 00 20 BB 00 30 F4

When we write the D command with starting address, the DEBUG is executed and by default 80 (hex)
bytes or 128 bytes (80 hex) starting from the given address will be displayed. The command D 0100 will
display 128 bytes starting from the memory location DS: 0100.

The E command is used to enter machine codes or data. This instruction operates with the register DS by
default. This command can be used in the following ways such as:

 Sequentially enter data or machine codes

 Replace data or machine codes of certain memory locations

The common format to enter data or machine codes sequentially is

-E address list

When the data are to be entered in DS segment starting from the offset address 0500, the command will be
written as

-E 0500

After writing the E command, data should be entered in the same line with one space between two adjacent
data as given below:

-E 0500 01 02 03 04 05 06 07 08

Here, data are 01 02 03 04 05 06 07 08 and the staring address if DS: 0500. After execution the above com-
mand, data will be entered into memory location DS: 0500 to DS: 0507. The content of DS: 0500 is 01 and
the content of DS: 0507 is 08.

When we want to replace data in DS: 0400, we should write the command as E address. The example of
replacing command is given below:

-E 0400

17DA:0400 00.12 00.34 00.56 00.78 00.99 00.AA 00.BB 00.CC

-E 0400

17DA:0400 12.01 34.02 56.03 78.04 99.05 AA. 06 BB. 07 CC.08

-E 0400

17DA: 0400 01. 02. 03. 04. 05. 06. 07. 08.

When the E 0400 command is executed, this will show the contents of the memory location DS: 0400 in the
next line as

17DA: 0400 00

where, 17DA is the initial setting for DS by default. 00 is the content of the memory location 17DA:0400. If
we want to change the existing data, enter the new data 12 as shown below:

17DA:0400 00.12

If we want to change data of the next memory location, the space bar is to be pressed. It will show the
content of the next memory location. To change the existing data 00, enter the new data 34. In this way, data
replacement can be preceded. The maximum number of bytes that can be entered in a line is 8. After replacing
the desired number of data, the enter key is pressed. While data replacement is continued up to the end of the
line, the next line with current memory address comes automatically.

The Fill command is used to fill the specified range of memory locations with the values which are entered
in a list. The default segment register is the DS. The general format is
-F address range list of data
The example of Fill command is
-F 0300 0304 12 34 56 78 90
Then a list of values from 12 to 90 will be filled in the memory locations DS: 0300 0304. This can be verified
using D command as given below:
C:\>DEBUG
-F 0300 0304 12 34 56 78 90
-D 0300 0304
17DA:0300 12 34 56 78 90

-

Generally, data movement operation is performed with the M command. The M command is usually used to
copy/move the block of data from one memory block into another memory block. By default, the DS register
is used to locate data. The general format of the M command is

-M range address

The example of move command is -M 0100·0105 0200

or -M 0100 L 06 0200

After execution of this command, the data starting from DS: 0100 to DS: 0105 are copied into the
memory location address beginning from DS: 0200 to DS: 0205.

The search command S is used to search the specified memory locations for the specified list of bytes. By
default, the data segment register DS is used to locate data. The general format is

-S address range list

The list may contain one byte or more than one byte of data. If the list contains only one byte, all addresses
of the byte in the specified range will be displayed. If the list contains more than one byte, then only the first
addresses of the byte string are returned.

To search a byte (44H) in a specified memory range from DS: 0100 to DS: 0200, the command may be writ-
ten as follows:

S 0100 0200 44.

The first number FFH is stored in the AL register and the second number 22H is stored in the BL register.
The result after addition will be stored in AX. The program flow chart for
addition of two 8-bit numbers with a 16-bit sum is shown in Fig. 7.8.

 1. Store first data in Register AL.

 2. Store second data in Register BL.

 3. Add the contents of AL and BL.

 4. CY flag will be set, if result is more than 8 bits

C:\>DEBUG
-A 1000
17DA: 1000 MOV AL, FF; Load FFH in AL register
17DA: 1002 MOV BL, 22; Load 22H in AL register
17DA: 1004 ADD AL, BL; Add content of BL to AL
17DA: 1006 HLT
17DA: 1007
-U 1000 1006
17DA: 1000 B0 FF MOV AL,FF
17DA: 1002 B3 22 MOV BL,22
17DA: 1004 00 D8 ADD AL,BL
17DA: 1006 F4 HLT
-G 1006
AX = 0021 BX = 0022 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1006 NV UP EI PL NZ AC PE CY
17DA: 1006 F4 HLT

Initially the program is loaded in the memory location 17DA:1000 to 17DA:1006. Then the object codes
of the program will be visualized after execution of the U 1000 1006 command. If the above program is
executed by the G1006 command, the result will be displayed on the screen. As the result is more that 8 bits,
the content of AL is 21 which is LSB and the CY flag is set to detect the MSB.

Assume the first 16-bit number FFFFH is stored in the AX register. The second 16-bit number, 2333H is
stored in the BX register. After addition, the result will be stored in AX. The program flow chart for addition

START

Load first 8-bit data
in Register AL

Load second 8-bit
in Register BL

Add the content of
AL and BL

The result is present in AL.
If the result is greater than
8-bits, CY flag will be set

End

of two 16-bit numbers with sum is more than 16 bits, is depicted in Fig. 7.9.

 1. Load the first 16-bit number in AX.

 2. Store second 16-bit number in BX.

 3. Addition of first and second numbers

 4. Result is stored in AX and carry flag is set if sum is more than 16 bits.

C:\>DEBUG
-A 1000
17DA: 1000 MOV AX, FFFF; 16-bit data in AX
17DA: 1003 MOV BX, 2333; 16-bit data in BX
17DA: 1006 ADD AX, BX; Contents of BX is added to AX
17DA: 1008 HLT
17DA: 1009
-U 1000 1008
17DA: 1000 B8 FF FF MOV AX, FFFF
17DA:1003 BB 33 23 MOV BX, 2333
17DA:1006 01 D8 ADD AX, BX
17DA:1008 F4 HLT
-G 1008
AX = 2332 BX = 2333 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 NV UP EI PL NZ AC PO CY
17DA: 1008 F4 HLT
-

The above program is loaded in the memory location 17DA:1000 to 17DA:1008. After editing the pro-
gram, the U 1000 1008 command is used to display the object codes of the program. This program is executed
by G1008 command and result will be displayed on the screen. The content of AX is 2332 which is the addi-
tion of FFFFH and 2333H. As the sum is more than 16 bits, carry flag CY is set.

Assume the number of 16-bit data is stored in the CX register and a string of words are stored in 17DA: 0300
to 17DA: 0309. After addition, the result is stored in BX. Initially, the content of BX is 0000H. The program
flow chart for addition of a string of words with 16-bit sum is given in Fig. 7.10.

 1. Initialize the SI register with 0300H as source address of data.

 2. Load number of bytes to be added in the CX register.

 3. Load a word in AX from the source specified by SI and SI is incremented by 2.

 4. Addition of AX content and BX content.

 5. Move content of AX to BX.

 6. Continue steps-3 to 5 until CX = 0.

C:\>DEBUG
-A 0100

START

Load first 16-bit data
in Register AX

Load second 16-bit
in Register BX

Add the content of
AX and BX

The result is present in AX.
If the result is greater than
16-bits, CY flag will be set

End

17DA: 0100 MOV SI, 0300; Source address in SI
17DA: 0103 MOV CX, 0005; Count value is loaded in CX
17DA: 0106 MOV AX, [SI]; Load AX with data which is located by SI
17DA: 0108 ADD AX, BX; Contents of BX in AX
17DA: 010A INC SI; Increment SI
17DA: 010B INC SI; Increment SI
17DA: 010C MOV BX, AX; Contents of BX in AX
17DA: 010E DEC CX; Decrement CX
17DA: 010F JNZ 0106; Jump to 0106 if CX 0
17DA: 0111 HLT
17DA: 0112
-ECS:0300
17DA:0300 00.01 00.01 00.02 00.02 00.03 00.03 00.04 00.04
17DA:0308 00.05 00.05
-G 0111
AX = 0F0F BX = 0F0F CX = 0000 DX = 0000 SP = FFEE BP = 0000
SI = 030A DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 0111 NV UP EI
PL ZR NA PE NC
17DA: 0111 F4 HLT
-

The above program is entered in the memory location 17DA: 0100
to 17DA: 0111. The U 0100 0111 command can be used to display the
object code of the program. Five 16-bit data 0101, 0202, 0303, 0404 and
0505 are entered by the command -ECS: 0300 17DA: 0300 00.01 00.01
00.02 00.02 00.03 00.03 00.04 00.04 17DA: 0308 00.05 00.05. After
addition of 0101, 0202, 0303, 0404 and 0505, we get 0F0F. Therefore,
when the program is executed by the G0111 command, the result will be
displayed on the screen as the content of BX and AX registers, 0F0F.

Consider first 16-bit number is in the AX register and the second number
is in the BX register. After subtraction, the result will be stored in AX. The
program flow chart for subtraction of two 16-bit numbers is illustrated in
Fig. 7.11.

 1. Load first number in Register AX.

 2. Load second number in Register BX.

 3. Subtract BX from AX.

C:\>DEBUG
-A1000
17DA: 1000 MOV AX, FFFF ; 16 bit data in AX
17DA: 1003 MOV BX, 6666 ; 16 bit data in BX

Load the number of
words in CX register

Addition of BX and AX

Load word in Register AX from
memory location specified by SI,

Increment SI by 2

Copy the content of AX in BX

Decrement CX by 1

Is
CX = 0?

The result is present in AX
as well as BX

End

Initialize the SI register with 0300H
as a source address of data (words)

and BX = 0000H

START

Yes

No

START

Load first 16-bit data
in Register AX

Load second 16-bit
in Register BX

Subtract BX from AX

The result is present in AX

End

17DA: 1006 SUB AX, BX ; Contents of BX is subtracted from AX
17DA: 1008 HLT
17DA: 1009
-U 1000 1008
17DA: 1000 B8FFFF MOV AX,FFFF
17DA: 1003 BB6666 MOV BX,6666
17DA: 1006 29D8 SUB AX,BX
17DA:1008 F4 HLT
-G1008
AX = 9999 BX = 6666 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 NV UP EI NG NZ NA PE NC
17DA: 1008 F4 HLT
-

The program for subtraction of two 16-bit numbers is entered in the memory location 17DA: 1000 to
17DA: 1008. The U 1000 1008 command is used to display the object codes of the program. When the above
program is executed by the G1008 command, the result will be available in AX. Therefore, the result is con-
tent of AX, i.e., 9999H which is the subtraction of FFFFH and 6666H.

Assume that the 16-bit number is stored in the AX register. Find the two’s
complement of the number and store it in the BX register. The program flow
chart to find 2’s complement of a 16-bit number is shown in Fig. 7.12.

 1. Store the 16-bit number in Register AX.

 2. Determine 2’s complement of AX.

 3. Store two’s complement of AX in BX.

C:\>DEBUG
-A 1000
17DA: 1000 MOV AX, 2244 ; 16-bit data in AX
17DA: 1003 NEG AX ; 2’s complement of 16-bit data
17DA: 1005 MOV BX, AX ; Result is stored in BX
17DA: 1007 HLT
17DA: 1008
-U 1000 1007
17DA: 1000 B8 44 22 MOV AX,2244
17DA: 1003 F7 D8 NEG AX
17DA:1005 89 C3 MOV BX,AX
17DA: 1007 F4 HLT
-G 1007
AX = DDBC BX = DDBC CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1007 NV UP EI NG NZ AC PO CY
17DA: 1007 F4 HLT
-

The program for 2’s complement of a 16-bit number is stored in the memory location 17DA:1000 to

START

Load first 16-bit data
in Register AX

Find 2’s complement of AX
using NEG AX instruction

Store the result in BX

End

17DA:1007. The U 1000 1006 command is used to display the object codes of program. When this program
is executed by G1007 command and result will be available in AX. Therefore the content of AX is copied
into BX.

Assume a string of words are stored in 17DA: 0300 to 17DA: 030B.
The number of words is stored in the CX register. Determine the 2’s
complement of the string words and store at the destination address
17DA: 0400 to 17DA: 040B. The program flow chart to find 2’s com-
plement of a string of words is depicted in Fig. 7.13.

 1. Initialize SI with 0300H as source address of data.

 2. Load number of words in CX register and initialize DI with
0400H as destination address.

 3. Load a word in AX from the source specified by SI and SI is
incremented by 2.

 4. Determine 2’s complement of AX and store at destination
address represented by DI. DI is incremented by 2.

 5. Continue steps-3 and 4 until CX = 0.

C:\>DEBUG
-A 0100

17DA: 0100 MOV SI, 0300 ; Load 0300H in source index register

17DA: 0103 MOV CX, 0005 ; Load number of bytes in the CX
register

17DA: 0106 MOV DI, 0400 ; Load 0400H in destination index
register

17DA: 0109 LODSW ; Load AX with data addressed by SI
ans SI = SI+2

17DA: 010A NEG AX ; 2’s complement of 16-bit data

17DA: 010C STOSW ; Store AX addressed by DI and DI =
DI+2 Result is stored in memory

17DA: 010D LOOPNZ 0109 ; Loop unless CX = 0
17DA:010F HLT
17DA:0110
-ECS:0300
17DA: 0300 00.01 00.01 00.02 00.02 00.03 00.03 00.04 00.04
17DA: 0308 00.05 00.05 00.06 00.06
-G 010F
AX = FAFB BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 030A DI = 040A
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010F NV UP EI NG NZ AC PO CY
17DA: 010F F4 HLT
-ECS: 0400

Load the number of
words in CX register

Load word in Register AX from
memory location specified by SI,

Increment SI by 2

Initialize the DI register with 0400H
as a destination address of 2’s
complement a string of words

Find 2’s complement of AX
using NEG instruction

Store the content of AX in
memory location specified by
DI. DI is Incremented by 2

Is
CX = 0?

Decrement CX by 1

End

Initialize the SI register with 0300H
as a source address of a

string of words

START

Yes

No

17DA: 0400 FF. FE. FE. FD. FD. FC. FC. FB.
17DA: 0408 FB. FA. 00.
-

The above program is used to find 2’s complement of a string of five 16-bit numbers which are stored in
the memory location 17DA: 0300 to 17DA: 0309 and the program is stored in the memory location 17DA:
0100 to 17DA: 010F. The U 0100 010F command can be used to display the object codes of the program.
ECS: 0300 command is used to five 16-bit numbers such as 0101, 0202, 0303, 0404 and 0505. This program
can be executed by the G010F command and result will be stored in destination memory location 17DA:
0400 to 17DA: 0409. To see the result, the ECS: 0400 command should be used and result will be displayed
as given above.

Assume that the first number 1111H is stored in the AX register and the
second number 2222H is stored in the BX register. Multiply contents of
AX by BX and the result is to be stored in DX and AX registers. The
program flow chart to multiply two 16-bit numbers is given in Fig. 7.14.

 1. Load first number in Register AX.
 2. Store the second data in Register BX.
 3. Multiply contents of AX by BX.

C:\>DEBUG
-A 1000

17DA: 1000 MOV AX, 1111 ; 16-bit multiplicand in AX

17DA: 1003 MOV BX, 2222 ; 16-bit multiplicand in AX

17DA: 1006 MUL BX ; Multiply contents of AX by BX

17DA: 1008 HLT

17DA: 1009

-U 1000 1008

17DA: 1000 B8 11 11 MOV AX,1111

17DA: 1003 BB 22 22 MOV BX,2222

17DA: 1006 F7 E3 MUL BX

17DA:1008 F4 HLT

-G 1008

AX = 8642 BX = 2222 CX = 0000 DX = 0246 SP = 0004 BP = 20CD SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 OV UP EI NG NZ NA PO CY

17DA: 1008 F4 HLT

-

The above program is used to multiply two 16-bit numbers and it is stored in the memory location
17DA: 1000 to 17DA: 1008. The U 0100 0108 command is used to display the object codes of the program.
This program can be executed by G1008 command and result will be stored in DX and AX. The result after
multiplication of 1111H and 2222H is more than 16 bits. Then lower 16 bits result is stored in AX and
upper 16 bits (most significant bit) of result is stored in DX. Here, the result is the content of DX = 0246 and
AX = 8642.

START

Load multiplicand, i.e., first 16-bit
number in Register AX

Load multiplier, i.e., second 16-bit
number in Register BX

Multiply the content of AX by BX
using MUL instruction

The result is stored in DX and AX
registers

End

Assume that the first number FFFFH is stored in the AX register and the
second number 2222H is stored in the CX register. Divide AX by CX and
the result is to be stored in DX and AX registers. The program flow chart
to divide two 16-bit numbers is depicted in Fig. 7.15.

 1. Load first number in Register AX.
 2. Store the second data in Register CX.
 3. Divide content of AX by CX and result in Registers AX and DX.

C:\>DEBUG
-A 1000
17DA: 1000 MOV AX, FFFF ; 16-bit dividend in AX
17DA: 1003 MOV CX, 2222 ; 16-bit divisor in CX
17DA: 1006 DIV CX ; Divide contents of AX by CX
17DA: 1008 HLT
17DA:1009
-U 1000 1008
17DA:1000 B8 FF FF MOV AX, FFFF
17DA:1003 B9 22 22 MOV CX,2222
17DA:1006 F7 F1 DIV CX
17DA:1008 F4 HLT
-G 1008
AX = 0007 BX = 0000 CX = 2222 DX = 1111 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 NV UP EI NG NZ NA PO NC
17DA:1008 F4 HLT
-
Quotient = 0007 in AX and remainder 1111 in DX register

The above program is used to divide two 16-bit numbers and is stored in the memory location 17DA:
1000 to 17DA: 1008. The U 0100 0108 command is used to display the object codes of the program. If the
program is executed by G1008 command, the result will be stored in DX and AX. Quotient is stored in AX
and remainder is stored in DX. Hence the result is quotient = content of AX = 0007H and remainder = content
of DX = 1111H.

Two decimal numbers 4477H and 2299H are stored in DX and BX registers respectively. After addition, the
result is to be stored in the CX register. The program flow chart for decimal addition of two 16-bit numbers
and the sum is 16 bits, is shown in Fig. 7.16

 1. Load first number in Register DX.
 2. Load the second number in Register BX.
 3. Move content of BL into AL and add content of DL with AL.
 4. Decimal adjustment of AL after addition and store AL content in CL.

START

Load dividend, i.e., first 16-bit
number in Register AX

Load divisor, i.e., second 16-bit
number in Register BX

Divide the content of AX by BX
using DIV instruction

The result is stored in DX and AX
registers, Quotient in AX and

Remainder in DX

End

 5. Move content of BH into AL and add content of DH and AL with carry.
 6. Decimal adjustment of AL after addition and store AL content in CH.

C:\>DEBUG
-A0100

17B3: 0100 MOV DX, 4477 ; 16-bit data in DX

17B3: 0103 MOV BX, 2299 ; 16-bit bit data in BX

17B3: 0106 MOV AL, BL ; Move the content of BL to AL

17B3: 0108 ADD AL, DL ; Contents of DL is added to AL

17B3: 010A DAA ; Decimal adjustment after addition

17B3: 010B MOV CL, AL ; Move the content of AL to CL

17B3: 010D MOV AL, BH ; Move the content of BL to AL

17B3: 010F ADC AL, DH ; Contents of DH is added to AL

17B3: 0111 DAA ; Decimal adjustment after addition

17B3: 0112 MOV CH, AL ; Move the content of AL to CH
17B3: 0114 HLT
17B3: 0115
-G 0114
AX = 0067 BX = 2299 CX = 6776 DX = 4477 SP = FFEE BP = 0000 SI =
0000 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0114 NV UP EI PL NZ
NA PO NC
17B3: 0114 F4 HLT

The program for decimal addition of two 16-bit numbers is stored in the
memory location 17B3: 0100 to 17B3: 0114. The U 0100 0114 command can
be used to display the object codes of the program. This program is executed
by G0114 command and result will be stored in the CX register. Hence, the
result is content of CX = 6776 which is decimal addition of 4477 and 2299.

The first string decimal numbers 11, 22, 33, 44 and 55 are stored in memory locations 17B3: 0100 to 17B3:
0104. The second string decimal numbers 22, 33, 55, 66 and 77 are stored in memory locations 17B3: 0400
to 17B3: 0404. After addition of two string decimal numbers, the result will be stored in memory locations
17B3: 0500 to 17B3: 0504. The program flow chart for addition of two string decimal numbers is depicted
in Fig. 7.17.

 1. Initialize SI and BX as offset address of first and second string decimal numbers.

 2. Initialize DI as offset address of result and number of decimal numbers in a string is loaded in CX.

 3. Move first decimal number from first string to AL.

 4. Add first decimal number from second string decimal numbers with AL.

 5. Decimal adjustment of AL after addition and store AL content in destination address represented by
DI. Decrement CX.

 6. Increment SI, BX and DI.

 7. Move next decimal number from first string to AL.

START

Load first 16-bit number
in Register DX

Load second 16-bit number
in Register BX

Copy the content of BL in AL,
ADD DL with AL

Decimal adjustment of AL,
store the content of AL in CL

Copy the content of BH in AL,
ADD DH and AL with carry

Decimal adjustment of AL,
store the content of AL in CH

The result is stored in CX.
If the result is greater than
16-bits, CY flag will be set

End

 8. Next decimal number from second string decimal numbers is added with AL and carry.

 9. Decimal adjustment of AL after addition and store AL content in destination address represented by
DI.

 10. Decrement CX. If CX 0, jump to step 6.

C:\>DEBUG
-A0100
17B3: 0100 MOV SI, 0300 ; Load 0300H in SI as offset address of first string

Initialize the BX register with 0400H as a source
address of second string of decimal numbers

Load the first decimal number in AL
from the specified address of first string

Initialize the DI register with 0500H
as a destination address of result

Add the first decimal number
of second string with AL

Decimal adjustment of AL, and
store the result in destination address

Is
CX = 0?

Decrement CX by 1

End

Initialize the SI register with 0300H as a source
address of a first string of decimal numbers

START

Yes

No

Increment SI, BX and DI by 1 SI = SI + 1,
BX = BX + 1 and DI = DI + 1

Load next decimal number in AL from
first string. Then ADD next decimal

number of second string with AL

Decimal adjustment of AL, and
store the result in destination address

Decrement CX by 1

Load the first decimal
of a string in CX register

17B3: 0103 MOV BX, 0400 ; Load 0400H in BX as offset address of second string
17B3: 0106 MOV DI, 0500 ; Load 0500H in DI as offset address of destination to store result
17B3: 0109 MOV CX, 0005 ; Number of decimal numbers in a string is loaded in CX
17B3: 010C MOV AL, [SI] ; Load decimal number from first string
17B3: 010E ADD AL, [BX] ; Add decimal number of second string to AL
17B3: 0110 DAA ; Decimal adjustment after addition
17B3: 0111 MOV [DI], AL ; Store the content of AL into destination memory location
17B3: 0113 DEC CX ; Decrement CX by1
17B3: 0114 INC SI ; Increment SI by 1
17B3: 0115 INC BX ; Increment BX by 1
17B3: 0116 INC DI ; Increment DI by 1
17B3: 0117 MOV AL, [SI] ; Load next decimal number from first string
17B3: 0119 ADC AL, [BX] ; Add next decimal number of second string to AL with carry
17B3: 011B DAA ; Decimal adjustment after addition
17B3: 011C MOV [DI], AL ; Store the content of AL into destination memory location
17B3: 011E DEC CX ; Decrement CX by1
17B3: 011F JNZ 0114 ; if CX 0, jump to offset address 0114
17B3:0121 HLT
17B3:0122
-ECS:0300
17B3:0300 00.11 00.22 00.33 00.44 00.55
-ECS:0400
17B3:0400 00.22 00.33 00.55 00.66 00.77
-G0121
AX = 0033 BX = 0404 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0304 DI = 0504
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0121 NV UP EI PL ZR NA PE CY
17B3: 0121 F4 HLT
-ECS: 0500
17B3: 0500 33. 55. 88. 10. 33.

The above program can be used for addition of two string decimal numbers. The U 0100 0121 command
can be used to display the object codes of the program. The ECS: 0300 and
ECS: 0400 command are used to enter first string 11 22 33 44 55 and second
string 22 33 55 66 77 respectively. The program is executed by G0121 com-
mand and after addition result 33 55 88 10 33 will be stored in memory loca-
tion 17B3: 0500 to 17B3: 0404.

The 16-bit number is stored in AX and rotate left one bit through carry. Store
the result in AX. The program flow chart to rotate a 16-bit number left through
carry by one bit is illustrated in Fig. 7.18.

 1. Load 16-bit data, 1234 in Register AX.

 2. Rotate the content of AX left through carry by one bit.

START

Load first 16-bit number
in Register AX

Rotate AX left through
carry by one bit

The result is stored in AX

End

C:\>DEBUG
-A0100
17B3: 0100 MOV AX, 1234 ; LOAD 1234 IN AX
17B3: 0103 RCL AX, 1 ; Rotate AX left by 1 bit
17B3: 0105 HLT
-G 0105
AX = 2468 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0105 NV UP EI PL NZ NA PO NC
17B3: 0105 F4 HLT

The program for rotating a 16-bit number left through carry by one bit is stored in the memory location
17B3: 0100 to 17B3: 0105. The U 0100 0105 command can be used to display the object codes of the pro-
gram. After execution of this program by G0105 command, the result will be stored in AX register. So the
result is content of AX = 2468.

The 16-bit number is stored in AX and rotate left four bits through carry. Store
the result in AX. The program flow chart to rotate a 16-bit number left through
carry by four bits is shown in Fig. 7.19.

 1. Load 16-bit data, 1234 in Register AX.

 2. Load number of bits rotate in CL.

 3. Rotate the content of AX left through carry by four bits.

C:\>DEBUG

-A0100

17B3: 0100 MOV AX, 1234 ; Load 1234 in AX

17B3: 0103 MOV CL, 04 ; Load count value in CL

17B3: 0105 RCL AX, CL ; Rotate AX left by 4 bits

17B3:0107 HLT

-U 0100 0107

17B3: 0100 B8 34 12 MOV AX, 1234

17B3: 0103 B1 04 MOV CL, 04

17B3: 0105 D3 D0 RCL AX, CL

17B3: 0107 F4 HLT

-G0107

AX = 2340 BX = 0000 CX = 0004 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0107 NV UP EI PL NZ NA PO CY

17B3: 0107 F4 HLT

The above program is used for rotating a 16-bit number left through carry by four bits and is stored in the
memory location 17B3: 0100 to 17B3: 0107. The U 0100 0107 command is used to display the object codes
of the program. When this program is executed by G0107 command, the result will be stored in AX register.
Consequently the result is content of AX = 2340.

START

Load first 16-bit number
in Register AX

Load number of bits rotate
in CL register

Rotate AX left through
carry by four bits

End

The result is stored in AX

The 16-bit number is stored in AX and left shifted two bits. Store the result in
memory location starting from 17DA: 1010. The program flow chart for left
shift of a 16-bit number by two bits is shown in Fig. 7.20.

 1. Load 16-bit data, 4567 in Register AX.

 2. Load number of bits shift in CL.

 3. The content of AX left shifted through carry by two bits.

C:\>DEBUG

-A1000

17DA: 1000 MOV AX, 4567 ; 16-bit data 4567H in AX

17DA: 1003 MOV CL, 02 ; Load number of shift in CL

17DA: 1005 SHL AX, CL ; Data is shifted left by two bit

17DA: 1007 MOV [1010], AX ; Save the content of AX in 17DA: 1010

17DA:100A HLT

-G100A

AX = 159C BX = 0000 CX = 0002 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 100A NV UP EI PL NZ NA PE CY
17DA:100A F4 HLT
-ECS: 1010
17DA: 1010 9C. 15.

The above program is used for shifting a 16-bit number left by two bits and is stored in the memory loca-
tion 17DA: 1000 to 17DA: 100A. The U 1000 100A command can be used to display the object codes of the
program. When this program is executed by G100A command and result will be available in the AX register
and the content of AX = 159C is stored in17DA: 1010 and it can be displayed by ECS: 1010 command.

The count value of numbers 08H is stored in the CX register and the numbers are stored in the memory loca-
tions starting from17B3: 0300 to 17B3:0307. The largest number will be stored in the memory location 17B3:
0400. The program flow chart to find out the largest number from a string of bytes is given in Fig. 7.21.

 1. Initialize SI as source offset address of data and load numbers of bytes in CX register.

 2. Initialize Register AL with 00.

 3. Compare the content of memory with content of accumulator , if number is above and equal to AL
jump to Step 5.

 4. Move number from memory to AL.

 5. Increment SI.

 6. Decrement CX. If CX 0, jump to Step 3.

 7. Store result in memory location 17B3: 0400.

C:\>DEBUG
-A0100

START

Load first 16-bit number
in Register AX

Load number of bits left
shifted in CL register

The content of AX is left
shifted by two bits

End

The result, i.e., content of
AX is stored in memory

17B3: 0100 MOV SI, 0300 ; Initialize SI with 0300H as source offset address of data
17B3: 0103 MOV CX, 0008 ; Count value of numbers in CX
17B3: 0106 MOV AL, 00 ; Initialize AL with 00H
17B3: 0108 CMP AL, [SI] ; compare first data with AL
17B3: 010A JAE 010E ; Jump to 010E if number is above and equal to AL
17B3: 010C MOV AL, [SI] ; Load data from memory
17B3: 010E INC SI ; Increment SI
17B3: 010F LOOPNZ 0108 ; If CX 0, jump to 0108
17B3: 0111 MOV [0400], AL ; Store the content of AL at destination address
17B3: 0114 HLT
-ECS: 0300

Load the number of bytes present
in a string in CX register

Initialize the AL register with 00H

Compare
the content of AL
with first data

Load data in AL
from memory

Initialize the SI register with 0300H
as a source address of a string of bytes

START

Less than
<

Greater than
and equal

F

Store the result, i.e., content of AL
at destination address 0400H

End

Increment SI by 1
SI = SI + 1

Decrement CX by 1

Is
CX = 0?

No

Yes

17B3: 0300 00.11 00.22 00.33 00.FF 00.66 00.AA 00.BB 00.99
-G0114
AX = 00FF BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0308 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0114 NV UP EI PL NZ NA PO NC
17B3: 0114 F4 HLT
-ECS: 0400
17B3: 0400 FF.

The eight 8-bit data 11, 22, 33, FF, 66, AA, BB and 99 are stored in the memory location starting from
17B3: 0300 to 17B3: 0307. So the largest number is FFH. After execution of above program, the largest
number is stored in memory location 17B3: 0400 and it can be displayed by ECS: 0400 command as shown
above.

The count value of number of words 05H is stored in the
CX register. A string of words is stored in the memory
locations starting from 17B3: 0300 to 17B3: 0309. The
largest word will be stored in memory location 17B3:
0400. The program flow chart to find out the largest
number from a string of words is depicted in Fig. 7.22.

 1. Initialize SI as source offset address of word and
load numbers of words in the CX register.

 2. Initialize Register AX with 0000H.

 3. Compare the word from memory with content of
accumulator AX. If the word is above and equal
to AX, jump to Step 5.

 4. Move word from memory to AL.

 5. Increment SI by 2.

 6. Decrement CX. If CX 0, jump to Step 3.

 7. Store the result in the memory location 17B3:
0400.

C:\>DEBUG
-A0100
17B3: 0100 MOV SI, 0300 ; Initialize SI with 0300H

as source offset address
of word

17B3: 0103 MOV CX, 0005 ; Count value of words in
CX

17B3: 0106 MOV AX, 0000 ; Initialize AX with 0000H
17B3: 0109 CMP AX, [SI] ; Compare word from

memory with AX
17B3: 010B JAE 010F ; Jump to 010F if above

and equal

Load the number of words present
in a string 05H in CX register

Initialize the AX register with 0000H

Compare
the content of AX
with first word

Load data in AX
from memory

Initialize the SI register with 0300H
as a source address of a string of words

START

Less than
<

Greater than
and equal

F

Store the result, i.e., content of AX
at destination address CS:0400H

End

Increment SI by 2
SI = SI + 2

Decrement CX by 1

Is
CX = 0?

No

Yes

17B3: 010D MOV AX, [SI] ; Load word from memory
17B3: 010F INC SI ; Increment SI
17B3: 0110 INC SI ; Increment SI
17B3: 0111 LOOPNZ 0109 ; If CX 0, jump to 0109
17B3: 0113 MOV [0400], AX ; Store the content of AX at destination address
17B3: 0116 HLT
-ECS: 0300
17B3: 0300 00.11 00.11 00.22 00.22 00.33 00.33 00.FF 00.FF
17B3: 0308 00.99 00.99
-G0116
AX = FFFF BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 030A DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0116 NV UP EI PL NZ NA PE NC
17B3: 0116 F4 HLT
-ECS: 0400
17B3: 0400 FF. FF.

The five 16-bit data or word 1111, 2222, 3333, FFFF, and 9999 are stored in the memory location starting
from 17B3: 0300 to 17B3: 0309. Therefore, the largest number is FFFFH. After execution of the above pro-
gram, the largest number is stored in memory location 17B3: 0400
and it can be displayed by ECS: 0400 command as given above.

Assume that a string of bytes is stored in the memory locations
starting from17B3: 0300 to 17B3: 030E. The count value of bytes
0FH is stored in the CX register. Move the block of data staring
from memory location 17B3: 0300 to 17B3: 030E to other mem-
ory location staring from 17B3: 0400 to 17B3: 040E. The count
value of words 0FH is stored in the CX register. The program flow
chart to transfer a block of data from one section of memory to
other section of memory is shown in Fig. 7.23.

 1. Initialize SI as source offset address of bytes and load
numbers of bytes in the CX register.

 2. Initialize DI as destination offset address of bytes.

 3. Move byte from source to destination.

 4. Increment SI and DI by 1.

 5. Decrement CX. If CX 0, jump to Step 3.

C:\>DEBUG
-A0100
17B3: 0100 MOV SI, 0300 ; Load source address of data in SI
17B3: 0103 MOV DI, 0400 ; Load destination address of data
 in DI

START

Initialize the SI register with 0300H
as a source address of a
string of bytes (data)

Initialize the DI register with 0400H
as a destination address of
the string of bytes (data)

Load Number of data in CXRegister

Move byte from source
to destination

Increment SI and DI by 1
SI = SI + 1, DI = DI + 1

Decrement register by 1CX

No

Yes

End

Is
CX = 0?

17B3: 0106 MOV CX, 000F ; Count value for number of bytes in CX
17B3: 0109 MOVSB ; Move byte from source to destination
17B3: 010A LOOPNZ 0109 ; Decrement CX. If CX 0, jump 0109
17B3: 010C HLT
17B3: 010D
-ECS: 0300
17B3: 0300 00.FF 00.EE 00.DD 00.CC 00.AA 00.BB 00.99 00.88
17B3: 0308 00.77 00.66 00.55 00.44 00.33 00.22 00.11 00.00
17B3: 0310 00.12 00.13
-G010C
AX = 0000 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 030F DI = 040F
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 010C NV UP EI PL NZ NA PO NC
17B3: 010C F4 HLT
-ECS: 0400
17B3: 0400 FF. EE. DD. CC. AA. BB. 99. 88.
17B3: 0408 77. 66. 55. 44. 33. 22. 11. 00.
17B3: 0410 00.

A block of fifteen 8-bit data FF, EE, DD, CC, AA, BB, 99, 88, 77, 66, 55, 44, 33, 22 and 11 are stored in
the memory location starting from 17B3: 0300 to 17B3: 030E. After execution of the above program by the
command G010C, the said data is stored in a new memory location string from 17B3: 0400 to 17B3: 040E
and it can be displayed by ECS: 0400 command as shown above.

ASCII numbers are in values from 30H to 39H for representing numbers
0 to 9. Add 39 and 38 which are ASCII numbers representing 9 and 8
respectively. The AAA instruction is used for ASCII adjustment after
addition. The program for addition of two ASCII numbers is stored in
the memory location 17B3: 0100 to 17B3: 0109. After execution of the
ADD AL, BL instruction, the result is 0071H which is stored in the AX
register. Thereafter execution of AAA instruction result is available in AX
and it is 0107. The program flow chart to add two ASCII numbers is shown
in Fig. 7.24.

C:\>DEBUG

-A0100

17B3: 0100 MOV AL, 39 ; Load first ASCII number in AL

17B3: 0102 MOV BL, 38; ; Load second ASCII number in BL

17B3: 0104 MOV AH, 00 ; Initialize AH with 00H

17B3: 0106 ADD AL, BL ; Add content of BL with AL

17B3: 0108 AAA ; ASCII adjustment of AX after addition

17B3: 0109 HLT

-G0109

AX = 0107 BX = 0008 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0109 NV UP EI PL NZ AC PE CY
17B3: 0109 F4 HLT

START

Load first ASCII number
in Register AL

Load second ASCII number
in Register BL and initialize

AH with 00H

Add the content
of BL and AL

End

ASCII adjustment of AX
and the result is present in AX

Subtract 39H and 34H which are ASCII numbers representing 9 and 4
respectively. The AAS instruction can be used for ASCII adjustment after
subtraction. The program for subtraction of two ASCII numbers is stored in
the memory location 17DA: 0100 to 17DA: 010B. After the execution of the
SUB AL, BL instruction, the result is 0005H which is stored in the AX reg-
ister. Afterward execution of AAS and OR AL,30 instruction, the result 0035
is available in AX. The program flow chart to subtract two ASCII numbers
is depicted in Fig. 7.25.

C:\>DEBUG

-A0100
17DA: 0100 MOV AL, 39 ; Load first ASCII number in AL
17DA: 0102 MOV BL, 34 ; Load second ASCII number in BL
17DA: 0104 MOV AH, 00 ; Initialize AH with 00H
17DA: 0106 SUB AL, BL ; Subtract content of BL from AL
17DA: 0108 AAS ; ASCII adjustment of AX after subtraction
17DA: 0109 OR AL, 30 ; OR 30H with AL
17DA: 010B HLT
-G010B
AX = 0035 BX = 0034 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI =
0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010B NV UP EI PL NZ NA PE NC
17DA: 010B F4 HLT

The multiplication of ASCII numbers should not be done unless the Most
Significant Number (MSN) is cleared. To multiply two ASCII numbers
38H and 32H, initially after removing MSN, the numbers are represented
as 08 and 02. The AAM instruction can be used for ASCII adjustment after
multiplication. The program for multiplication of two ASCII numbers is
stored in the memory location 17B3: 0100 to 17B3: 0108. After execution
of the MUL BL instruction, the result 0005H is stored in the AX register.
Subsequently execution of AAM instruction, final result 0106 is available
in AX. The program flow chart to multiply two ASCII numbers is shown
in Fig. 7.26.

C:\>DEBUG

-A0100
17B3: 0100 MOV AL, 08 ; Load first ASCII number in AL
17B3: 0102 MOV BL, 02 ; Load second ASCII number in BL
17B3: 0104 MUL BL ; Multiply BL with AL
17B3: 0106 AAM ; ASCII adjustment after multiplication
17B3: 0108 HLT
-G 0108
AX = 0106 BX = 0002 CX = 0000 DX = 0000 SP = FFEE BP = 0000

START

Load first ASCII number
in Register AL

Load second ASCII number
register BL and initialize

AH with 00H

Subtract the content
of BL from AL

End

ASCII adjustment of AX
after subtraction and the result

is present in AL

START

Load first ASCII number
in Register AL

Load second ASCII number
Register BL

Multiply the content
of BL with AL

End

ASCII adjustment of AX
and the result is present in AX

SI = 0000 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0108 NV UP EI PL NZ NA PE NC
17B3: 0108 F4 HLT

The division of ASCII numbers should not be done unless the Most
Significant Number (MSN) is cleared. Therefore, the AAD instruction
requires a two-digit unpacked BCD number before execution. After
entering the two-digit unpacked BCD number, AAD is executed to adjust
the content of AX. Then AX is divided by an unpacked BCD number to
generate results. The program for division of two ASCII numbers (divide
75 by 8) is stored in the memory location 17B3: 0100 to 17B3: 0109.
After execution of the above program, result is stored in the AX register.
The quotient is 09 is in AL and reminder 03 in AH register. The result is
also unpacked BCD. The program flow chart to divide two ASCII num-
bers is depicted in Fig. 7.27.

C:\>DEBUG
-A0100
17B3: 0100 MOV AX, 0705 ; Load ASCII number (two digit

unpacked BCD) in AX
17B3: 0103 AAD ; ASCII adjustment before division
17B3: 0105 MOV BL, 08 ; Load second ASCII number in BL
17B3: 0107 DIV BL ; Divide AX by BL
17B3:0109 HLT
-G0109
AX = 0309 BX = 0008 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0109 NV UP EI PL NZ NA PE NC
17B3: 0109 F4 HLT

A series of five words 1111H, 5555H, 3333H, 2222H, and 4444H are stored in memory locations from 17B3:
0302 to 17B3: 030B and the number of words is stored in the memory location 17B3: 0300. Arrange the
above words in descending order. The program flow chart to arrange a string of words in descending order
is shown in Fig. 7.28.

 1. Store 0005H, number of words to be arranged in the DX register from memory and store number of
comparisons in the CX register.

 2. Load the first word in accumulator from memory.

 3. Increment SI register by 2 for addressing next word.

 4. Compare the next word from memory with the accumulator. Store the smallest word in the accumula-
tor and largest word in the memory.

 5. Then next number (word) is compared with the accumulator and store the largest number in memory
and smallest number in accumulator.

START

Load first number in
Register AX

ASCII adjustment of AX

Load second ASCII number
Register BL

End

Divide AX by BL

Result is present in AX,
AL = quotient and AH = remainder

 6. This process will continue, till comparisons of all numbers have been completed. After completion of
comparison of all numbers, the smallest number in accumulator is stored in memory. In this way, the
first process will be completed.

Initialize the SI register with 0300H
as a source address of a string of
words and number of words in string

START

Load the number of words present
in a string 0005H in DX

Load the number of word in CX, Decrement CX by 1 to get
required number of comparisons, increment SI by 2

Load word in AX from memory,
Increment SI by 2

Greater than
and equal

> =

Less than
<

Compare
the content of
AX with next

word

Exchange AX and the content of memory

Decrement SI by 2, SI = SI-2,
move the content of AX into memory

Decrement CX by 1

Is
CX = 0?

No

Yes

Is
DX = 0?

Decrement DX by 1
Lode 0300H in SI

Yes

End

No

 7. At the starting of the second process, the DX register is decremented by one and store number of
comparisons in the CX register. Then repeat Steps 2 to 6. After completion of this process, the small-
est number is stored in 17B3: 030A and second smallest number in 17B3: 0308.

 8. Register DX is decremented by one and the next process starts, if the content of Register DX is not
zero. Then repeat steps 2 to 6.

C:\>DEBUG
-A0100
17B3: 0100 MOV SI, 0300 ; SI loaded with 0300 as source address
17B3: 0103 MOV DX, [SI] ; DX loaded with the content of SI
17B3: 0105 MOV CX, [SI] ; CX loaded with the content of SI
17B3: 010 DEC CX ; Decrement CX
17B3: 0108 INC SI ; Increment SI
17B3: 0109 INC SI ; Increment SI
17B3: 010A MOV AX, [SI] ; AX is loaded with word from memory represented by SI
17B3: 010C INC SI ; Increment SI
17B3: 010D INC SI ; Increment SI
17B3: 010E CMP AX, [SI] ; Compare AX with the content of memory represented by SI
17B3: 0110 JNB 0118 ; Jump to 0118
17B3: 0112 XCHG AX, [SI] ; Exchange AX and word stored at memory represented by SI
17B3: 0114 DEC SI ; Decrement SI
17B3: 0115 DEC SI ; Decrement SI
17B3: 0116 MOV [SI], AX ; Move AX to memory represented by SI
17B3: 0118 LOOP 010A ; CX decrement by 1. If CX 0, jump to 010A
17B3: 011A DEC DX ; Decrement DX
17B3: 011B MOV SI, 0300 ; SI loaded with 0300 as source address
17B3: 011E JNZ 0105 ; Jump not zero to 0105
17B3: 0120 HLT
-ECS: 0300
17B3: 0300 00.05 00.00 00.11 00.11 00.55 00.55 00.33 00.33
17B3: 0308 00.22 00.22 00.44 00.44
-G0120
AX = 3333 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0300 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0120 NV UP EI PL ZR NA PE NC
17B3:0120 F4 HLT
-ECS: 0300
17B3:0300 05. 00. 55. 55. 44. 44. 33. 33.
17B3:0308 22. 22. 11. 11.

The above program is used to arrange a string of words in descending order and this program is stored in
memory locations 17B3: 0100 to 17B3: 0120. The U 0100 0120 command can be used to display the object
codes of the above program. The 5 words (1111H, 5555H, 3333H, 2222H, and 4444H) are entered by the
command ECS: 300. Thereafter G0120 is used to execute the program and words will be stored in descending
order (5555H, 4444H 3333H, 2222H, and 1111H) as given above.

A series of five words 4444H, 1111H, 5555H, 2222H, and 3333H are stored in memory locations from 17B3:

0302 to 17B3: 031B and the number of words is stored in memory location 17B3: 0300. Arrange the above
words in ascending order. The program flow chart to arrange a string of words in ascending order is depicted in
Fig. 7.29.

Initialize the SI register with 0300H
as a source address of a string of
words and number of words in string

START

Load the number of words present
in a string 0005H in DX

Load the number of word in CX, decrement CX by 1 to get
required number of comparisons, Increment SI by 2

Load word in AX from memory,
increment SI by 2

Greater than
and equal

> =

Less than
<Compare

the content of
AX with next

word

Exchange AX and the content of memory

Decrement SI by 2, SI = SI-2,
move the content of AX into memory

Decrement CX by 1

Is
CX = 0?

No

Yes

Is
DX = 0?

Decrement DX by 1
Lode 0300H in SI

Yes

End

No

 1. Store 0005H, number of words to be arranged in the DX register from memory and store number of
comparisons in the CX register.

 2. Load the first word in accumulator from memory.

 3. Increment SI register for addressing next word.

 4. Compare the next word from memory with the accumulator. Store the largest number in the accumu-
lator and smallest number in the memory.

 5. Then next number is compared with the accumulator and store the smallest number in memory and
largest number in accumulator.

 6. This process will continue, till comparisons of all numbers have been completed. After completion of
comparison of all numbers, the largest number in accumulator is stored in memory. In this way, the
first process will be completed.

 7. At the starting of second process the DX register is decremented by one and store number of compari-
sons in the CX register. Then repeat steps 2 to 6. After completion of this process, the largest number
is stored in 17B3: 0302A and the second largest number in 17B3: 0308.

 8. Register DX is decremented and the next process starts, if the content of the DX register is not zero.
Then repeat steps 2 to 6.

C:\>DEBUG
-A0100
17B3: 0100 MOV SI, 0300 ; SI loaded with 0300 as source address
17B3: 0103 MOV DX, [SI] ; DX loaded with the content of SI
17B3: 0105 MOV CX, [SI] ; CX loaded with the content of SI
17B3: 0107 DEC CX ; Decrement CX
17B3: 0108 INC SI ; Increment SI
17B3: 0109 INC SI ; Increment SI
17B3: 010A MOV AX, [SI] ; AX is loaded with word from memory represented by SI
17B3: 010C INC SI ; Increment SI
17B3: 010D INC SI ; Increment SI
17B3: 010E CMP AX, [SI] ; Compare AX with the content of memory represented by SI
17B3: 0110 JB 0118 ; Jump to 0118
17B3: 0112 XCHG AX, [SI] ; Exchange AX and word stored at memory represented by SI
17B3: 0114 DEC SI ; Decrement SI
17B3: 0115 DEC SI ; Decrement SI
17B3: 0116 MOV [SI], AX ; Move AX to memory represented by SI
17B3: 0118 LOOP 010A ; CX decrement by 1. If CX 0, jump to
17B3: 011A DEC DX ; Decrement DX
17B3: 011B MOV SI, 0300 ; SI loaded with 0300 as source address
17B3: 011E JNZ 0105 ; Jump not zero to 0105
17B3: 0120 HLT
-ECS: 0300
17B3:0300 00.05 00.00 00.44 00.44 00.11 00.11 00.55 00.55
17B3:0308 00.22 00.22 00.33 00.33 00.66 00.66
-G0120
AX = 4444 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0300 DI = 0000
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0120 NV UP EI PL ZR NA PE CY

17B3:0120 F4 HLT
-ECS:0300
17B3:0300 05. 00. 11. 11. 22. 22. 33. 33.
17B3:0308 44. 44. 55. 55. 66. 66.

The above program is used to arrange a string of words in ascending order stored in memory locations
17B3: 0100 to 17B3: 0120. The U 0100 0120 command can be used to display the object codes of the above
program. The 5 words (4444H, 1111H, 5555H, 2222H, and 3333H) are entered by the command ECS: 300.
Thereafter, G0120 is used to execute the program and all words will be stored in ascending order (1111H,
2222H, 3333H, 4444H and 5555H) as given above.

Load the decimal number in the accumulator. Find the square of
the decimal number and store it in the memory location 17B3:
0400. The square values of decimal numbers from 0 to 9 are
stored in 17B3: 0300 to 17B3: 0309H and used for look-up table.
The program flow chart to find out square of a number using
look-up table is shown in Fig. 7.30.

 1. Store the decimal number in accumulator.

 2. Load 03H is Register AH.

 3. If the decimal number is 02, the content of AH and AL
registers are 03 and 02H respectively. Then the offset
address of memory location will be 0302H denoted by the
AX register. Move AX content into Register SI.

 4. Move the square of decimal number in AL from memory
location 17B3: 0302

 5. Store the result, square value in 17B3: 0400.

C:\>DEBUG
-A0100
17B3: 0100 MOV AL, 02
17B3: 0102 MOV AH, 03
17B3: 0104 MOV SI, AX
17B3: 0106 MOV AL, [SI]
17B3: 0108 MOV DI, 0400
17B3: 010B MOV [DI], AL
17B3: 010D HLT
-ECS: 0300
17B3: 0300 00.00 00.01 00.04 00.09 00.16 00.25 00.36 00.49
-G010D
AX = 0304 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0302 DI = 0400
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 010D NV UP EI PL NZ NA PO NC
17B3:010D F4 HLT

START

Load the decimal number
in Register AL

Load 03H in Register AH

Move the content of AX
in Register SI

End

Copy the square of number from
the memory location specified by

CS:SI of Look-up table into
the register AL

Store the result, i.e., the content of AL
in memory location specified by CS:DI

Load 0400H in DI

-ECS: 0400
17B3: 0400 04.
-ECS: 0300
17B3:0300 00.00 00.01 00.04 00.09 00.16 00.25 00.36 00.49
17B3:0308 00.64 00.81
-G010D
AX = 0304 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0302 DI = 0400
DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 010D NV UP EI PL NZ NA PO NC
17B3:010D F4 HLT
-ECS: 0400
17B3: 0400 04.

The above program can be used to find the square of a decimal number and it is stored memory locations
17B3: 0100 to 17B3: 010D. The U 0100 010D command can be used to display the object codes of the above
program. When G010D is used to execute the program and the square value of 02 is 04, it will be stored in
memory location 17B3: 0400.

During addition of two matrixes, the corresponding matrix elements are added and a developed new matrix
as shown below:

,

a

a

a

b

b

b

a

a

a

A

a

a

a

a

a

a

B

b

b

b

b

b

b

A B

b

b

b

a b

a b

a b

a b

a b

a b

and

11

21

31

12

22

32

13

23

33

11

21

31

12

22

32

13

23

33

11 11

21 21

31 31

12 12

22 22

32 32

13 13

23 23

33 33

= = + =

+

+

+

+

+

+

+

+

+

> > >H H H
The matrix A is stored in the memory location 17B3: 0200 to 17B3: 0208. The matrix B is stored in

the memory location 17B3: 0300 to 17B3: 0308. After addition of two matrixes, the result is stored in the
memory location 17B3: 0400 to17B3: 0311. The program flow chart to find the addition of two matrixes is
depicted in Fig. 7.31.

 1. Store source address of matrices A and B in SI and DI respectively.

 2. Store destination address of A+B in Register BX.

 3. Load number of elements of a matrix in Register CX.

 4. Initialize Register AX.

 5. Load elements of the matrix A from memory to AL and add the corresponding elements of the matrix
B with AL.

 6. Store addition of two corresponding elements into destination address.

 7. Increment SI, and DI by one. Increment BX by 2.

 8. Decrement CX by one. If CX 0, execute steps 4 to 8

C:\>DEBUG
-A0100
17B3: 0100 MOV SI, 0200 ; SI loaded with 0200 as source address of the matrix A
17B3: 0103 MOV DI, 0300 ; DI loaded with 0300 as source address of the matrix B
17B3: 0106 MOV BX, 0400 ; BX loaded with 0300 as destination address of matrix A + B
17B3: 0109 MOV CX, 0009 ; Load number of elements in a matrix

17B3: 010C MOV AX, 0000 ; Initialize AX with
0000H

17B3: 010F MOV AL, [SI] ; Load element of the
matrix A in AL

17B3: 0111 ADD AL, [DI] ; Add corresponding
element of the matrix
B with matrix A

17B3: 0113 JNB 0118 ; Jump no carry to 0118
17B3: 0115 ADD AH, 01 ; Add 01 with AH if

carry generated
17B3: 0118 MOV [BX], AX ; store addition of cor-

responding elements
of (A+B) in destina-
tion address

17B3: 011A INC SI ; Increment SI
17B3: 011B INC DI ; Increment DI
17B3: 011C ADD BX, + 02 ; Increment BX by 2
17B3: 011F LOOP NZ 010C ; CX decrement by1. If

CX 0, jump to 010C

17B3: 0121 HLT

-ECS: 200

17B3: 0200 00.11 00.22 00.33 00.44 00.55 00.6
6 00.77 00.88

17B3: 0208 00.99

-ECS: 300

17B3: 0300 00.11 00.11 00.33 00.44 00.55 00.
66 00.77 00.88

17B3: 0308 00.99

-G0121

AX = 0132 BX = 0412 CX = 0000 DX = 0000 SP = FFEE
BP = 0000 SI = 0209 DI = 0309

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0121
NV UP EI PL NZ NA PE NC

17B3: 0121 F4 HLT

-ECS: 0400

17B3: 0400 22. 00. 33. 00. 66. 00. 88. 00.

17B3:0408 AA. 00. CC. 00. EE. 00. 10. 01.
17B3: 0410 32. 01.

The above program can be used to add two 3 × 3 matrixes and it is stored in memory locations 17B3:
0100 to 17B3: 0121. The U 0100 0121 command will be used to display the object codes of the above
program. ECS: 200 is used to enter the matrix elements of A such as 11, 22, 33, 44, 55, 66, 77, 88 and 99.
Similarly, the matrix elements of B such as 11, 22, 33, 44, 55, 66, 77, 88 and 99 are entered by ECS: 300
command. When G0121 is executed, the result will be displayed as 0022, 0033, 0066, 0088, 00AA, 00CC,
00EE, 0110 and 0132.

Initialize the SI with 0200H and DI
with 0300H as source address of
matrix A and B respectively

START

Initialize the BX with 0400H
as a destination address of +A B

Load number of elements of matrix ,
, and + in CX Register and

Initialize AX = 0000H

A

B A B

Initialize AX = 0000H

Load matrix elements of in AL from
memory, then add the corresponding

element of matrix with AL

A

B

Is
Carry flag
= 1?

Yes

No

ADD 01H with AH

Store the content of AX, i.e. the element
of A + B in destination address

Increment SI and DI by 1
SI = SI + 1, DI = DI + 1

Increment BX by 2, BX = BX + 2

Decrement CX by 1, CX = CX –1

No

Yes

Is
CX = 0?

End

Assume two matrixes are

a

a

a

b

b

b

A

a

a

a

a

a

a

B

b

b

b

b

b

b

and

11

21

31

12

22

32

13

23

33

11

21

31

12

22

32

13

23

33

= => >H H
Then multiplication of two matrix is

A B

b a b a b

b a b a b

b a b a b

b a b a b

b a b a b

b a b a b

b a b a b

b a b a b

b a b a b

a

a

a

a

a

a

a

a

a

11 11 12 21 13 31

21 11 22 21 23 31

31 11 32 21 33 31

11 12 12 22 13 32

21 12 22 22 23 32

31 12 32 22 33 32

11 13 12 23 13 33

21 13 22 23 23 33

31 13 32 23 33 33

=

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

> H
The matrix A is stored in the memory location 17B3: 0200 to 17B3: 0208. The matrix B is stored in the

memory location 17B3: 0300 to17B3: 0308. After addition of two matrixes, the result is stored in the memory
location 17B3: 0400 to17B3: 0411. The program flow chart for multiplication of two matrixes A and B is
illustrated in Fig. 7.32.

C:\>DEBUG
-A100

17DA: 0100 MOV BX, 0400 ; BX loaded with 0400 as destination address of matrix A × B
17DA: 0103 MOV SI, 0200 ; SI loaded with 0200 as source address of the matrix A
17DA: 0106 MOV DH, 03 ; Load number of row/column in DH
17DA: 0108 MOV DI, 0300 ; DI loaded with 0300 as source address of the matrix B
17DA: 010B MOV CL, 03 ; Load number of row/column in CL
17DA: 010D MOV DL, 03 ; Load number of row/column in DL
17DA: 010F MOV BP, 0000 ; Initialize BP with 0000H
17DA: 0112 MOV AX, 0000 ; Initialize AX with 0000H
17DA: 0115 SAHF ; Save the AH register bits into lower byte of flag register
17DA: 0116 MOV AL, [SI] ; Load element of matrix A into AL
17DA: 0118 MOV CH, [DI] ; Move corresponding element of B into CH
17DA: 011A MUL CH ; Multiply corresponding element of B with AL
17DA: 011C ADD BP, AX ; Add content of AX with BP
17DA: 011E INC SI ; Increment SI by one
17DA: 011F ADD DI, + 03 ; Add 03 with DI
17DA: 0122 DEC DL ; Decrement DL by one
17DA: 0124 JNZ 0116 ; If DL 0, Jump to 0116
17DA: 0126 SUB DI, + 08 ; Subtract 08 from DI
17DA: 0129 SUB SI, + 03 ; Subtract 03 from SI
17DA: 012C MOV [BX], BP ; Store element of A × B into destination memory address
17DA: 012E ADD BX, + 02 ; Add 02 with BX
17DA: 0131 DEC CL ; Decrement CL by one
17DA: 0133 JNZ 010D ; If CL 0, Jump to 0106
17DA: 0135 ADD SI, + 03 ; Add 03 with SI
17DA: 0138 DEC DH ; Decrement DH by one
17DA: 013A JNZ 0108 ; If DH 0, Jump to 0106
17DA: 013C HLT
-ECS: 200
17DA: 0200 00.1 00.1 00.1 00.1 00.1 00.1 00.1 00.1
17DA: 0208 00.1 00.1 00.1

Initialize the BX with 0400H as destination address of matrix
× and SI with 0200H as source address of matrix ,

Load number of row/column in DH
A B A

START

Initialize the DI with 0300H as source address of matrix B

Load number of rows/columns 03H in CL

Load number of rows/columns 03H in DL

Initialize BP = 0000H, AX = 0000H and save the AH register
bits into lower byte of flag register.

Move matrix element of into ALA

Move matrix element of into CHB

Multiply matrix element of with the
corresponding matrix element of

A

B

Add the content of AX with BP
Increment SI by one, ADD 03 with DI

Subtract 08H from DI, Subtract 03H from SI,
Store the element of A x B, i.e., the content of BP
into in destination address. Increment AX by 2

Decrement DL by one

Is
DL = 0?

No

Yes

No

Decrement CL by one

Is
CL = 0?

Yes

ADD 03H with SI

Decrement DH by one

NoIs
DH = 0?

Yes

End

-ECS: 300
17DA: 0300 00.1 00.1 00.1 00.1 00.1 00.1 00.1 00.1
17DA: 0308 00.1 00.1 00.1
-G013C
AX = 0001 BX = 0412 CX = 0100 DX = 0000 SP = FFEE BP = 0003 SI = 0209 DI = 0303
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 013C NV UP EI PL ZR NA PE NC
17DA:013C F4 HLT
-ECS:400
17DA:0400 03. 00. 03. 00. 03. 00. 03. 00.
17DA:0408 03. 00. 03. 00. 03. 00. 03. 00.
17DA: 0410 03. 00.

The above program can be used to multiply two 3 × 3 matrices. To verify the result very easily, we
assume both A and B matrixes are unit matrices. The ECS: 200 is used to enter the matrix elements of A,
and the matrix elements of B are entered by ECS: 300. When G0121 is executed, the result will be stored in
destination memory location and ECS: 400 command will display the result on the screen as shown above.

The 8-bit binary number is B7 B6 B5 B4 B3 B2 B1 B0. The Gray code num-
ber is G7 G6 G5 G4 G3 G2 G1 G0. The relationship between Gray code and
binary code is G7 = B7 and Gi = Bi 5 Bi+1 where i = 0 to 6. The program
flow chart to find the gray code of a binary number is shown in Fig. 7.33.
The program for binary to Gray conversion is given below:

C:\>DEBUG
-A100
17DA: 0100 MOV AL, 89 ; Load the binary number in AL
17DA: 0102 MOV BL, AL ; Move AL to BL
17DA: 0104 CLC ; Clear carry
17DA: 0105 RCR AL, 1 ; Rotate right through carry by one
 bit
17DA: 0107 XOR BL, AL ; XORing the content of BL and AL
17DA: 0109 MOV DL, BL ; Store content of BL in DL register
17DA: 010B HLT
-G010B
AX = 0044 BX = 00CD CX = 0000 DX = 00CD SP = FFEE BP = 0000
SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010B NV UP EI
NG NZ NA PO NC
17DA: 010B F4 HLT

The above program can be used to convert the binary number 89H into equivalent Gray code. When the
program is executed by the G010B command, the equivalent Gray code of the binary number 89H will be
stored in the DL register, i.e., CD.

The program for converting a BCD number into its binary equivalent number is given below. Assume the

Load the binary number
in Register AL

START

Copy the content of AL in BL

Clear carry

Rotate AL right through
carry by one bit

XORing the content of BL and AL
to determine Gray code

Store the result i.e. the
content of BL in DL

End

BCD number is 2345. When the program is executed by the
G011E command, the equivalent binary of BCD number 2345
will be stored in the DX register, i.e., 0929H. The program flow
chart to convert BCD number to binary number is shown in
Fig. 7.34.

C:\>DEBUG
-A100
17DA: 0100 MOV BX, 2345 ; The BCD number is stored in

BX

17DA: 0103 MOV CX, 0000 ; Initialize CX as 0000H

17DA: 0106 CMP BX, + 00 ; Compare BX with 0000H

17DA: 0109 JZ 011C ; Jump zero to 011C

17DA: 010B MOV AL, BL ; Copy the content of BL to
AL

17DA: 010D SUB AL, 01 ; Subtract 01 from AL

17DA: 010F DAS ; Decimal adjustment after
subtraction

17DA: 0110 MOV BL, AL ; Copy the content of AL to
BL

17DA: 0112 MOV AL, BH ; Copy the content of BH to
AL

17DA: 0114 SBB AL, 00 ; Subtract 00 from AL with
borrow

17DA: 0116 DAS ; Decimal adjustment after
subtraction

17DA: 0117 MOV BH, AL ; Copy the content of AL to
BH

17DA: 0119 INC CX ; Increment CX

17DA: 011A JMP 0106 ; Jump to 0106

17DA: 011C MOV DX, CX ; Store the Binary number in DX register

17DA: 011E HLT

-G11E

AX = 0000 BX = 0000 CX = 0929 DX = 0929 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 011E NV UP EI PL ZR NA PE NC
17DA: 011E F4 HLT

The program to determine the factorial of a one-digit BCD number is developed based on the algorithm as
given below:

 1. If N = 1, then factorial = 1

 2. If N>1, the factorial = N × (factorial of N – 1)

The program flow chart to find factorial of a BCD number is depicted in Fig. 7.35.

Load BCD number in BX register,
Initialize CX = 0000H

START

Compare BX
with 0000H?

Yes
=

No

Copy the content of BL into AL
Subtract 01H from AL

Decimal adjustment after subtraction
Move the content of AL to BL

Copy the content of BH into AL
Subtract 00H from AL with borrow

Decimal adjustment after subtraction
Move the content of AL to BH

Increment CX by 1

Store the binary number in DX register

End

C:\>DEBUG
-A0100
17DA: 0100 MOV CX, 0005 ; Store number in the Register CX
17DA: 0103 MOV AX, CX ; Copy the content of CX in Register

AX
17DA: 0105 DEC CX ; Decrement CX
17DA: 0106 MUL CX ; Multiply CX with AX
17DA: 0108 DEC CX ; Decrement CX
17DA: 0109 JNZ 0106 ; Jump not zero to 0106
17DA: 010B MOV BX, AX ; Store factorial value in Register BX
17DA: 010D HLT
-G010D
AX = 0078 BX = 0078 CX = 0000 DX = 0000 SP = FFEE BP = 0000
SI = 0000 DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010D NV UP EI
PL ZR NA PE NC
17DA: 010D F4 HLT

The above program can be used to determine factorial 5 or 5! After
editing the program, G010D is used to execute. Then factorial 5 will be
stored in BX register, i.e., 78H.

The algorithm to find the number of positive and negative numbers in a series of signed numbers is illustrated
below:

 1. Load the number in the AX register from memory location.

 2. Rotate number left through carry. Carry flag represents the most significant bit of the number.

 3. If the carry flag = 1, the number is negative.

 4. If the carry flag = 0, the number is positive.

The program flow chart to find out the number of positive numbers and negative numbers in a series of
signed numbers is shown in Fig. 7.36.

C:\>DEBUG
-A100
17DA: 0100 MOV SI, 0200 ; SI is loaded 0200 as source address of data
17DA: 0103 MOV BX, 0000 ; Initialize BX register with 0000H
17DA: 0106 MOV DX, 0000 ; Initialize DX register with 0000H
17DA: 0109 MOV CL, 05 ; Load number of data in CL register
17DA: 010B MOV AX, [SI] ; Move data in to AX register from memory
17DA: 010D SHL AX, 1 ; Shift left through carry
17DA: 010F JB 0114 ; Jump carry to 0114
17DA: 0111 INC BX ; Else increment BX register
17DA: 0112 JMP 0115 ; Jump to 0115
17DA: 0114 INC DX ; Increment DX register

Load the BCD number in CX register

START

Copy the content of CX in register AX

Decrement CX register by 1

Multiply CX with AX

Decrement CX register by 1

Is
CX = 0?

End

No

Yes

Store the result in BX register

17DA:0115 ADD SI,+02 ; Add 02 with SI to locate next data in memory
17DA:0118 DEC CL ; Decrement CL
17DA:011A JNZ 010B ; Jump not zero 010B
17DA:011C HLT

-ECS:200
17DA:0200 00.23 00.67 00.01 00.24 00.90 00.90 00.44 00.98
17DA:0208 00.26 00.98
-G11C
AX = 304C BX = 0002 CX = 0000 DX = 0003 SP = FFEE BP = 0000 SI = 020A DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 011C NV UP EI PL ZR NA PE NC
17DA:011C F4 HLT
-

The above program is used to determine the number of positive as well as negative numbers in a series
of signed numbers. The ECS:200 command is used to enter five signed numbers 6723, 2401, 9090, 9844 and

Initialize the SI register with 0200H
as a source address of a string of data

Initialize BX = 0000H
Initialize DX = 0000H

Load number of data in CL Register

Move data into AX from memory

Shift left through carry by 1 bit

Is
Carry = 1?

Yes

No

Increment BX by 1 Increment DX by 1

Increment SI by 2, SI = SI + 2

Decrement CL by 1

Is
CL = 0?

Yes

No

End

START

9826. After execution of the program through G11C command, number of positive numbers will be stored in
CX register i.e., 2 and number of negative numbers will be stored in DX register i.e., 3.

The algorithm to find the number of even and odd num-
bers in a series of signed numbers is illustrated below:

 1. Load the number in AX register from memory
location

 2. Rotate number right through carry. Carry flag
represents whether the number is even or odd.
Actually the carry flag is least significant bit of
number.

 3. If the carry flag = 1, the number is odd.

 4. If the carry flag = 0, the number is even.

The program flow chart to find out the number of
even numbers and odd numbers in a series of signed
numbers is given in Fig. 7.37.

C:\>DEBUG
-A100
17DA:0100 MOV SI,0200 ; SI is loaded 0200

as source address of
data

17DA:0103 MOV BX,0000 ; Initialize BX regis-
ter with 0000H

17DA:0106 MOV DX,0000 ; Initialize DX regis-
ter with 0000H

17DA:0109 MOV CL,05 ; Load number of
data in CL register

17DA:010B MOV AX,[SI] ; Move data in to
AX register from
memory

17DA:010D ROR AX,1 ; Rotate right through carry
17DA:010F JC 0114 ; Jump carry to 0114
17DA:0111 INC BX ; Else increment BX register
17DA:0112 JMP 0115 ; Jump to 0115
17DA:0114 INC DX ; Increment DX register
17DA:0115 ADD SI,2 ; Add 02 with SI to locate next data in memory
17DA:0118 DEC CL ; Decrement CL
17DA:011A JNZ 010B : Jump not zero to 010B
17DA:011C HLT
-ECS:200

Initialize the SI register with 0200H
as a source address of a string of data,
Initialize BX = 0000H and DX = 0000H

Load number of data in CL Register

Move data into AX from memory

Rotate AX right through carry by 1 bit

Is
Carry = 1?

Yes

No

Increment BX by 1 Increment DX by 1

Increment SI by 2, SI = SI + 2

Decrement CL by 1

Is
CL = 0?

Yes

No

End

START

17DA:0200 00.01 00.23 00.00 00.45 00.41 00.34 00.61 00.92
-ECS:208
17DA:0208 00.00 00.89
-G11C
AX = 4480 BX = 0002 CX = 0000 DX = 0003 SP = FFEE BP = 0000 SI = 020A DI = 0000
DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 011C NV UP EI PL ZR NA PE NC
17DA:011C F4 HLT
-

The above program can be used to determine the number of even as well as odd numbers in a series of
signed numbers. The ECS:200 command is used to enter five signed numbers 2301, 4500, 3441, 9261 and
8900. When the program is executed by the G11C command, number of even numbers will be stored in BX
register i.e., 2 and number of odd numbers will be stored in DX register i.e., 3.

Load the decimal number in the accumulator. Find the square root of dec-
imal number and store it in the memory location 17B3:0400. The square
values of decimal numbers 0, 1, 4, 9, and 16 are stored in 17B3:0300,
03001, 0304, 0309, and 0316 and used as Look-up table. The program
flow chart to find out square root of a number using look-up table is
shown in Fig. 7.38.

 1. Store the decimal number in Accumulator.
 2. Load 03H is AH register.
 3. If the decimal number is 09, the content of AH and AL registers

are 03 and 09H respectively. Then the offset address of memory
location will be 0309H denoted by AX register. Move AX content
into SI register.

 4. Move square root of decimal number in AL from the memory
location 17B3:0309.

 5. Store the result, square value in 17B3:0400.

C:\>DEBUG
-A0100
17B3:0100 MOV AL,09
17B3:0102 MOV AH,03
17B3:0104 MOV SI,AX
17B3:0106 MOV AL,[SI]
17B3:0108 MOV DI,0400
17B3:010B MOV [DI],AL
17B3:010D HLT
-ECS:0300
17B3:0300 00. 00.01
-ECS:0304
17B3:0304 00.02
-ECS:0309

Load the decimal number
in Register AL

START

Load 03H in Register AH

Move the content of AX
in register SI

Copy the square root of number
from the memory location specified

by CS:SI of look-up table
into the register AL

Load 0400H in DI

Store the result, i.e., the content of
AL in memory location specified

by CS:DI

End

17B3:0309 00.03
-ECS:0316
17B3:0316 00.04
-G010D
AX=0303 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0309 DI=0400
DS=17B3 ES=17B3 SS=17B3 CS=17B3 IP=010D NV UP EI PL NZ NA PO NC
17B3:010D F4 HLT
-ECS:0400
17B3:0400 03.

The program to find out the square root of a decimal number is stored into memory locations 17B3:0100
to 17B3:010D. The U 0100 010D command is used to display the object codes of the above program. When
G010D is used to execute the program and the square root value of 09 is 03 will be stored in memory location
17B3:0400.

The program for converting a binary number into an equiva-
lent BCD number is given below. Assume the binary number
is 00FFH. When the program is executed by G011F command,
the equivalent BCD of binary number 00FFH will be stored
in DX register, i.e., 0255. The program flow chart to convert
binary number to equivalent BCD number is given in Fig. 7.39.

C:\>DEBUG

-A100

17DA:0100 MOV BX,00FF ; The Binary number is
stored in BX

17DA:0103 MOV AX,0000 ; Initialize AX as 0000H

17DA:0106 MOV CX,0000 ; Initialize CX as 0000H

17DA:0109 CMP BX,+00 ; Compare BX with 0000H

17DA:010C JZ 011F ; Jump zero to 011C

17DA:010E DEC BX ; Decrement BX

17DA:010F MOV AL,CL ; Copy the content of CL to
AL

17DA:0111 ADD AL,01 ; Add 01H with AL

17DA:0113 DAA ; Decimal adjustment after
addition

17DA:0114 MOV CL,AL ; Copy the content of AL to
CL

17DA:0116 MOV AL,CH ; Copy the content of CH to
AL

17DA:0118 ADC AL,00 ; Add 00H AL with carry

17DA:011A DAA ; Decimal adjustment after
addition

Load binary number in BX register,
Initialize AX = 0000H
Initialize CX = 0000H

Compare BX
with 0000H?

Yes
=

No

Decrement BX by 1
Copy the content of CL into AL

Add 01H from AL
Decimal adjustment after addition
Move the content of AL to CL

Copy the content of CH into AL
Add 00H and AL with carry

Decimal adjustment after addition
Move the content of AL to CH

Store the BCD number in DX register

End

START

17DA:011B MOV CH,AL ; Copy the content of AL to CH
17DA:011D JMP 0109 ; Jump to 0109
17DA:011F MOV DX, CX ; Store BCD number in DX register
17DA:0121 HLT
-G0121
AX=0002 BX=0000 CX=0255 DX=0255 SP=FFEE BP=0000 SI=0000 DI=0000
DS=17DA ES=17DA SS=17DA CS=17DA IP=0121 NV UP EI PL ZR NA PE NC
17DA:0121 F4 HLT

The general-purpose microprocessors have an upper limit of data-processing capability and these general
processors require complex programming to perform any mathematical calculations. For any mathematical
operations, processors use high-level language for programming and a library of floating point objects has to
be obtained from the manufacturer.

To increase the operating speed, several microprocessors are connected together using a certain network
topology. Then the system is called a multiprocessor system. The simplest multiprocessors system consists
of a microprocessor and a Numeric Data Processor (NDP). The numeric data processor has an independent
math processing unit and it can do complex numeric calculations very fast compared to the main processor.
The most commonly used numeric processors are 8087, 80287 and 80387. The 8087 was first released in
1980 by Intel and this can work with 8086, 8088, 80186 and 80188 processors. After introducing 80286
CPU, Intel developed a redesigned 80287 NDP to operate with 80286 and 80386 processors. To improve
the performance of 80386, the 80387 NDP was developed. The Intel 80486 and Pentium chips provide high
performance as a numeric data processor is directly in built in the CPU. In this section, the block diagram,
operating principle, instruction set and programming of 8087, 80287 and 80387 numeric data processors are
discussed elaborately.

The 8087 Numeric Data Processor (NDP) is called a high-speed math co-processor. This math co-processor
is also known as Numeric Processor Extension (NPX) or Numeric Data Processor (NDP) or Floating Unit
Point (FUP). The 8087 is available in 40-pin DIP packages in 5 MHz, 8 MHz, and 10 MHz versions and it is
compatible with 8086 and higher-version processors.

Figure 7.40 shows the block diagram of the internal architecture of 8087. The 8087 co-processor consists of

 Control Unit (CU) and

 Numeric Execution Unit (EU).

This unit is used to synchronize the operation between the main processor
and co-processor. The control unit receives the instruction opcode, and then it decodes the instructional
opcode and reads or writes operands from memory. The control unit provides the communication between
the processor and memory, and it also coordinates the internal coprocessor execution. This unit continuously
monitors the data bus to find instructions for the 8087 co-processor.

Control Word

Status Word

Data

Status

Address

Addressing
Bus Tracking

Exception
Pointer

Tag
word

Operand
Queue

Micro Control
UnitData

Buffer

Control Unit
Numeric Execution Unit

Exponent
bus

Fraction
bus

Programm-
able ShifterExponent

Module

inter
face

Arithmetic
Module

Temporary
Register

8 Register Stack

80 Bits

0

16

16 64

68

16

7

The control unit of 8087 maintains a parallel queue just like the queue of the main processors. The
control unit also always monitors the BHE/S7 line to detect the processor type that is either 8086 or 8088.
According to the main processor, the queue length will be adjusted. For the 8086 processor, the queue length
will be 6 bytes, but for 8086 processor, the queue length will be 4 bytes. The 8087 uses the queue status input
pins QS0 and QS1 to identify the instructions fetched by the main processor. All instruction codes of 8087
have 11011 as the most significant bits of their first code byte. Actually, the main processor identifies the
co-processor instruction using the ESCAPE code. Once the main processor recognizes the ESCAPE code, it
sends a trigger signal so that the execution of the numeric processor instruction starts in 8087.

During execution, the ESCAPE code identifies the co-processor instruction which can be operated with
or without a memory operand. If the co-processor instruction requires a memory operand that will be fetched
from memory then the physical address of the memory location will be computed using any one of the
addressing modes in 8086 and a dummy read cycle must be initiated by the main processor. Thereafter, the
8087 co-processor reads the operand and proceeds for execution. If the co-processor instruction does not
require any operand then the instruction can be directly executed. After execution of the instruction, the 8087
is ready with the execution results and the control unit obtains the control of the bus from 8086 and executes
a memory write cycle to write the results at the specified memory location. The control unit consists of a
control word, a status word and a data buffer which are explained later.

The Control Unit (CU) consists of a data bus buffer, status and
control register and the Numeric Execution Unit (EU) has eight data register stacks, microcode control unit
and a programmable shifter. These units duplicate the functions performed by the microprocessor control and
ALU blocks. The 8087 NEU and CU can work independently. The CU works to maintain synchronization
with the main 8086/8088 processor while the NEU is performing numeric operations.

The numeric extension unit performs all operations that access and manipulate the numeric data in the
co-processor’s registers. In NEU, the numeric registers are 80 bits wide and the numeric data is routed by a
64-bit mantissa bus and a 16-bit sign/exponent bus. The Numeric Execution Unit (NEU) executes all numeric
processor instructions such as arithmetic, logical, transcendental and data-transfer instructions. The operation

of CU and NEU is asynchronous with each other. The internal data bus is 84 bits wide which consist of 68-bit
fraction, 15-bit exponent and a sign bit.

When the NEU starts execution of an instruction, it always pulls up the BUSY signal. Usually the BUSY
signal is connected with the TEST input signal of the 8086 processor. When the BUSY signal of 8087 is veri-
fied by the main processor, the CPU is able to distinguish that the instruction execution is not yet completed.
Therefore, 8086 must be waiting till the BUSY pin of 8087 or the TEST input pin of 8086 becomes low. The
microcode control unit generates the control signals which are required for execution of the instructions. The
programmable shifter is used for shifting the operands during the execution of instructions. The data bus
interface is able to connect the internal data bus of 8087 with the main processor data bus.

The 8087 co-processor has additional 13 registers to the
8086 and higher processors such as eight 80-bit floating point data registers, a control register, a status
register, a tag register, an instruction pointer and a data pointer register. Figure 7.41 shows the registers of
8087 numeric processor and 8086/8088 main processor.

The 8087 has eight 80-bit individually addressable data
registers organized as stack registers R1 to R8 as shown in Fig. 7.41. The mathematical operations are
performed in these registers. 8087 instructions can access these registers independently.

The data registers are theoretically divided into three fields such as sign (1-bit), exponent (15-bits) and
significant (64-bits). The actual use of these fields varies with the type of data being operated with the instruc-
tion. When the 8087 receives numeric data words, it stores and holds them in a format called temporary real
form. This number is expressed as the product of a 64-bit significant base and a 15-bit exponent and the Most
Significant Bit (MSB) of the register is reversed as a sign bit to represent either a positive or a negative num-
ber. The 8087 instructions automatically convert data into this format when loading the registers and return
back to the other format when returning them to the system memory.

8086/8088

15 File 0

8087
Data Field Tag Field

79 78 64 63 0 1 0
Sign Exponent Significand

AX

BX

CX

DX

SI

DI

BP

SP

CS

DS

ES

SS

IP
Flags

1:5 0

Control Register

Status Register

Tag Word

Instruction Pointer

Data Pointer

R

R

R

R

R

R

R

R

1

2

3

4

5

6

7

8

These registers can be represented as ST (0), ST (1), ST(2), ST(3) ST(4), ST(5) ST(6), and ST(7). When
the 8087 co-processor is reset, ST (0) becomes the top of the stack and ST(1) refers to the next register in the
stack and other registers will be referred accordingly as shown in Fig. 7.42 (a). After the first push operation,
the register 000 becomes ST(1) and the register 111 refers ST(0). Similarly, other registers are referred as
shown in Fig. 7.42 (b). During programming, any register can be used as the top of the stack and other regis-
ters will be referred according to their position.

ST(7)

ST(6)

ST(5)

ST(4)

ST(3)

ST(2)

ST(1)

ST(0) Top

ST(7)

ST(6)

ST(5)

ST(4)

ST(3)

ST(2)

ST(1)

ST(0)

111

110

101

100

011

010

001

000

ST(7)

ST(6)

ST(5)

ST(4)

ST(3)

ST(2)

ST(1)

ST(0) ST(0)

ST(7)

ST(6)

ST(5)

ST(4)

ST(3)

ST(2)

ST(1)

111

110

101

100

011

010

001

000

Register Number Register Number

The 16-bit control word register is used to control the operation of the 8087.
The control word register bits can select the required data processing options such as precision control, round-
ing control and infinity control. Figure
7.43 shows the format of the control
word register. The bits D5–D0 are used
for masking the different exceptions.
An exception may be masked by
setting the respective bit in the control
word register. The IEM bit is used as
a common interrupt mask for all the
interrupts. When IEM is set, all the
exceptions generated will be masked
and the execution may continue.

Infinity control selects either affine or protective infinity. Affine allows positive and negative infinity,
while protective assumes infinity is unsigned. Hence the Infinity Control (IC) provides control over the
number size on both sides, i.e., either + or – .

 Infinity Control

 0 = Protective 1 = Affine

Rounding control determines the type of rounding as given below.

 Rounding Control

00 = Round to nearest or even

01 = Round down towards minus infinity

10 = Round up towards plus infinity

11 = Chop or truncate towards zero

D15 D12 D11 D10 D9 D8 D7 D5 D4 D3 D2 D1 D0

PM UM OM ZM DM IMIEMIC RC PC

IC — Infinity control

RC — Rounding control

PC — Precision control

IEM — Interrupt enable mask

PM — Precision mask

UM — Underflow mask

OM — Overflow mask

ZM — Division by zero mask

DM — Denormalized operand mask

IM — Invalid operand mask

D15 D8 D7 D5 D0

ST

B — Busy bit

C –C — Condition code bits

ST — Top-of-stack (ST)

ES — Error summary

PE — Precision error

3 0

UM — Underflow error

OM — Overflow error

ZM — Zero error

DE — Denormalized error

IE — Invalid error

C3B C2 C1 C0 ES PE UE OE ZE DE IS

Precision control bits control the precision of the result as given in Table 7.2.

 Precision Control

 00 = Single precision (short)

 01 = Reserved

 10 = Double precision (long)

 11 = Extended precision (temporary)

The operation of the 8087’s status register is similar to the 8088’s flag register.
The co-processor status register contains the conditional code bits and the floating point flags as shown in
Fig. 7.44. During executing an instruction, the 8087 co-processor generates six different exceptions. These
are reflected in the status register
format. Whenever any exception is
generated, an interrupt take place to the
CPU provided it is not masked. Then
the 8086 processor will respond if the
interrupt flag of the CPU is set. When
the exceptions are masked, the 8087
continues the execution. Therefore,
the status register reflects the over all
operations of the 8087 co-processor.

Busy bit (B) indicates that 8087 co-processor is busy executing an instruction. Busy can be tested by
examining the status or by using the FWAIT instruction.

Condition code bits indicates conditions about the co-processor as given Table 7.3(a) and Table
7.3.(b).

 C3 C2 C1 C0 Result

 0 0 × 0 ST > Source

 0 0 × 1 ST < Source

 1 0 × 0 ST = Source

 1 1 × 1 ST is not comparable

 C3 C2 C1 C0 Result

 0 0 0 0 +Un-normal

 0 0 0 1 +NAN

 0 0 1 0 –Un-normal

 0 0 1 1 –NAN

 0 1 0 0 Normal

 0 1 0 1 +

 0 1 1 0 – Normal

 0 1 1 1 –

(Contd.)

 1 0 0 0 +0

 1 0 0 1 Empty

 1 0 1 0 –0

 1 0 1 1 Empty

 1 1 0 0 +De-normal

 1 1 0 1 Empty

 1 1 1 0 –De-normal

 1 1 1 1 Empty

Top of the stack (ST) bit shows the current register address as the top of the stack.

Error summary bit is set if any unmasked error bit (PE, UE, OE, ZE, DE, or IE) is set. In the 8087
co-processor, the error summary is also caused a co-processor interrupt.

Precision error indicates that the result or operand executes selected precision.

Under flow error indicates that the result is too small to fit in the specified format 8087 generates
these exceptions. When this exception is masked, the 8087 denormalizes the fraction until the exponent fits
in the specified destination format.

Over flow error indicates that result is too large to represent in the specified format. If this error is
masked, the 8087 co-processor generates infinity for an overflow error.

The zero error indicates if any non-zero finite operand is divided by zero. In this case the divisor
is zero while the divided is a non-infinity or non-zero number. The zero error bit indicates that the result is
infinity, even if the exception is masked.

The denormalized error indicates, if at least one of the operand is denormalized. This error may be
generated, if the result is denormalized. When this bit is masked, 8087 continues the exception normally.

Invalid error shows a stack overflow or a stack underflow and uses “NAN” as operand. For example,
if we find the square root of a negative number, this flag error will be generated.

The tag register contains several groups of 2 bits that can determine the state of
the value of the eight 80-bit stack registers as valid, zero, special or empty. Tag register is a two-bit register
called TAG field as shown in Fig. 7.45. The tag word register presents the entire TAG field to the CPU. The
tag values are 00 = valid, 01 = zero, 10 = special and 11 = empty.

(Contd.)

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

TAG (0)TAG (1)TAG (2)TAG (3)TAG (4)TAG (5)TAG (6)TAG (7)

The instruction and data pointer registers are
used to hold the information about the last executed floating point instruction. Actually, the information is
address of instruction, op-code and operand address. Prior to execution of a mathematical instruction, the
8087 forms a table in the memory. The table contains the instruction address in the fields of the instruction
pointers, the opcode of the instruction, and operand address in the field of data pointers. The TAG word,
status word, and control word will also be present in their respective fields as shown in Table 7.4. Therefore,

the instruction pointer and the data pointer registers contain the address of the currently executed instruction
and the corresponding data.

Figure 7.46 shows the pin diagram of 8087 processor. The operations of all pins of 8087 are explained below:

Control Word

Status Word

TAG Word

Instruction Pointer (15–0)

Instruction Pointer
19–16

Instruction Opcode
(10–0)0

0

Data Pointer (15–0)

Data Pointer
19–16

(DST + 0)

(DST + 2)

(DST + 4)

(DST + 6)

(DST + 8)

(DST + 10)

(DST + 12)

015

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

31

30

29

27

26

25

24

23

22

21

28

32

33

34

35

36

37

38

39

40

8087

GND

CLK

NC

NC

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

AD8

AD9

AD10

AD11

AD12

AD13

AD14

GND

(A)14

(A)13

(A)12

(A)11

(A)10

(A)9
(A)8

Vcc

AD15

A /S16 3

A /S17 4

A /S18 5

A /S19 6

BHE/S7

RQ/GT1
INT

RQ/GT0

NC

NC

S2

S1

S0

QS0

QS1

BUSY

READY

RESET

The AD15 – AD0 are the time multiplexed address/data lines. During T1 , these lines are
used as address bus A15 – A0 and these lines can be used as data bus D15 – D0 during T2, T3, Tw and T4 states.
A0 is also used as the chip select signal whenever the data transfer is on lower byte (D7–D0) of data bus.

These lines are the time-multiplexed address/status lines and their function are
same as the corresponding pins of 8086. The S6, S4 and S3 are high, when the S5 is low.

The BHE/S7 pin is used to select data on the higher byte of the 8086 data bus during T1.
During T2, T3, Tw and T4 , this signal is a status line S7.

The queue status input signals, QS1 and QS0 are used to allow the co-processor to track
the progress of an instruction through the 8086 queue and help 8087 co-processor to determine when to
access the bus for the escape opcode and operand. These signals can also maintain synchronism with main
CPU and indicate the status of the internal instruction queue as given in the Table 7.5.

QS
1
 QS

0
 Queue Status

0 0 Queue is idle

0 1 First byte of op-ode from queue

1 0 Queue is empty

1 1 Subsequent byte of op-ode from queue

The interrupt output signal INT is used by 8087 to indicate an unmasked exception that has
been received during execution. Usually this signal is handled by 8259A programmable interrupt controller.

The BUSY output signal is used to indicate to the CPU that 8087 co-processor is busy with
the execution of an allotted instruction.

The READY input signal can be used to indicate the 8087 co-processor that the addressed
device has completed the data transfer and the bus becomes free for the next bus cycle. Usually, this signal is
synchronized by the clock generator 8284.

This input signal is used to rest the co-processor after escaping the all internal activities and
is ready for execution of any instruction send by the main processor.

These lines are bus status output signals that encode the type of the current bus cycle
as given in Table 7.6.

 S2 S1 S0 Queue Function

 0 0 0 Interrupt acknowledge

 0 0 1 I/O read

 0 1 0 I/O write

 0 1 1 Halt

 1 0 0 Opcode fetch

 1 0 1 Memory read

 1 1 0 Memory write

 1 1 1 Passive

The bus request/grant output signal RQ/GT0 is used by the 8087 to control of the bus from
the host 8086/8088 for operand transfers. This pin must be connected to the request/grant pin of the host
processor.

The RQ/GT1 bidirectional pin is used by the other bus masters like DMA controllers to
convey their need of the local bus access to 8087. This request must be further conveyed to the host processor.

The input clock signal CLK provides the basic timings for the co-processor operation.

This is a +5 V supply line which is used for the circuit operation.

This pin is connected with the ground terminal of the power supply.

The physical connection between the 8087 co-processor and 8086 main processor is shown in Fig. 7.47. The
8087 can be connected with the main CPU only in their maximum mode of operation of processor when the
MN/MX pin of the processor is grounded. In maximum mode operation, all the control signals are generated
by an 8288 bus controller. Multiplexed address-data bus lines, AD15–AD0 are connected directly from 8086
to 8087. The queue status QS0 and QS1 lines may be directly connected to the corresponding pins in case of
8086-based systems. The request/grant signal RQ/GT0 of 8087 is connected to RQ/GT1 of 8086. The BUSY
pin of 8087 is connected with the TEST pin of the host 8086 CPU. The clock pin of the 8087 may be con-
nected with the CPU 8086 clock input. The interrupt output of 8087 is routed to 8086/8088 via a program-
mable interrupt controller.

INT

8259A
PIC

IRn

8284A
CLOCK

GENERATOR

CLK

INT

CLK

RQ/GT0

QS0
QS1 BUSY

8087

RQ/GT1

QS0
QS1 TEST

RQ/GT1

CLK

INTR

8086 CPU

8086

BUS
INTER-
FACING

Multi-
master
system
bus

The 8087 co-processor can support 7 different types of data such as

 Three Signed Integers

 16-bit (word) – range 32768 to + 32767

 32-bit (short integer) range —2 × 10+9 to + 2 × 10+9

 64-bit (long integer) range -9 × 10+18 to + 9 × 10+18

 A18-digit BCD data and

 Three floating point type numbers

 32-bit (extended precision) floating-point numbers

 64- bit (extended precision) floating-point numbers

 80-bit (extended precision) floating-point numbers

Figure 7.48 shows three signed integers supported by 8087

The floating-point unit hold signed inte-
gers, fractions and mixed numbers. The float-
ing-point numbers has 3 parts such as sign bit,
biased exponent and significand. The 8087 co-
processor can support 3 types of floating point
numbers such as

 Short (32 bits) : single precision, with a
bias of 7FH

 Long (64 bits) : double precision, with a
bias of 3FFH

 Temporary (80 bits) : extended preci-
sion, with a bias of 3FFFH and Fig. 7.49 shows the floating point number supported by 8087

The 8087 co-processor has 68 additional instructions to the instruction set of 8086. These instructions are
fetched by 8086 but are executed by 8087. When the 8086 comes across an 8087 instruction, it executes the
ESCAPE instruction code to bypass the instruction opcode and control of the local bus to 8087 co-processor.
The execution of 8087 instructions is transparent to the programmer. The 8087 co-processor instructions are
divided into six different groups as given below:

 1. Data Transfer Instructions

Real Transfers (Example : FLD)
 Integer Transfers (Example : FILD)
 Packed Decimal Transfers (Example : FBLD, FBSTP)

 2. Arithmetic Instructions

 Addition (Example : FADD, FADDP)

 Subtraction (Example : FSUB, FSUBP)
 Reversed Subtraction (Example : FSUBR, FSUBRP)

 Multiplication (Example : FMUL, FMULP)

 Division (Example : FDIV, FDIVP)

 Reversed Division (Example : FDIVR, FDIVRP)

 3. Other Arithmetic Operations (Example : FSQRT, FABS)

 4. Compare Instructions (Example : FCOM, FCOMP, FCOMPP)

 5. Transcendental (Trigonometric and Exponential) Instructions (Example : FPTAN, FPATAN)

 6. Processor Control Instructions (Example : FLD)

Some of the most commonly used co-processor instructions are discussed in this section.

Loads 32-bit, 64-bit or 80-bit floating-point data to Top of Stack (ST). Stack pointer
is then decremented by 1. Data can be retrieved from memory, or another stack register. The examples of FLD
instructions are as follows:

FLD ST(2); Top of stack [ST(2)]; Copies the contents of register ST(2) to top of the stack.

FLD Memory_32; Top of stack [Memory_32]; Copies the contents of memory_32 to top of the stack.

This instruction stores the content of the top of the stack into memory or a specified
co-processor register. During copy, the data rounding occurs using the rounding control bits in floating point
control register. The examples of FST instructions are as follows:

FST ST(1) ; [ST(1)] Top of stack; Copies the contents of top of the stack to register ST(1).

FST Memory_64; [Memory_64] Top of stack; Copies the contents of top of the stack to memory_64.

This instruction stores a copy of the top of the stack
into memory or any specified co-processor register and pop the data from the top of stack. The examples of
FSTP instructions are as follows

FSTP ST(4) ; [ST(4)] Top of stack, Copies the contents of top of the stack to register ST(4).

FST Memory_32; [Memory_32] Top of stack; Copies the contents of top of the stack to memory_32.

The FXCH instruction exchanges the contents of specified register with top of
stack. The example of FXCH instruction is

FXCH ST(2) ; [ST(2)] Top of stack; Exchanges the contents of top of the stack with register ST(2).

During transferring the data, the co-processor
automatically converts extended floating-point number to integer data. There are three types integer data
transfer instructions such as

 FILD (Load integer)

 FIST (Store integer)

 FISTP (Store integer and pop)

For example,

FILD ST(3) ; Top of stack [ST(3)]; Copies the contents of register ST(3) to top of the stack.
FILD Memory ; Top of stack [Memory]; Copies the contents of memory to top of the stack.
The instructions FIST and FISTP work in an exactly similar manner as FST/FSTP except that the operands
are integer operands. For example,

FIST ST(5) ; ST(5) Top of stack; Copies the contents of top of the stack to register ST(5).
FST Memory_64; [Memory_64] Top of stack; Copies the contents of top of the stack to memory_64.

The 8087 has two BCD data transfer instructions such as

 FBLD (loads the top of stack with BCD memory data), and

 FBSTP (stores top of the stack and does a pop).

Both the instructions work in an exactly similar manner as FLD and FSTP except that the operands are
BCD numbers.

The 8087 co-processor has 11 arithmetic instructions that can be used
to perform arithmetic operations such as addition, subtraction, multiplication and division or supporting
operations like scaling, rounding, negation, absolute value, etc. Some arithmetic instructions are explained
below:

These two instructions perform real or integer addition of the specified operand with
the stack top. After addition, the results are stored in the destination operand. The operand may be any of the
stack registers or a memory location. For example,

FADD ST(0), ST(1) ; ST(0) ST(0) + ST(1) , destination = destination + source.

FADDP ST(3),ST(0) ; ST(3) ST(3) + ST(0) , destination = destination + source.

These four instructions perform real or integer subtraction of
the specified operand from the stack top. The operand may be any of the stack register or memory. After
subtraction, the result of the operation is stored in the destination operand. For example,

FSUB ST(0), ST(1) ; ST(0) ST(1)+ST(0), destination = destination–source.

FSUBP ST(3),ST(0) ; ST(3) ST(0)+ST(3), destination = destination–source.

The FSUBR and FSUBRP instructions work in a similar manner but these instruction perform reverse sub-
traction such as destination = source–destination. For example,

FSUBR ST(0), ST(1) ; ST(0) ST(1)-ST(0) , destination = source–destination.

FSUBRP ST(3),ST(0) ; ST(3) ST(0)-ST(3) , destination = source–destination.

These two instructions perform real or integer multiplication of the specified
operand with stack top. The specified operand may be a register or a memory location. After multiplication,
the result will be stored in the destination operand. For example,

FMUL ST(0), ST(1) ; ST(0) ST(0) × ST(1) , destination = destination × source.

FMULP ST(3),ST(0) ; ST(3) ST(3) × ST(0) , destination = destination × source.

These four instructions perform real or integer division. When the
destination is not specified, the top of stack is the destination operand and source operand may be a memory
operand of short real or long real type. If both destination and source operands are specified then compute the
division and store the result in the destination. For example,

FDIV ST(0), ST(1) ; ST(0) ST(0) / ST(1) , destination = destination / source.

FDIVP ST(3),ST(0) ; ST(3) ST(3) / ST(0) , destination = destination / source.

The FDIVR and FDIVRP instructions work in similar way but these instructions perform reverse division
such as destination = source/destination. For example,

FDIVR ST(0), ST(1) ; ST(0) ST(1) / ST(0) , destination = source / destination.

FDIVRP ST(3),ST(0) ; ST(3) ST(0) / ST(3) , destination = source / destination.

The FSQRT instruction finds out the square root of the content of the top of stack and stores the
result on the stack top. The value of the top of stack must be zero or positive otherwise FSQRT generates an
invalid exception.

The FABS instruction computes the absolute value of the content of the stack top and the result is
stored in the top of stack.

The following letters are used to additionally qualify the arithmetic operations:
 P— Perform a register pop after the operation.
 R— Reverse mode for subtraction and division.
 I— Indicates that the memory operand is an integer. ‘I’ appears as the second letter in the instruction,

such as FIADD, FISUB, FIMUL, FIDIV.

The comparison instructions of the 8087 co-processor are FCOM,
FCOMP, FCOMPP, FUCOM, FUCOMP, and FUCOMPP which are used to compare the two values on the
top of stack and set the condition code flags appropriately. The example of comparison instruction is

FCOM ST(1); compare ST(0) against ST(1) and set the processor accordingly

The 8087 co-processor has eight transcendental operation
instructions such as FTAN, FPTAN, F2XMI, FLY2X, FLY2XP1, FSIN, FCOS and FSINCOS. In this section
only FTAN, FPTAN, FLY2X, and FLY2XP1 are explained.

The FPTAN instruction is used to compute the partial tangent of an angle , where must be
in the range 0° . The value of angle must be stored at the stack top. The result is computed in the
form of a ratio of ST/ST(1).

The FPATAN instruction calculates the are tangent (inverse tangent) of a ratio ST(1)/ST(0).
The stack is popped and the result is stored on the top of stack. Its function can be expressed as

()
()

()
tanST

ST

ST
0

0

11
=

- c m
This instruction is used to calculate log2 X where X must be in the range of 0 X and Y

must be in the range 0 Y .

This instruction is used to compute the function log2 (X + Y). This instruction is almost
identical to FYL2X except that it gives more accurate results when computation log of a number very close
to one.

The co-processor control instructions are used to program
the numeric processor or to handle the internal functions like flags manipulations, exception handling,
processor environment maintenance and preparation, etc. The 8087 coprocessor control instructions are
FINIT, FENI, FDISI, FLDCW, FSTCW, FSTSW, FCLEX, FINCSTP, FDECSTP, FFREE, FNOP, FWAIT,
FSTENV, FLDENV, FRSTOR and FSAVE. In this section, operation of FINIT, FENI, FDISI and FWAIT
instructions are discussed.

The FINIT instruction initializes the 8087 for further execution. In other words, this instruction
must be execute and the hardware will be reset before executing FPU instructions. The instruction initializes
the control word register to 03FFH, the status register to 0 and the TAG status is set empty. All the flags are
cleared and the stack top is initialized at ST (0).

The FENI instruction enables the interrupt structure and response mechanism of 8087. Therefore,
the interrupt mask flag is cleared.

The FDISI instruction sets the interrupt mask flag to disable the interrupt response mechanism of
8087.

The FWAT instruction is used by the 8087 co-processor causes the microprocessor to wait for
the coprocessor to finish an operation.

Write an assembly-language program to find out z x y
2 2

= + . Assume x is stored
in memory location 0200H and y is stored in memory location 0202H and the
result z will be stored at 0300H.

Mnemonics Comments

MOV BX,0200H Store memory location (0200H) of first data x in Register BX

FLD (BX) Load first data x into top of stack

FMUL Multiply x with x and get x2

FSTP ST(1) Load x2 in ST(1)

MOV BX,0202H Store memory location (0202H) of second data in Register BX

FLD (BX) Load second data y into top of stack

FMUL Multiply y with y and get y2

FADD ST(1) Add x2 with y2 and result is stored in the top of stack

FSQRT Find z x y
2 2

= +

MOV BX,0300H Store memory location 0300H in Register BX

FST (BX) Store the result from top of stack to memory location 0300H

INT 3 Break

Write a procedure in assembly-language to compute volume of a sphere .r
3

4
V

3

= r
where r is the radius of sphere.

DATA SEGMENT
 RADIUS DD 2.57
 CONSTANT EQU 1.333
 VOLUME DD 01 DUP(?)

DATA ENDS

ASSUME CS: CODE, DS:DATA

Volume PROC NEAR

Code SEGMENT
Start MOV AX,DATA Initialize data segment
 MOV DS,AX
 FILD RADIUS Load radius of sphere into top of stack
 FSTP ST(2) Store top of stack into register ST(2)
 FMUL ST(2) Multiply r with r and get r2, ST(0) = ST(0) × ST(2) = ST(2)2

 FMUL ST(2) Multiply r with r2 and get r3, ST(0) = ST(0)2 × ST(2)
 FSTP ST(1) Load r3 in ST(1)

 FLD CONSTANT Load
3

4= 1.333 into top of stack

 FMUL ST(0), ST(1) Multiply 1.333 with r3

 FSTP ST(3) Store the result of 1.333 r3 in ST(3)
 FLDPI Load the value of into top of stack
 FMUL ST(0), ST(3) Multiply with 1.333 r3

 FST VOLUME Store volume of sphere
 RETP
Volume ENDP
Code ENDS
END Start

Write an assembly-language program to find out
x y

xy
2 2

+

. Assume x and y are
integers.

Mnemonics Comments

FILD x Load first data x into top of stack

FMUL Multiply x with x and get x2

FSTP ST(1) Load x2 in ST(1)

FILD y Load second data into top of stack

FMUL Multiply y with y and get y2

FADD ST(1) Add x2 with y2 and result is stored in the top of stack

FSTP ST(2) Store the result of x2 + y2 in ST(2)

FILD x Load first data x into top of stack

FISTP ST(1) Load x in ST(1)

FILD y Load second data y into top of stack

FMUL ST, ST(1) Multiply x with y and get x y

FDIV ST,ST (2) Find z =
x y

xy
2 2

+
and store the result into top of stack

INT 3 Break

The 80287 numeric data co-processor is an advanced version of its predecessor, the 8087, and it is specially
designed to operate with the processor 80286. The 80287 provides about 70 additional instructions to the
instruction set of 80286. These instructions are executed coherently by 80287 under the control of 80286. The
80287 co-processor instruction set can support integer, floating point, BCD, trigonometric and logarithmic
calculations. Like 8087, the 80287 is designed using HMOS technology and it is available in a 40-pin DIP
package. The block diagram of the internal architecture of 80287 is shown in Fig. 7.50. The internal architec-
ture of 80287 consists of three sections such as

 Bus Control Logic,

 Data interface and Control Unit, and

 Floating Point Unit.

The bus control logic controls the interface between the internal data bus of
80287and the 80286 bus though data buffer.

The data interface and control unit consists of status word,
control word, TAG word, error pointers, DATA FIFO, instruction decoder and a micro-instruction sequencer.
The status word represents the present status of the 80287 co-processor. The control word is used to select

Control World
Status Word

16-bit left/
right Barrel
Shifter + 64
bit Register

16

16TAG Word

Data FIFO
2.5 × 32 - bit

Registers

DATA
BUFFER

16

Instruction
Decoder

Micro
Instruction
Sequencer

Micro Instruction Bus

Bus
Control
Logic

Status

Address and
Bus Control

16

D – D15 0

16

32

Bus Control Logic Data Interface and Control Unit

32

Floating Point Unit

DBUS linterface, Data Alignment and
Operand Checking

Exponent
Adder 16 bit

Operand B
EXP Register

16-bit

Operand A
EXP Register

16-bit

16 16 68 68

Constant ROM
44 × 67 bits

Mantissa
Adder

and 68-bit
sum

Operand
Register

A & B

FPU Control +
Cordic Nano-machine

0

1

2

3

4

5

6

7 80 bits

any processing options provided by the 80287 co-processor and it is programmed by the main processor. The
TAG word is used to improve the performance of 80287 numeric data co-processor by maintaining a record
of empty and non-empty register locations. The error pointer points to the address of the instruction which
generates the exception. The instruction decoder and micro-instruction sequencer decodes and forwards the
instructions to the floating point unit for execution.

The floating-point unit is the actual data-processing section of the 80287
numeric data co-processor. This section consists of DBUS interface, data alignment and operand checking,
exponent adder, operand registers (A and B), mantissa adder, sum register, 16-bit left/right barrel shifter,
operand A and B exp registers. The data bus interface, data alignment and operand checking section is used
to check the alignment and validity of the data. Whenever any error is found, a suitable error exception must
be generated by the 80287. Usually the eight 80-bit stack registers are used to store operand data. The 80-bit
stack registers always maintain 80-bit operands which are required for 80287 operations. The data bus of the
floating-point unit consists of 84 bits. The lower 68 bits are mantissa data bit and the next 16 bits are used for
exponent. The exponential operand registers A and B are used to store the operands in exponential form. The
barrel shifter is used to shift the data which is required for execution.

The status word is a set of 16 flags which reflects the current status of 80287 as
shown in Fig. 7.5. The operations of the various flags are explained below:

The BUSY flag has the same status as ES flag. This is used to maintain the compatibility with
8087.

The D13, D12 and D11 bits are used to select one of the eight stack registers as a stack top. If TOP is
000, Register 0 is the top of stack. When TOP is 111, Register 7 is the top of stack. Similarly other registers
will be selected depending upon the status of TOP.

The condition code bits C3, C2, C1 and C0 are similar to the flags of a main processor.
Usually, these bits are modified depending upon the result of the execution of arithmetic instructions.

This is the error summary bit. If an unmasked exception is generated, it is set.

This bit is used as stack flag. When the operation becomes invalid due to stack overflow or underflow,
the stack flag is set.

All exception flags are depicted in Fig. 7.51. These are used to show the generation
of an exception when 80287 is executing.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

IEDEZEOEUEPETOPB C3 C2 C1 C0 ES SF

B – Busy UE– Underflow exception
C , C , C , C – Condition code bits OE– Overflow exception

TOP – Tope of stack register ZE– Zero divide exception

ES – Error summary DE – Denormalized operand
exception

SF – Stack Flag IE– Invalid operation exception
PE – Precision exception

3

select bits

2 1 0

The control word is used to select any processing options of the 80287 co-
processor. The control word the 80287 co-processor is shown in Fig. 7.52.

IMDMZMOMUMPMI RCHRCLPCH PCL

RCH RCL Rounding Control PCH PCL Precision Control
Function

0 0 Round to nearest 0 0 24-bits single
even

0 1 Round down 0 1 Reserved

1 0 Round up 1 0 53-bits double

1 0 Truncate towars 1 1 64-bits extended
zero

I – Infinity control PM– Precision mask
RCH– Rounding control UM– Overflow mask

–
RCL – OM– Overflow mask

–
PCH – Precision control ZM – Division by zero mask

DM – Denormalized operand mask
–

PCL – IM– Invalid operand mask

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

The six masking bits (PM, UM, OM, ZM, DM and IM) are used to mask the six exceptions
as shown in the status register. When the masking bit is ‚‘1’, the respective exception is masked.

The precision control bits are used to set the internal precision of 80287.

The rounding control bits are used to set rounding operation in arithmetic and
transcendental instructions.

The infinity control bit is programmed for compatibility with 80287. This is
initialized to zero after reset.

The pin diagram of the 80287 co-processor is shown in Fig. 7.53
and the function of pins are given below:

The D15 – D0 is used as a 16-bit data bus which is
connected with the 80286 data bus.

This is a clock input pin though which 80287 co-
processor receive the required clock for deriving the system.

The RESET is used to reset 80287 co-processor.

The numeric processor
write input pin enables a data transfer from the 80286 main
processor to 80287 co-processor.

The numeric processor
read active-low input signal is used to enable data transfer from
80287 coprocessor to 80286 main processor.

Numeric processor select input pins NPS1

and NPS2 and indicate that the CPU is performing an escape
operation. These pins are also used to enable 80287 co-processor
to execute the next instruction.

The command pins CMD0 and CMD1 are
used to indicate that the CPU is performing an ESC instruction and
to control the operations of 80287.

The error status output signal represents the ES bit of the internal status register. When this pin
is active low, it indicates that an exception has occurred.

The BUSY output pin indicates to the main processor that 80287 co-processor is busy with the
execution of an instruction. This pin is connected with the TEST pin of 80286.

The processor extension request active HIGH output pin is
used to indicate to the 80286 that the 80287 NDP is ready for data transfer.

The processor extension acknowledge active LOW
input pin is used by the main processor to acknowledge a receipt of a valid processor extension request signal.

When the clock mode input pin, CKM is high, the CLK input is directly used for
deriving the internal timings.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

40

39

38

37

36

35

34

33

N/C

RESET

15

16

17

18

19

20

28

27

26

25

24

23

22

21

29

30

31

32

CKM

N/C

N/C

CLK

CMD
1

V
SS

N/C

N/C

N/C

N/C

D
15

D
14

D
13

D
12

V
CC

V
SS

D
11

D
10

D
9

N/C

D
8

D
7

D
6

D
5

D
4

D
3

D
0

D
1

D
2

80287

PEACK

NPS
1

NPS
2

CMD
0

NPWR

NPRD

ERROR

BUSY

PEREQ

The 80387 numeric data co-processor is an advanced version of 80287 and it is a high performance numeric
data processor and it is specifically designed to operate with 80386 CPU. The instruction set of the 80387
co-processor is transparent to the programmers. The 80387 provides six to eleven times better performance
as compared to 80287. The block diagram of 80387 architecture is shown in Fig. 7.54.

Control World
Status Word

16-bit left/
right Barrel
Shifter + 64
bit Register

16

16TAG Word

Data FIFO
2.5 × 32 - bit

Registers

DATA
BUFFER

16

Instruction
Decoder

Micro
Instruction
Sequencer

Micro Instruction Bus

Bus
Control
Logic

Status

Address and
Bus Control

32

D – D31 0

16

32

Bus Control Logic Data Interface and Control Unit

32

Floating Point Unit

DBUS linterface, Data Alignment and
Operand Checking

Exponent
Adder 16 bit

Operand B
EXP Register

16-bit

Operand A
EXP Register

16-bit

16 16 68 68

Constant ROM
44 × 67 bits

Mantissa
Adder

and 68-bit
sum

Operand
Register
A and B

FPU Control +
Cordic Nano-machine

0

1

2

3

4

5

6

7 80-bits

CPUCLK2 NUMCLK2

Exponent
Bus

Stack Register 8 × 80-bits

Mantissa
Bus

The 80387 has three functional units such as bus control logic unit, data interface and control unit and
floating-point unit. These units operate in parallel to increase the performance. The operation of 80387 is just
like 80287, but the data bus size is different. The data bus of 80387 co-processor is 32 lines D0–D31.

The two clock input signals of 80387 are used for asynchronous or synchronous operations with 80386
main processor. Usually these operations are selected using the CKM pin of 80387. When the CKM is high,
the 80387 operates in synchronous mode. If the CKM is low, it operates in the asynchronous mode.

 The bus control unit operates synchronously with 80386, and its operation is independent of the
mode of operation of the floating point unit. With the help of READY input pin, the ADS input pin is
used to provide delay the bus cycles with respect to CPUCLK2 pin. The status enable pin is used as a
chip select for the 80387 numeric data co-processor. The other pins of 80387 work as the analogous
pins of 80287.

 The data interface and control unit can handle the data through FIFO or instruction decoder depend-
ing upon the bus control logic directive. The decoder decodes the instruction and generates the con-
trol signals to control the data flow within the 80387. This unit also generates the synchronization
signals for 80386.

 The floating-point unit is used for all the floating point operations in the 80287 coprocessor.

The 80387 co-processor has eight 80-bit floating point data registers, which are used to store signed
80-bit data. Each register has a corresponding 2-bit tag field. The 80387 has a 16-bit control, status and tag
word registers. The 80387 has two more 48-bit registers known as instruction and data pointers. The tag word
register and the status registers have exactly similar formats as those of 80287 respectively. The 80387 can
be operated as per required by the programmer, when a control word is loaded from memory to its control
word register. The control word register has exactly similar format as that of 80287. The data types of 80387
are just like the data types of 80287.

 In this chapter a brief introduction to machine languages and assembly languages with their advantages
and disadvantages are discussed.

 An assembler is a program that converts any assembly-language program into the equivalent machine
codes. In this chapter, the most commonly used assemblers such as Norton’s Editor, Microsoft
Assembler, Linker and Debugger are explained briefly. All commands of DEBUG with examples are
discussed elaborately.

 Emphasis on different programming techniques such as use of looping, data transfer, arithmetic and
logical instructions are also incorporated in the chapter.

 Assembly-language programs for addition, subtraction, multiplication, division and conversion from
BCD to binary, arranging a string in ascending order and descending order, finding the largest and
smallest values of a string, block movement, and look-up table applications are illustrated

 The block diagram, operating principle, instruction set and programming of 8087, 80287 and 80387
numeric data processors are discussed elaborately.

7.1 What is the output of DL after execution of
the following instructions?

 MOV DL, 36
 AND DL, 0F
 (a) DL = 06H (b) 60H
 (c) 36H (d) 0FH

7.2 What is the content of AX and DX after execu-
tion of the following instructions?

 MOV BL, 9
 MOV AX, 0702
 AAD
 DIV BL
 (a) AX = 0080H BX = 0009H
 (b) AX = 0008H BX = 0009H

 (c) AX = 0008H BX = 0090H
 (d) AX = 0800H BX = 0900H

7.3 What is the result after addition of two ASCII
number 33 and 37 by the following instructions

 MOV AX, 0037
 ADD AX, 0033
 AAA
 OR AX 3030
 (a) 303 1 (b) 1303
 (c) 3130 (d) 3310

7.4 After multiplication of two numbers, the result
in AX will be

 MOV AL,05
 MOV CL,05

 MUL CL
 AAM
 (a) AX = 0205 (b) AX = 0250
 (c) AX = 0025 (d) AX = 2500

7.5 Which one of the following program is the
right program for finding the complement of
a number?

 (a) MOV AX,2345 (b) MOV AX,2345
 NEG AX CMP AX
 (c) MOV AX,2345 (d) MOV AX,2345
 NOT AX CMC

7.6 The result of unsigned multiplication of two
numbers is

 MOV CL,25
 MOV AL,35
 MUL CL
 (a) AX = 7A90H (b) AX = 907AH
 (c) AX = A907H (d) AX = 07A9H

7.7 The result for addition of two numbers is
 MOV AX,A233
 MOV BX,A455
 ADD AX,BX
 (a) 4688H (b) 4886H
 (c) 8846H (d) 6884H

7.8 How many T states are required to execute for
the following instructions?

Start: MOV CX,2244 4 T states
 DEC CX 2 T states
 NOP 3 T states
 JNZ Start 16 T states
 (a) 256 T states (b) 184216 T states
 (c) 2560 T states (d) 2000 T states

7.9 Content of AL after execution of the following
instructions

 MOV AH, 06H

 MOV AL, 06H

 MOV BL, 08H

 SUB AX, BX

 (a) 08 (b) FE

 (c) F8 (d) 80

7.10 To execute a program which command is
used?

 (a) R (b) G (c) E (d) F

7.11 Which command is used to see the flag regis-
ter status?

 (a) U (b) A (c) R (d) F

7.12. After execution of MOV AX, 9535 and RCL
AX,1 the content of AX is

 (a) 2A6A Carry = 0 (b) 2A6A Carry = 1

 (c) A26A Carry = 1 (d) 2AA6 Carry = 1

7.13. If the following instructions are executed
 MOV CL,02;
 MOV AX,9535;
 RCL AX,CL;

 Result of AX register will be

 (a) AX = 54D5 carry = 0

 (b) AX = 54D5 carry = 1

 (c) AX = 45D5 carry = 0

 (d) AX = 545D carry = 1

7.14. After execution of the following instructions,
the content of AX register is

 MOV AL,07;
 MOV BL,09;
 MUL BL
 (a) 0063 (b) 003F
 (c) 6300 (d) 3F00

7.15. If the following instructions are executed
 MOV CX,55
 MOV AX,3535
 DIV CX
 (a) Quotient AL = 15 Remainder AH = A0
 (b) Quotient AL = 0A Remainder AH = 51
 (c) Quotient AL = A0 Remainder AH = 15
 (d) Quotient AL = A0 Remainder AH = 51

7.16 When the MOV BX, 2467 and ADD BX, 4
instructions are executed, the result will be

 (a) 2468 (b) 246A
 (c) 246D (d) 246B

7.17 2’s complement of AX is
 (a) NEG AX (b) NOT AX
 (c) CMP AX (d) XOR AX

7.18 The content of AX after execution of MOV
AX, 3957; NOT AX is

 (a) C68A (b) 6CA8
 (c) CA86 (d) C6A8

7.19 The 8087 coprocessors operate in ____ with
an 8086 processor and with the same instruc-
tion ____

 (a) Series, byte (b) Parallel, byte.
 (c) Series, bits (d) Parallel, bits

7.20 The synchronization between processor and
coprocessor can be done by ___ connection
and the ____ instruction.

 (a) RQ/GT0 and RQ/GT1, FWAIT
 (b) INT and NMI, WAIT
 (c) BUSY and TEST, FWAIT
 (d) S0 and QS0, WAIT

7.21 The 8087 Co-processor has ____ registers at
the stack and registers are used as ____ stack.

 (a) 8, 80 bit, LIFO (b) 8, 60 bit, LILO
 (c) 7, 40 bit, FIFO (d) 7, 80 bit, FILO

7.22 8087 can be connected with another copro-
cessor through ___pin and the co-processor
operate in ______ with the 8087. .

 (a) QS1 and QS0, parallel
 (b) RQ/GT1, parallel
 (c) RQ/GT0, parallel
 (d) S0 and S1, parallel.

7.1 What is an assembler? What are the different assemblers used in 8086 programming?

7.2 What are the advantages of assembly-language programming over machine language?

7.3 Why 8087 is referred to as co-processor?

7.4 What are the different sections in 8087, 80287 and 80387 architecture?

7.5 Which instruction is used by 8087 to fetch co-processor instructions?

7.6 What are the different types of instructions in 8087 co-processor instruction set?

7.7 What are the different data types supported by 8087?

7.8 What are the different exceptions generated by 8087?

7.9 How can the main processor differentiate the 8087 instructions from its own instructions?

7.1 Explain DEBUG with some of its important commands.

7.2 What is A command? What is U command? Explain the operation of the following commands:
 (i) –U 0100 0120 (ii) –U 0100 L10 (iii) –D0100 L 10
 (iv) –T = 0100 05 (v) –ECS:100 (vi) –M 0100 0105 0300
 (vii) S 0200 0235 46

7.3 Write the commands for the following operations:
 (i) To display the content of Register AX
 (ii) To display the content of memory locations CS : 0200 to CS : 0250
 (iii) To enter data 22H, 44H, 66H 77H and FFH in the memory location starting from DS : 0300
 (iv) To search a byte 45H from a string DS : 0400 to DS : 0500
 (v) To display the status of flags

7.4 Write an assembly-language program to find the largest number in a data array.

7.5 Write an assembly-language program to find the smallest number in a data array.

7.6 Write an assembly-language program to arrange numbers in descending order.

7.7 Write an assembly-language program to arrange numbers in ascending order.

7.8 Write an assembly-language program to block move from one memory location to another location.

7.9 Write an assembly-language program to find the sum of a series of 16-bit numbers.

7.10 Write an assembly-language program to find the subtraction of two 3 × 3 matrices.

7.11 Write an assembly-language program for addition, subtraction, multiplication and division of two
numbers.

7.12 Write an assembly-language program for addition of first 100 decimal numbers.

7.13 A block of 16 data is stored at the memory location starting from DS:0100. Move this block to the
memory location starting from DS:0500.

7.14 Write an assembly-language program to convert a 16-bit binary number into its equivalent GRAY
code.

7.15 Write an assembly-language program to find out the number of occurrences of a byte 44H in a string
of bytes which is stored in the memory location starting from CS:0300 to CS:0320.

7.16 Write assembly-language programs to find

 (i) n! (ii)
()! !

!
n r r

n

-
 (iii) nCp, assume N = 9, r = 2 and p = 3.

7.17 Write an assembly-language program for addition of two 8-bit numbers and with a sum of 8 bits.

7.18 Write an assembly-language program for addition of a string of bytes whose sum is 8 bits.

7.19 Write an assembly-language program for addition of two 16-bit numbers whose sum is 16 bits.

7.20 Write an assembly-language program for subtraction of two 8-bit numbers.

7.21 Write an assembly-language program for finding 1’s complement of an 8-bit number.

7.22 Write an assembly-language program for finding 1’s complement of an 16-bit number.

7.23 Write an assembly-language program for finding 2’s complement of an 8-bit number.

7.24 Write an assembly-language program for finding 2’s complement of a string of bytes

7.25 Write an assembly-language program to multiply two 8-bit numbers.

7.26 Write an assembly-language program to multiply -24 and 11, Two 8-bit numbers.

7.27 Write an assembly-language program to divide two 8-bit numbers.

7.28 Write an assembly-language program for decimal addition of two 16-bit numbers whose sum is 16
bits.

7.29 Write an assembly-language program for shift left of a 16-bit number by two bits.

7.30 Write an assembly-language program to find out the smallest number from a string of bytes.

7.31 Write an assembly-language program to find out the largest number from a string of words.

7.32 Write an assembly-language program to find out the smallest number from a string of words.

7.33 Write an assembly-language program to subtract two ASCII numbers.

7.34 Write an assembly-language program to arrange a string of bytes in ascending order.

7.35 Write an assembly-language program to arrange a string of bytes in descending order.

7.36 Write an assembly-language program to find out square root of a number using a look-up table.

7.37 Write an assembly-language program to find the transpose of a 3 × 3 matrix.

 A =
11

21

31

12

22

32

13

23

33

> H and AT =
11

21

31

12

22

32

13

23

33

> H

7.38 Write an assembly-language program to convert a binary number to its equivalent BCD number.

7.39 Draw the block diagram of the 8087 co-processor architecture and explain briefly.

7.40 Discuss the register organization of the 8087 NDP.

7.41 Draw the interface diagram between 8086 processor and 8087 co-processor and explain briefly.

7.42 Write assembly-language programs to perform the following operations using 8087:
 (a) Calculate area of a circle (b) Compute xy

 (c) Compute log2 x (d) Compute 2y

 7.1 (a) 7.2 (b) 7.3 (c) 7.4 (a) 7.5 (c) 7.6 (d) 7.7 (a) 7.8 (b) 7.9 (b)

 7.10 (b) 7.11 (d) 7.12 (b) 7.13 (a) 7.14 (b) 7.15 (c) 7.16 (d) 7.17 (a) 7.18 (d)

 7.19 (b) 7.20 (b) 7.21 (a) 7.22 (b)

The microprocessor is a very powerful IC which is used to perform various ALU functions with the help of
data from the environment. For this, the microprocessor is connected with memory and input/output devices
to form a microcomputer. The technique of connection between input/output devices and the microproces-
sor is known as interfacing. Special attention must be always be given during the connection of pins of
peripheral devices and microprocessor pins, as ICs cannot be simply connected. In the development of a
microprocessor-based system, all memory ICs and input/output devices are selected as per requirement of
the system and then interfaced with the microprocessor. Actually address, data and control lines are used
for connecting peripherals. After connecting them properly, programs are embedded in the microproces-
sor. Programs will be different for different applications. When a program is executed, the microprocessor
communicates with input/output devices and performs system operations. In this chapter the interfacing of
memory, Programmable Interrupt Controller 8259A, Programmable Peripheral Interface (82C55 PPI) and
Programmable Interval Timer Intel 8253 are explained.

Memory devices are used to store digital information. The simplest type of digital memory device is the
flip-flop, which is capable for storing single-bit data, and is volatile and very fast. This device is generally
used to store data in the form of registers. Registers are also used as main memory of computers for internal
computational operations. The basic goal of digital memory is to store and access binary data, which is a
sequence of 1’s and 0’s. In this section, different types of memories and their interfacing with microproces-
sors are explained.

There are two types of semiconductor memories, namely, ROM and RAM. ROM stands for Read Only
Memory. Data are permanently stored in memory cells. We are able to read data from the memory. ROM
cannot be reprogrammed. This memory is nonvolatile and data is retained when power is switched off. But
the data contents of ROM are accessed randomly just like the volatile memory circuits. Vinyl records and
compact audio disks are typically referred as read only memory or ROM in the digital system.

ROMs are manufactured with bipolar technology and MOS technology.
Figure 8.1 shows the classification of ROM. The different features of ROM, PROM, EPROM and EEPROM
are explained below:

The data is permanently stored in the memory and these devices are
mask programmed during manufacturing. ROMs cannot be reprogrammed and are of nonvolatile type. These
devices are cheaper than programmable memory devices. The applications of ROM are fixed programmed
instructions, look-up tables, conversions, and some specific operations.

ROM

MOS

Mask ROM PROM EPROM EEPROM

Bipolar

Mask ROM PROM

The data can be electrically stored. It can be
programmed by blowing built-in fuses and can be reprogrammed and is of nonvolatile type. These memory
devices are of very low memory density and occupy more space.

These are strictly MOS devices and
programmed by storing charge on insulated gates. These devices are erasable with ultraviolet rays and
become reprogrammable after erasing. These memory devices are of nonvolatile type.

These memory devices
are electrically programmable by the programmer and the stored data can be erased by ultraviolet light.
They are of nonvolatile type. This is also called Electrically Alterable Programmable Read Only Memory
(EAPROM).

Read only memory is used only for reading data stored in the memory
ROMs can be programmed only once and data once recorded cannot be erased. In a RAM, data can be written
into its memory as often as desired and the data stored in a RAM can be read without destroying the contents
of the memory.

Data can be written into and read from a RAM at any selected address in any sequence. When data are
written into a given address in the RAM, the data previously stored at that address are destroyed and replaced
by the new data. When data are read from a given address in the RAM, the data at that address are not
destroyed. The nondestructive read operation can be thought of as copying the contents of an address while
leaving the content intact. A vinyl record platter is an example of a random-access device. RAM memory is
typically randomly accessed; it is actually virtually/volatile memory.

There are two types of RAMs, static and dynamic. The basic memory cell in a static RAM is a flip-flop,
bipolar or MOS. After a bit has been stored in the flip-flop of a memory cell, it will remain there while power
is available. Dynamic RAMs (called DRAMs) are based on charge, which is stored by using MOS devices.
Since this charge is dissipated by passage of time, DRAMs need periodical recharging or refreshing. RAMs

and dynamic RAMs are volatile devices. The comparison between different memories based on category,
erasing property, writing mechanism and volatility is illustrated in Table 8.1.

Type of Memory Category Erasing property Writing mechanism Volatility

Read only Read only Not possible Masks Nonvolatile

Memory(ROM) Memory

Programmable Read only Not possible Electrically Nonvolatile

ROM(PROM) Memory

Erasable Read only Ultraviolet light Electrically Nonvolatile

PROM(EPROM) Memory and chip level

Electrically Erasable Read only Electrically and Electrically

PROM(EPROM) Memory byte level Nonvolatile

Flash memory Read only Electrically and Electrically

 Memory block level Nonvolatile

Random access Read and write Electrically and Electrically Volatile

memory(RAM) memory byte level

RAMs are also manufactured with bipolar technology and MOS technology. The bipolar RAMs are
static RAMs but MOS RAMs are of static and dynamic types. Figure 8.2 shows the classification of RAM.
The different features of static and dynamic RAMs are explained below:

These RAMs are built with static or dynamic cells. Five or six transistors are used to
store a single bit. Data can be written and read in nanoseconds. TTL, ECL, NMOS and CMOS technology are
used to manufacture static RAMs. When the power is shut off, data stored in cells can be lost.

In a dynamic memory, data can be stored on capacitors and to retain data every
cell has to be refreshed periodically. One transistor is used to build a memory cell and requires less space.
These memories consume less power compared to static RAMs. The comparison between SRAM and DRAM
is given below:

Static RAM Dynamic RAM

 Stored data is retained as long as power is ON Stored data will be erased and repeated refreshing is required

to store data Stored data will not be changed with time Stored data will be changed with time Consume more power Consume less power than static RAM SRAM is expensive SRAM is less expensive SRAM has less packing density DRAM has high packing density Not easy to construct Construction is simple No refreshing is required As refreshing is required, additional circuit is incorporated

with the memory No maintenance is required Maintenance is required

Figure 8.3 shows the block diagram of a M K bits memory structure. It has N bit input lines to locate an
address of memory and each address line can store K bits. So the total number of bits in the memory is M

 K bits. Each memory location is represented by address lines to locate M address locations. Here N bit
inputs are required to locate M address locations. The relationship between address locations and input lines
is 2N = M. To generate an address line, an N lines to M lines decoder is used. Actually, the decoder decodes
M locations depending upon inputs. The number of locations and number of bits may be varied for different
memories. When M is the number of locations and K is the number of bits in each location, the size of the
memory is M K bits. The size of commonly used memory devices are 64, 256, 512, 1024 (1K), 2048 (2K),
4096(4K), 16384 (16K) but the common values of word size are 1, 2, 4, 8, 12, 16, etc. The Chip Enable (CE)
signal is used to enable the address lines for selecting a bit or a group of bits.

RAM

Static Ram Dynamic RAMStatic Ram

MOSBipolar

M K× bits
Memory

K Outputs Lines

N

M

line to
line

decoder

N input
Lines

CE

Address Lines

Nowadays all the semiconductor memory devices are now available in Integrated Circuit (IC) form. Each
memory IC can store a large number of words. Memory ICs are available in various sizes. The examples of
ICs are 64 × 4 (64 words of 4 bits each), 256 × 8 (256 words of 8 bits each), 1 K × 8 (1024 words of 8 bits
each), 1 M × 8 (1,048,576 words of 8 bits each).

Each memory IC should have address and data
lines including chip select CS, output enable OE
and Read/Write R/W control signals. Figure 8.4
shows the memory organization of an IC. This chip
has address lines, data lines, chip select signals and
read and write control signals which are explained
below:

The memory ICs should
have address lines to receive the address values. For
a 1K-byte memory, ten address lines A0–A9 exist.
The relationship between number of address lines
and size of memory is 2n, where n is the number of address lines. Similarly, for 64K byte memory, number of
address lines is 16, A0 to A15 address line, and A0–An–1 to select one of the 2n memory locations.

Data lines are provided for data input to the IC during write operation, and data output
from IC during read operation. M data lines D0–Dm–1 are used for data transfer between the microprocessor
and memory IC.

The chip select signal CS can enable the chip. When the CS is low,
memory access within the chip is possible.

The read or write operation can be performed based on R/W control signal.
If R/W = 1, data will be read from memory. When R/W = 0, data will be stored in the memory IC.

The output enable signal is used to connect the output with the data bus.

For example, the memory organization of 256 × 4 memory
IC is depicted in Fig. 8.5. This memory IC has 8 address lines A0–

A7 to select 256 memory locations. As there are four data lines,
4-bit data can be stored in each location. Therefore, the size of
the memory is 256 × 4 bits.

Memory ICs are available in four-bit and eight-bit word
configurations. In some applications, sixteen bits and more than
sixteen bits are also used. The memory capacity of each IC is
limited. Therefore, memory expansion is required. The memory
size can be expanded by increasing the word size and address
locations. The memory expansion can also be possible by proper interconnections of decoder and memory
ICs. Figure 8.6 shows 2K × 8 bits memory using two 1K × 8 bits.

A 2K byte RAM can be developed using two 1K byte RAM ICs. In this case, CS is directly connected
with IC1 and the complement of CS is connected to IC2. R/W and OE control signals of both ICs are directly
interconnected as given in Fig. 8.6. The address lines A0–A9 of the ICs are connected in parallel. Chip 1

2 × bits
Memory

n
m

CS

R / W

A – A0 n-1
D –0 m-1D

OE

256 × 4 bits
Memory

CS

R / W

A – A0 7
D – D0 3

OE

provides the 1K addresses from 0 to 1023, and
Chip 2 provides the next 1K addresses from
1024 to 2047. As for the first 1K addresses,
Chip 1 is activated and for the next 1K
addresses, Chip 2 is activated. The chip select
signal is connected with the address line A10.
Each chip also provides 8 data lines D0–D7. So
that memory size is increased from 1K byte to
2K bytes.

Another example is that two 1K × 4 bits
RAMs can be combined to develop a 1K byte
RAM as depicted in Fig. 8.7. Chip 1 and Chip
2 have ten address lines which are connected
in parallel. The chip select CS, read/write
R/W and output enable OE are also connected
together. In this case, memory size is fixed,
but word size is increased from 4 bits to 8 bits.
IC1 and IC2 are selected at a time for 8-bit data
storage or data read operation.

A – A
0 9

A
10

A - A
0 9

IC - 1

1K × 8 BITS

D - D
0 7

D - D
0 7

D - D
0 7

D - D
0 7

IC - 2

1K × 8 BITS

A - A
0 9

R/WR/W

CS OE OE

R/W

CS

OE

ADDRESS

LINE

CS

R/W

A -A
0 9

IC - 1

D
0-3

I K × 4 BITS

OE

D
0-7

A -A
0 9

IC - 2

D
0-3

I K × 4 BITS

R/W

CS

OE

OE

R/W

CS

The memory organization of 2K bytes using four chips of 1K × 4 bits is illustrated in Fig. 8.8. In this
case, the memory size as well as word size are increased. The memory size is increased from 1K to 2K and
the word size is also increased from 4 bits to 8 bits. IC1 and IC2 are selected at a time for 8-bit data storage or
data read operation. Similarly, IC3 and IC4 are used for 1K × 8 bits memory read/write operations.

The organization and operation of memory is already explained briefly in Section 8.2.2. Most commonly
used ROM and RAM ICs are given in tables 8.3 and 8.4 respectively with their category, organization, pack-
age, access time, technology and power dissipation, etc.

 Power

IC No. Category Package Organization Technology Access time dissipation

6206D Mask PROM 16-pin 512 × 4 Bipolar 60 ns 625 mW

 DIP Package

23C1010 MASK ROM 32-pin DIP/ 128K × 8 MOS 45 ns 250 mW

 PDIP/SOP/

 PLCC/TSOP

 Package

23C2000 MASK ROM 32-pin PDIP/ 256K × 8 MOS 70 ns 250 mW

 PLCC/SOP/

 TSOP Package

23C4000 MASK ROM 32-pin PDIP/ 512K × 8 MOS 90 ns 210 mW

 PLCC/ SOP/

 TSOP Package

23C6410 Mask ROM 44-pin SOP and 8M × 8 MOS 100 ns 420 mW

 48 pin TSOP 4M × 16

 Package

Am1702A PROM 24-pin duel in-line 256 × 8 MOS 550 ns 1000 mW

 hermetic cerdip

 package

A -A
0 9

IC -1

R/W

CS OE

I K × 4 Bits

D
0–3

IC -2

I K × 4 Bits

D
4-7

IC - 3

I K × 4 Bits

I K × 4 Bits

IC - 4

D
4-7D

0-3

R/W

CS OECS

R/W

OECS

R/W

OECS

R/WR/W

(Contd.)

3602A PROM 16-pin DIP package 512 × 4 Bipolar 70 ns 750 mW

3605 PROM 18-pin DIP package 1024 × 4 Bipolar 70 ns 800 mW

27C256 EPROM 28-pin DIP package 32,768 × 8 Low-power 250 ns 55 mW

 and a 32-pin CMOS

 windowed LCC

2716 EPROM 24-pin DIP package 2048 × 8 MOS 450 ns 525 mW

2732A EPROM 24-pin DIP package 4096 × 8 MOS 250 ns 790 mW

2764 EPROM 28-pin DIP package 8192 × 8 MOS 250 ns 790 mW

24AA00/ Serial 8L DIP, SOIC, 16 bytes×8 bits Low-power 1000 ns 10 mW

24LC00/ EEPROM TSSOP and 5L CMOS

24C00 SOT-23 packages

 Power

IC No. Category Package Organization Technology Access time dissipation

7489 Static RAM 16-pin 16 × 4 Bipolar 33 ns 500 mW

 DIP Package

2114 Static RAM 18-pin DIP 2K × 4 MOS 200 ns 300 mW

 Package

74189 Static RAM 16 pin 16 × 4 Bipolar 50 ns 550 mW

74289 Static RAM DIP Package 16 × 4 Bipolar 35 ns 250 mW

6116 Dynamic RAM 24-pin DIP, Thin 2K × 4 CMOS 15 ns 4 W

 Dip, SOIC and

 SOJ package

4166 Dynamic RAM 16 pin 16384 × 1 NMOS 200 ns 460 mW

 DIP Package

2104A Dynamic RAM 16 pin 4096 × 1 MOS 150 ns 420 mW

 DIP Package

2164 16 pin 64K × 1 MOS 450 ns 330 mW

 DIP Package

(Contd.)

As 8085 microprocessor has 16 address lines, it has an address capability of 64K (216 = 65,536) from 0000H
to FFFFH. This 64K memory will be used by EPROMs, and RAM ICs. The assignment of address to various
memory ICs is known as a memory map. The memory map of 2K EPROM and a 2K static RAM is depicted
in Fig. 8.10. The address of EPROM is from 0000H to 07FFH and the address of RAM is 8000H to 87FFH.
If 2K RAM is not sufficient for programming; another 2K RAM may be connected from 8800H to 9000H as
shown in Fig. 8.10 (b). Figure 8.10 (c) shows the memory map of a 4K EPROM and a 4K RAM. The address
0000H to 1000H are specified for EPROM and 4K RAM occupies addresses from 8000H to 9000H.

FFFFH

87FFH

8000H

0000H

07FFH

2K

EPROM

2K RAM

FFFFH

87FFH

8000H

0000H

07FFH

8800H

2K

EPROM

2K RAM

2K RAM

FFFFH

9000H

8000H

0000H

1000H

4K

EPROM

4K RAM

The 2K memory ICs have 11 address lines A10–A0, which are used to locate the memory location where
data will be stored or read. The other address lines A12–A15 of the microprocessor can be used for the chip
select signal. The memory map of 2K memories is given below:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0000H

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 = 07FFH

The memory map from 0000H to 07FFH can be expressed in terms of page analogy as given below:

 0000 Page 0400 Page
 00FF

}
 0 04FF

}
 4

 0100 Page 0500 Page
 01FF

}
 1 05FF

}
 5

 0200 Page 0600 Page
 02FF

}
 2 06FF

}
 6

 0300 Page 0700 Page
 03FF

}
 3 07FF

}
 7

Figure 8.11 shows the address decoding technique of the 8085 microprocessor. A0–A10 are used for address-
ing the EPROM IC. A11–A15 address lines are applied to a NAND gate to generate the chip select signal CS.
The memory map of EPROM is given below:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0000H

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 = 07FFH

Figure 8.12 shows the complete memory and
address decoder circuit. In this case, a 3-line to 8-line
decoder can be used to select any one output. Based on
inputs at A11, A12, A13 any one output of O0–O7 will
be active low and other output lines remain high. The
output lines are connected to the chip select of mem-
ory ICs. It is depicted in Fig. 8.12 that O0 is connected
with the chip select of 2K EPROM and O7 is connected
with the 2 K RAM. The output lines and corresponding
memory address capability is given in Table 8.5.

A
11

A
12

A
13

3 Line

to

8 Line

Decoder

1

0

2

3

4

5

6

7

G
2A

G
2B

G
1

GND GND +5V

A - A
0 10

R / W

D - D
0 7

OE

R / W

A - A
0 10

OE

D - D
0 7

2K - EPROM

CS

2K - RAM

CS

A
11

A
15

A A
100

–

2K - EPROM

R / W OE

D D
70

–

CS

CS

 Output lines Memory address

 O0 0000H–07FFH

 O1 0800H–0FFFH

 O2 1000H–17FFH

 O3 1800H–1FFFH

 O4 2000H–27FFH

 O5 2800H–2FFFH

 O6 3000H–37FFH

 O7 3800H–3FFFH

The 8085 microprocessor has control signals RD,
WR for read and write operations of memory and
I/O devices. This IC also has a status signal IO/M to
distinguish the read/write operation of memory or
I/O devices. The memory and I/O devices require the
following control signals:

MEMR (memory read), MEMW (memory write),
IOR (I/O read) and IOW (I/O write)

The above control signals are generated from RD,
WR and IO/M using gates as depicted in Fig. 8.13.

The 8085 microprocessor has higher-
order address bus A8–A15 and lower-
order address/data bus AD0–AD7.
The lower-order address data bus is
multiplexed as address bus and data
bus. During the first clock pulse of a
machine cycle, the program counter
releases the lower-order address in
AD0–AD7 and higher order address
in A8–A15. Then ALE signal is high;
the AD0–AD7 can be used as lower-
order address bus and not a data bus.
The external latch circuit makes the
difference between the address and
data bus as shown in Fig. 8.14.

IO/M

RD

WR
8085

Microprocessor

MEMR

MEMW

IOR

IOW

ALE

AD – AD0 7

8085
Microprocessor

A – A0 7

D – D0 7

Latch

Data
Buffer

Address Bus

The microprocessor communicates with various memory ICs. The interfacing between the microproces-
sor, memory and I/O devices through an address bus, data bus and control bus is depicted in Fig. 8.15. The
address decoder is used to select proper memory and I/O devices as given Fig. 8.16.

Data Bus

Memory I / o
Device

I / o
Device

I / o
Device

Control Bus

Address Bus

8085
Microprocessor

8085
Microprocessor

Address Bus

Address Decoder

Port
00

Port
01

Port
FF

I / O
Device

I / O
Device

I / O
Device

I / O
Device

Control

Data Bus

When the address decoder is enabled and chip select signals are applied to the decoder, RAM or EPROM
or I/O devices are selected. Data will be stored or read from memory devices or I/O devices. The total 64K
addresses are to be assigned to memories and I/O devices. There are two types of address mapping: memory
mapped I/O and I/O mapped I/O.

In some microprocessors, memory and I/O operation can be differentiated by control signals. The control
signal IO/M is available to distinguish between memory and I/O operations. When the control signal IO/M
is high, I/O operation can be performed. If the control signal IO/M is low, memory operations will be per-
formed. In this case, the same address can be assigned to I/O devices as well as memory locations. Generally,

two separate address spaces exist and each address space can be entirely assigned to either memory or I/O
devices. This technique is known as I/O-mapped I/O.

In I/O-mapped-I/O scheme, an I/O device cannot be considered as a memory location. The I/O-mapped-
I/O scheme requires special instructions like IN/OUT to access I/O devices and special signals IO/M. In this
scheme, 8085 can access 256 I/O ports. In the 8085 microprocessor, this scheme requires 8-bit address lines.
It requires less hardware to decode an 8-bit address. Arithmetical or logical operations cannot be directly
performed with the input data.

Figure 8.16 shows the connection between the microprocessor and I/O devices. The I/O devices are
identified by port addresses. The I/O read and write operations are performed by using software instruc-
tions such as IN and OUT. The I/O read and write operations are controlled by control signals IOR and IOW
respectively. In this scheme, port addresses are varied from 00H to FFH. Therefore, 256 I/O devices may be
connected with the microprocessor in I/O-mapped-I/O devices. The advantages and disadvantages of I/O-
mapped-I/O are given below.

I/O-mapped-I/O has the following advantages:

 The total 256 address spaces are available for I/O devices.

 Program writing is easy as special instructions are used for I/O operations. In the 8085 microproces-
sor, IN and OUT instructions are usually used for data transfer with I/O devices.

 In I/O-mapped-I/O scheme, the I/O address length is usually one byte and instructions are two bytes
long. Therefore, the program requires less memory and shorter execution time compared to memory-
mapped I/O.

 The memory reference instructions can be easily distinguished from I/O reference instructions,
which make program debugging easier.

I/O-mapped-I/O has the following disadvantages:

 One microprocessor pin must be used to distinguish between memory and I/O operations. The addi-
tional control signal, IOR and IOW must be generated for read and write operations.

 In data transfer with I/O devices and microprocessor, the data has to be transferred to the accumu-
lator only to perform arithmetic or logical operations. Different addressing modes are not used in
I/O-mapped-I/O.

Figure 8.17 shows the connection between
microprocessor and memory. The memory
location can be identified by I/O devices. The
memory read and write operations are also
performed by using software instructions such
as LDA 9000H and STA 8000H respectively.
In memory read and write operations, MEMR
and MEMW control signals are used.

When memory location address is the
same as port address of I/O devices, an I/O
device will be selected for read and write oper-
ations. The memory read and write instruc-
tions employ various addressing modes. As the I/O device is considered as a memory location, this type of
interfacing is known as memory-mapped-I/O. The advantages and disadvantages of memory-mapped-I/O are
given below:

8085
Microprocessor

Address Bus

Data Bus

Control Bus Memory

Memory-mapped-I/O has the following advantages:

 The memory-mapped-I/O scheme can provides more than 256 input–output ports, as the port
addresses are 16 bits.

 All the memory-related instructions can be used in read and write operations of memory-mapped
I/O devices. The arithmetic and logical operations can be performed on available I/O data directly.

 CPU registers can exchange transfer of data with I/O devices directly without accumulator.

 Therefore, memory-mapped-I/O simplifies and increases speed of data transfer.

Memory-mapped I/O has the following disadvantages:

 Memory-mapped I/O scheme utilizes memory reference instructions, which are three-byte instruc-
tions and are longer than I/O instructions.

 Due to wider port address, the interface of hardware is also complicated

 The complexity of the program is large.

The method of a memory map is memory-mapped I/O. In the memory-mapped I/O scheme, actually a
part of the memory space is allocated to the I/O devices. In this scheme, all the memory reference instruc-
tions can be used in the case of I/O devices and the arithmetic and logical operations are directly performed
on I/O data.

In memory-mapped I/O schemes, the I/O device is treated as a memory location. This scheme does
not require any special instruction. The microprocessor can access the I/O device by memory instruction. It
does not require special signals. MEMR, MEMW signals can be used to access I/O devices. In this scheme,
8085 can access 64K memory locations or 64K I/O ports. In the 8085 microprocessor, this scheme requires
16 address lines. More hardware is required to decode a 16-bit address. Arithmetical or logical operations
can be directly performed with the input/output data. The comparison between memory-mapped I/O and I/O
mapped I/O is given in Table 8.6.

Memory-Mapped I/O I/O Mapped I/O

16-bit address 8-bit address

MEMR memory read MEMW memory write IOR I/O read IOW I/O write

Memory related instructions I/O related instructions IN and OUT

MOV M,R, MOV R,M, ADDM, ANA M, SUB M,

STA, LDA, LDAX, STAX

Data transfer between any register and I/O Data transfer between accumulator and I/O

The memory map 64K is shared between I/Os and The I/O map is independent of the memory map; 256 input

system memory devices and 256 output devices

13 T states for execution of instructions (STA, LDA) The IN and OUT instructions are required 10 T states for

7 T states for execution of instructions (MOV M,R) execution

More hardware is need to decode a 16-bit address Less hardware is needed to decode 8-bit address.

Arithmetic or logical operations can be directly Not available

performed with I/O data

In any microprocessor-based system, the design of the interface is very important. In this section, the
memory interface of memory and microprocessor is explained below.

The first step is to determine the number of address lines required for a memory interface. Find the

ADDRESS BUS

CONTROL BUS

DATA BUS

A
15

A
14

A
13

A - A
0 11

A - A
0 11

D - D
0 7cs

4K × 8 RAM

RD WR

A
12

IO/M

MEMR MEMW

WE OE

available memory address. and design the logic
circuit for interfacing.

Figure 8.18 shows the 8K × 8 RAM interface
to a 8085 microprocessor. For 8K memory inter-
faces, 13 address lines are required as 213 = 8K.
The 8K memory has a starting address of 8000H.
Then the end address will be 9FFFH. The follow-
ing pins are used for interfacing between micro-
processor and memory WR, RD, CS and A0–A12.

But the pins available for memory interface
on a microprocessor are WR, RD, IO/ M and

A0–A15. A0–A12 lines are directly connected with
the microprocessor and the chip select signal is
generated from remaining address lines A13–A15
and IO/ M.

Interfacing 4K byte RAM with microproces-
sor is illustrated in Fig. 8.19.

ADDRESS BUS

CONTROL BUS

DATA BUS

A15 A14 A13 A - A0 13

A – A0 12 D – D0 7cs

8K × 8 Memory

RD WR

The most commonly used EPROM ICs are 27C256, 2716, 2732A and 2764. IC 27C256A is an erasable pro-
grammable read only memory and it is represented by 32K × 8 EPROM. The 32K is referred as the number
of memory locations in the EPROM. As 1K = 1024, 32 × 1024 or 32,768 memory locations are available in
the device. The 8 represents the number of bits in each memory location.

In IC27C256, 27 is the standard number for EPROMs and 256 is the number of K bits stored on the
EPROM. Actually, the entire series of EPROMs is represented by 27XXX. The IC27C256 EPROM has 32K
bytes of memory with 8-bit wide data bus AD7–AD0 and 15 address lines A14 to A0. Figure 8.20 shows the
interfacing of EPROM IC27C256 with the 8086/8088 microprocessor.

Address Bus

A A
14 0
–

RD OE

27C256

EPROM

Data Bus

AD AD
7 0
–

CE

CE

I O/ M

A
15

A
16

A
17

A
18

A
19

The data bus of the microprocessor AD7–AD0 is connected with the 8-bit data outputs of the EPROM.
The address bus A14–A0 of the microprocessor is connected with the address lines A14–A0 of EPROM. The
remaining address lines A19–A15 for 8086 processor are used to select the memory devices. The memory read
signal RD from the microprocessor is directly connected to the EPROM. The operation of EPROM is con-
trolled by two pins such as chip enable CE and output enable OE. The chip enable signal is generated from
IO/M signal and address lines A19–A15. Therefore, a memory address decoder circuit is used to generate a
CE signal. The output enable OE is used to enable the output buffers in the memory. This device has 8000H
memory locations. When the starting address of EPROM is 60000H, the memory end address is 67FFFH.
The memory map of EPROM 27C256 is given below:

 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

The starting address is 60000H = 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The end address is 67FFFH = 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

To generate the chip enable signal, A15 = 0, A16 = 0, A17 = 1, A18 = 1 and A19 = 0 as depicted in Fig. 8.20

The IC 2716 EPROM (2K × 8) has only 2 KB of memory and 11 address lines. A decoder can be used to
decode the additional 9 address lines and generate a chip enable signal so that the EPROM can be placed in
any 2KB section of the 1MB address space. If we assume the starting address of 2716 EPROM is FF800H,
the end address will be FFFFFFH. A NAND gate and an OR gate are used to generate chip enable signal

using A19–A11, IO/M and RD from 8086/8088 microprocessor as depicted in Fig. 8.21. The memory map of
IC 2716 is given below:

 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

The starting address is FF800H= 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The end address is FFFFFH = 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

To generate the chip enable signal, A11 = 0, A12 = 1, A13 = 1, A14 = 1, A15 = 1, A16 = 1, A17 = 1, A18 = 1
and A19 = 1 as depicted in Fig. 8.21.

Address Bus

A – A
10 0

AD – AD
7 0

Data Bus

2716

EPROM
A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

IO/M

RD

CE
CE

A15

A14

A13

A19

A18
A17

A16

A

B

C
74LS138

G2A

G2B

G1

Memory map

F0000-F1FFF

F2000-F3FFF

F4000-F5FFF

F6000-F7FFF

F8000-F9FFF

FA000-FBFFF

FC000-FDFFF

FE000-FFFFF

A – A12 0
AD – AD7 0

Data Bus

2764
EPROM

CE
RD

2764
EPROM

Data BusAddress Bus

A – A12 0

CE

AD – AD7 0

In place of a NAND gate decoder, the 3-line to 8-line decoder IC74LS138 is used to select the memory
devices and the 8086/8088 microprocessor can communicate with many EPROM ICs as shown in Fig. 8.22.
There are three enable pins G2A, G2B and G1 which are active low, active low and active high respectively
for proper operation of the decoder. Address lines A12 to A0 are directly connected to IC 2764. A15 to A13 are
used as decoder input and each output of the decoder can select a 2764 EPROM (8K × 8). A19–A16 enable the
decoder. The memory of each selected EPROM is depicted in Fig. 8.22.

Figure 8.23 shows the typical memory read cycle. The memory must respond with valid data tACC seconds
after placing the memory address on the address bus. tACC is known as address access time. It represents the
maximum amount of time that the memory requires to decode the address and place the data byte on the data
bus. The address access time is in the range of 450 ns to 575 ns. tRD is called as memory read time, which
is the maximum amount of time after MEMR becomes low and valid data will be placed on the data bus.
This time is approximately 300 ns. tCA is the minimum amount of time after MEMR becomes high before
a new address placed in the address bus. When minimum tCA is not given in the system, a new memory
address will not be placed in the address bus and the previous address’s output data will be in the data bus.
This is known as bus contention. The tCA is approximately 20 ns. The detailed operation of memory read is
explained below:

Clock

T1 T2 T3

PC (Higher Order Address Bus)H

PC LowerL

Lower Order
Address A – A0 7

Operand
FF H

D – D0 7

tRD

tACC

tCA

AD –0 7AD

ALE

MEMR

 In the first clock cycle (T1), the microprocessor places the content of program counter, 8000H, which
is the address of operand on the 16-bit address bus. The 8 MSBs of the memory address, 80H are
placed on the higher-order address bus, A15–A8 and 8 LSBs of the memory address, 00H are placed
on the lower-order address bus, AD7–AD0.

 The microprocessor sends an Address Latch Enable (ALE) signal to go high and latch the 8 LSBs of
the memory address. Then lower-order address bus is demultiplexed and the complete 16-bit memory
address is available in the subsequent clock cycles to get the operand from memory location 8000H.

 The status signals IO/M = 0, S0 = 0 and S1 = 1 to identify the memory read operation.

 The low-order bus AD7–AD0 is ready to accept the operand from memory. The microprocessor sends
the control signal MEMR = 0 to enable memory and the program counter is incremented by 1 to
8001H. After that, the operand from the memory location 8000H is placed on the data bus.

 During T3, the microprocessor reads the operand. MEMR signal becomes high during T3 and the
memory is disabled.

 The microprocessor also places the operand in any register.

In a memory write operation, the microprocessor sends data from the accumulator or any general-purpose
register to the memory. The timing diagram of a memory write cycle is depicted in Fig. 8.24. The memory
write cycle is similar to memory read cycle, but there are differences on status signals. The status signals S0
= 1 and S1 = 0 and write WR is low during T2 of the machine cycle which indicates that the memory write
operation is to be performed.

During T2 of the machine cycle M2, the low-order address bus AD0–AD7 is not disabled as the data is to
be sent out to the memory, which is placed on the low-order address bus. When MEMW ecomes high in T3
of machine cycle M2, the memory write operation is terminated. The following instructions use the memory
write cycle: MOV M, B; MOV M, A and STA 8000 H, etc.

The memory write cycle begins by placing a valid address on the address bus A0–A15. Valid data is also
placed on the data bus D0–D7 early in the memory write cycle which is known as data write set-up time.
When MEMW becomes low, the memory cycle is started and MEMW will be low until writing operation is
completed.

tAW is the minimum amount of time that valid address will be held on the data bus before MEMW
becomes high. Generally, tAW is 450 ns. tDW is the minimum amount of time that valid data will be held on
the bus before MEMW becomes high and it is approximately 200 ns.

In an I/O read operation, the microprocessor reads the data from a specified input port or input device. The
I/O read operation is similar to memory read cycle except for the control signal IO/M. In a memory ready
cycle IO/ M is low but IO/M is high in case of an I/O read cycle operation because signal IO/M goes high in
case of I/O read.

The timing diagram of an I/O read operation is shown in Fig. 8.25. In this case, the address on the A-bus
is for an input device. As an I/O device or I/O port the address is only 8 bits long, the address of an I/O device
or I/O port is duplicated on both higher-order address bus A8–15 and lower-order address bus AD0–AD7.

For an I/O read operation, the IN instruction is used. One example is IN 00. This is a two-byte instruc-
tion. The code of this instruction is DB, 00 where DB is for IN and 00 is the input port address.

This instruction requires three machine cycles for execution. The first machine cycle is the opcode fetch

cycle, and the second machine cycle is a memory read cycle to read the address of input device or input port.
In the third machine cycle, the I/O read operation is performed, meaning the data is to be read from the input
device or input port. After execution of this instruction, the data is placed in the accumulator. The opcode
fetch cycle and memory read cycle are exactly similar to MVI C, FF H instruction. Figure 8.25 shows the
machine cycle M3 of I/O read operation and it is explained below:

 CPU places the address of I/O port or input–output peripheral devices.

 ALE signal is high.

 IO/ M becomes high to perform I/O operation.

Clock

T1 T2 T3

PC (Higher Order Address Bus)H

PC LowerL

Lower Order
Address A – A0 7

Operand
FF H

D – D0 7

tWD

tAw

AD –0 7AD

ALE

MEMR

 RD is low for read operation.

 CPU reads data from I/O devices and places in Register A through a data bus.

 RD Signal becomes high as I/O read operation has been completely performed.

O
p
c
o
d
e

F
e
tc

h
C

y
c
le

M
a
c
h
in

e
C

y
c
le

(M
)

1

P
C

(H
ig

h
e
r

O
rd

e
r
A

d
d
re

s
s

B
u
s
)

H

M
e
m

o
ry

R
e
a
d

C
y
c
le

M
a
c
h
in

e
C

y
c
le

(M
)

2

In
p
u
t
/
O

u
tp

u
t
R

e
a
d

C
y
c
le

M
a
c
h
in

e
C

y
c
le

(M
)

3

(P
C

+
1
)

(H
ig

h
e
r

O
rd

e
r
A

d
d
re

s
s

B
u
s
)

H
IO

P
o
rt

D
–

D
0

7
D

–
D

0
7

IO
P

a
rt

D
a
ta

fr
o
m

I/
O

P
o
rt

D
a
ta

fr
o
m

M
e
m

o
ry

(I
/O

P
o
rt

A
d
d
re

s
s
)

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

A
–

A
0

7

D
–

D
0

7

D
a
ta

fr
o
m

M
e
m

o
ry

(I
n
s
tr

u
c
ti
o
n

o
p
c
o
d
e
)

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

A
–

A
0

7

(P
C

+
1
)

L
o
w

e
r

L
(P

C
L
o
w

e
r

L

C
lo

c
k

A
–

A
8

1
5

A
D

–
A

D
0

7

A
L
E

R
D

IO
/M

S
T
A

T
U

S

S
T
A

T
U

S

S
1

S
0

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

The microprocessor sends the content of the accumulator to an I/O port or I/O device in an I/O write cycle.
The operations of an I/O write cycle are similar to a memory write cycle. But the difference between memory
write and I/O write cycle is that IO/ M becomes high in case of an I/O write cycle. When IO/ M is high, the
microprocessor locates the address of any output device or an output port. The address of an output device or
an output port is duplicated on both higher-order address bus A8–A15 and lower-order address bus AD0–AD7.

O
p
c
o
d
e
F
e
tc
h
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
1

M
e
m
o
ry
R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
2

In
p
u
t
/
O
u
tp
u
t
W
ri
te
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
3

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

C
lo
c
k

A
–
A

8
1
5

A
L
E

R
D

W
R

IO
/M

S
T
A
T
U
S

S
0

P
C

(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
(P
C
+
1
)
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
IO

P
o
rt

IO
P
o
rt

D
a
ta
to

IO
P
o
rt

D
–
D

0
7

D
a
ta
fr
o
m
M
e
m
o
ry

(I
/O

P
o
rt
A
d
d
re
s
s
)

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A

–
A

0
7

D
a
ta
fr
o
m
M
e
m
o
ry

(I
n
s
tr
u
c
ti
o
n
o
p
c
o
d
e
)

(P
C
+
1
)
L
o
w
e
r

L
D

–
D

0
7

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A

–
A

0
7

P
C

L
o
w
e
r

L

S
T
A
T
U
S

S
1

D
–
D

0
7

A
D

–
A
D

0
7

The OUT instruction is used for an I/O write operation. This is a two-byte instruction and it requires
three machine cycles as depicted in Fig. 8.26. The first machine cycle is for opcode fetch operation and the
second machine cycle is a memory read cycle for reading the address output device or output port from the
memory. In the next third machine cycle, data will be written in the output device or output port. In other
words, data is to be send to the I/O device. The third machine cycle is explained below:

 CPU places the address of I/O port or input-output peripheral devices.

 ALE signal is high.

 IO/M signal is also high to perform I/O operation.

 WR becomes low for write operation.

 CPU places the content of Register A in a data bus.

 Then it writes data to the I/O port.

 WR signal becomes high as I/O read operation has been completed.

Interrupts is the facility provided by the microprocessor to communicate with the outside environment, and
the microprocessor can divert its operation based on priority. The interrupts can be used for various applica-
tions in different environments.

An interrupt is a process where an external device can get the attention of the microprocessor. The
process starts from the I/O device and it is
asynchronous-type data transfer. Figure.
8.27 shows the interrupt-driven data trans-
fer. The microprocessor can initiate the data
transfer after getting an interrupt signal from
I/O device. The microprocessor can scan the
interrupt pin on every machine cycle. When
the interrupt signal is present, microprocessor
suspends its present operation after storing the
current status in the microprocessor so that
the microprocessor can restart the suspended
work again from where it left. Therefore, the
stack is used to store the current status. Then
the microprocessor provides services the interrupt request by executing interrupt service routine.

An interrupt is considered to be an emergency signal which may be serviced. The microprocessor may
respond to it as soon as possible. When the microprocessor receives an interrupt signal, it suspends the
currently executing program and jumps to an Interrupt Service Routine (ISR) to respond to the incoming
interrupt. Each interrupt will most probably have its own ISR. Figure 8.28 shows the interrupt execution.
Responding to an interrupt may be immediate or delayed depending on whether the interrupt is maskable or

8085
Microprocessor

INTR

INTA

Address Bus

Interrupt Request

Interrupt Acknowledge

Data Bus

I /O
Devices

nonmaskable and whether interrupts are being masked or not. There are two different ways of redirecting the
execution to the ISR depending on whether the interrupt is vectored or nonvectored. In a vectored interrupt,
the address of the subroutine is already known to the microprocessor. In case of a nonvectored interrupt, the
I/O devices will have to supply the address of the subroutine to the microprocessor.

In any microprocessor-based system, I/O devices can use interrupt-driven data transfer. A microproces-
sor may have one interrupt level and more than one I/O devices share the interrupt level. The microprocessor
may have many interrupt levels and several I/O devices. Each device can be connected to an interrupt level.
When several I/O devices are connected with a single interrupt level, these devices a reconnected with an
8259 interrupt controller. Using an 8259 interrupt controller, only eight I/O devices can be connected. When
more than eight I/O devices are connected to the 8085 microprocessor, more 8259 interrupt controllers are
connected in cascade. If each I/O device is connected to an independent interrupt level, the microprocessor
should have several interrupt levels. In this case, the number of I/O devices must be less than the number of
interrupts levels.

Interrupts can be classified into two types: maskable interrupts and nonmaskable interrupts. The maskable

interrupts can be delayed or rejected but the nonmaskable interrupts cannot be delayed or rejected. Interrupts
can also be classified into vectored and nonvectored interrupts. In vectored interrupts, the address of the
service routine is hard-wired but in nonvectored interrupts, the address of the service routine needs to be sup-
plied externally by the device. All types of interrupts are explained in the 8085 interrupts section.

When a device interrupts, it actually wants the microproces-
sor to give a service, which is equivalent to asking the micro-
processor to call a subroutine. This subroutine is known as
Interrupt Service Routine (ISR). Figure 8.29 shows the 8085
microprocessor interrupts and their detailed operations are
depicted in Fig. 8.30. The ‘EI’ instruction is a one-byte
instruction and is used to enable the nonmaskable interrupts.
The ‘DI’ instruction is a one-byte instruction and is used to
disable the nonmaskable interrupts.

Interrupt Service
Routine (ISR)

Interrupt Service
Routine (ISR)

Normal Execution
of Main Program

Interrupt Request Interrupt Request

Main
Program

Main
Program

TRAP

INTA

8085
Microprocessor

RST 7.5

INTR

RST 6.5

RST 5.5

CALL 0034

CALL 002C

RST 0 - CALL 0000
RST 1 - CALL 0008
RST 2 - CALL 0010
RST 3 - CALL 0018
RST 4 - CALL 0020
RST 5 - CALL 0028
RST 6 - CALL 0030

RST 7 - CALL 0038

Get RST
code from
external
hardware

CALL 003C

CALL 0024
1 D Q

CLR
TRAP

Reset In

TRAP acknowledge

RST 7.5
CLR
D Q

R 7.5
R 7.5 Interrupt
acknowledge

M 5.5

EI S
Q

R
DI

Reset
Any Interrupt
acknowledge

INTR

RST 5.5

RST 6.5

M 6.5

M 7.5

(Contd.)

The 8085 microprocessor has a single nonmaskable interrupt and the nonmaskable interrupt is not
affected by the value of the interrupt enable flip-flop. The processor has five hardware interrupts such as
INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. They are presented below in the order of their priority from
lowest priority to highest priority:

INTR is a maskable interrupt. When the interrupt occurs, the processor fetches from the bus one instruc-
tion, usually one of EI and DI instructions.

The syntax for the interrupt instruction is RST n, where n is equal to 0 to 7. Any one of the 8 RST instruc-
tions (RST0–RST7) can be executed at a time. During execution, the processor saves the current program
counter into stack and branches to the memory location. The vector address of this software interrupt is cal-
culated from N × 8. where N is a 3-bit number from 0 to 7 supplied with the RST instruction. For example,
the vector address of RST 3 is 3 × 8 = 2410 = 0018H. Table 8.7 shows the vector address of RST instructions.

The 8085 recognize 8 RESTART instructions: RST0–RST7. Each of these would send the execution to a
predetermined hard-wired memory location.

 Restart instruction Hex code Equivalent Vector Address

 RST0 C7 CALL 0000H

 RST1 CF CALL 0008H

 RST2 D7 CALL 0010H

(Contd.)

 RST3 DF CALL 0018H

 RST4 E7 CALL 0020H

 RST5 EF CALL 0028H

 RST6 F7 CALL 0030H

 RST7 FF CALL 0038H

When any of the above instructions is executed, a CALL instruction to the specified address is executed.
The content of a program counter is saved in the stack and the control moves to the specified address. The
vector addresses of the instructions are 8 bytes apart. Therefore, 8 bytes of instructions can be stored at any
vector address. Generally, a 3-byte JMP instruction is stored for the corresponding ISR and program control
is transferred to the desired ISR. CALL instruction is a 3-byte instruction. The processor calls the subroutine,
the address of which is specified in the second and third bytes of the instruction. The INTR input is the only
nonvectored interrupt. INTR is maskable using the EI/DI instruction pair.

RST 5.5 is a maskable interrupt. When this interrupt is received, the processor saves the contents of the
Program Counter (PC) register into the stack and branches to 002CH address.

RST 6.5 is a maskable interrupt. When this interrupt is received, the processor saves the contents of the
Program Counter (PC) register into the stack and branches to 0034H address.

RST 7.5 is a maskable interrupt. When this interrupt is received, the processor saves the contents of the
Program Counter (PC) register into the stack and branches to 003CH address.

TRAP is a nonmaskable interrupt. It does not need to be enabled, as it cannot be disabled. It has the
highest priority amongst all interrupts. This is edge and level sensitive. This TRAP signal needs to be high
and stay high for recognization. Once it is recognized, it does not need to be recognized again until it becomes
low and then high again. Generally, TRAP is used for power failure and emergency shutdown. When this
interrupt is received, the processor saves the contents of the PC register into the stack and branches to 0024H
address. Figure 8.30 shows the TRAP interrupts circuit with other interrupts. The positive edge of TRAP
input signal sets the D flip-flop and Q becomes ‘1’. Then AND gate output will be ‘1’ for the duration of
high level of TRAP input. Jump to the vector memory location 0024H as the starting address of an interrupt
service routine for TRAP interrupt is 0024H.

RST 5.5, RST 6.5, RST 7.5 are all automatically vectored. RST 5.5, RST 6.5, and RST 7.5 are all
maskable. TRAP is the only nonmaskable interrupt in the 8085. TRAP is also automatically vectored. All
maskable interrupts can be enabled or disabled using EI and DI instructions. RST 5.5, RST6.5 and RST7.5
interrupts can be enabled or disabled individually using SIM instruction. RST5.5 is a maskable interrupt.
When this interrupt is received the processor saves the contents of the PC register into the stack and branches
to 2CH (hexadecimal) address.

 Interrupt Maskable Vectored

 INTR Yes No

 RST 5.5 Yes Yes

 RST 6.5 Yes Yes

 RST 7.5 Yes Yes

 TRAP No Yes

An interrupt vector is a pointer in which the Interrupt Service Routine (ISR) is stored in memory. All vectored
interrupts are mapped onto a memory area called the Interrupt Vector Table as given in Table 8.7 and Table
8.9. The interrupt vector table is generally located in memory page 00 (0000H–00FFH). The purpose of the
interrupt vector table is to hold the vectors that redirect the microprocessor to the right place when an inter-
rupt appears.

For example, assume a device interrupts the microprocessor using the RST 7.5 interrupt line. As the
RST 7.5 interrupt is a vectored-type interrupt, the microprocessor should know in which memory location
it jumps using a call instruction to get the ISR address. RST7.5 is knows as call 003CH to microprocessor.
Microprocessor jumps to 003C H memory location and it also get a JMP instruction to the actual ISR address.
After that the microprocessor jumps to the ISR location.

The 8085 has 4 masked/vectored interrupt inputs.
RST 5.5, RST 6.5, RST 7.5 are all maskable. They are automatically vectored according to Table 8.9. The
vectors for these interrupt fall in between the vectors for the RST instructions. For this, they have names like
RST 5.5 (RST 5 and a half).

 Interrupt Vector Address

 RST 5.5 002CH

 RST 6.5 0034H

 RST 7.5 003CH

The spaces between software interrupt RST 5 and hardware interrupt RST 5.5 is 4 bytes. In this space
3-byte JMP instruction is written. The vector address of the hardware interrupts is spaced 8 bytes. Usually, a
three-byte jump instruction is written in this space. The hardware interrupt signals are directly vectored to the
address specified in the interrupt vector table. These interrupts are called vector interrupts.

 RST 5.5, RST 6.5 and RST 7.5 interrupts are masked
at two levels through the interrupt enable flip-flop and the EI/DI instructions. The interrupt enable flip-flop
controls the whole maskable interrupt process through individual mask flip-flops that control the availability
of the individual interrupts. These flip-flops control the interrupts individually. The 8085 maskable/vectored
interrupt should process the following steps:

Step 1 The interrupt process must be enabled using the EI instruction.

Step 2 The 8085 should checks for an interrupt during the execution of every instruction.

Step 3 When there is an interrupt and the interrupt is enabled using the interrupt mask, the micropro-
cessor will complete the executing instruction, and then reset the interrupt flip flop.

Step 4 Thereafter, the microprocessor executes the CALL instruction which sends the execution to the
appropriate memory location according to the interrupt vector table.

Step 5 When the microprocessor executes the call instruction, it saves the address of the next instruc-
tion on the stack.

Step 6 The microprocessor jumps to the specific service routine. The Interrupt Service Routine (ISR)
must incorporate the instruction EI to re-enable the interrupt process.

Step 7 At the end of the service routine, the RET instruction returns the execution to where the program
was interrupted.

The 8085 nonvectored interrupt process are completed by the following
steps:

Step 1 The interrupt process should be enabled using the EI instruction.

Step 2 The 8085 checks for an interrupt during the execution of every instruction.

Step 3 If INTR is high, microprocessor completes current instruction, disables the interrupt and sends
INTA (Interrupt acknowledge) signal to the device that interrupted.

Step 4 INTA allows the I/O device to send an RST instruction through data bus.

Step 5 After receiving the INTA signal, the microprocessor saves the memory location of the next
instruction on the stack and the program is transferred to ‘call’ location (ISR Call) specified by the RST
instruction

Step 6 Microprocessor performs the ISR. ISR must include the ‘EI’ instruction to enable further inter-
rupt within the program.

Step 7 RET instruction at the end of the ISR allows the microprocessor to retrieve the return address
from the stack and the program is transferred back to where the program was interrupted.

The 8085 recognizes 8 RESTART instructions: RST0–RST7. Each of these would send the execution to
a predetermined hard-wired memory location as given in Table 8.7. The syntax for the interrupt instruction is
RST n, where n is equal to 0 to 7. The restart sequence is made up of three machine cycles.

-
rupting device, the opcode for the specific RST instruction.

The opcode is simply a collection of bits. The external device produces the opcode for the appropriate
RST instruction. So, the device needs to set the bits of the data bus to the appropriate value in response to an
INTA signal.

The timing diagram of RST 5 is shown in Fig. 8.31. Consider that the RST 5 is stored at the 8000H
memory location. This instruction has three machine cycles. In the machine cycle M1, the opcode of RST
5 instruction is fetched. In the opcode fetch cycle, opcode will be read and decoded. As RST is an interrupt
instruction, it is needed to execute its service routine and after execution it must return back to the next
memory location of RST5 instruction. This return address must be stored in the stack.

The second machine cycle is M2, which is called memory write cycle. In this machine cycle, the higher-
order byte of the program counter will be stored in the stack. For this, the content of the stack pointer is dec-
remented by one and 16-bit content is placed on the address bus. Then the higher-order byte of the program
counter is stored in that memory location.

In the third machine cycle, the content of the stack pointer is also decremented by one and again placed
on the address bus. Thereafter, the lower order byte of the program counter can be stored in that memory
location.

Figure 8.32 shows an interrupt acknowledge cycle for CALL instruction. M2 and M3 machine cycles are
needed to call the 2-byte address of the CALL instruction. Then the content of program counter are stored in
memory writes cycles M4 and M5. After that a new instruction cycle starts.

M
a
c
h
in

e
C

y
c
le

(M
)

1
M

a
c
h
in

e
C

y
c
le

(M
)

2
M

a
c
h
in

e
C

y
c
le

(M
)

3

T
1

T
2

T
3

T
4

T
5

T
6

T
1

T
2

T
3

T
1

T
2

T
3

A
–

A
8

1
5

A
D

–
A

D
0

7

A
L
E

IN
T
A

IN
T
A

IO
/M

,
S

,S
1

0

W
R

R
D

(1
,
1
,
1
)

(0
,
0
,
1
)

(0
,
0
,
1
)

P
C

(H
ig

h
e

r
O

rd
e

r
A

d
d

re
s
s

B
u

s
)

H

P
C

L
o

w
e

r
L

R
S

T

(S
P

-1
) H

(S
P

-1
) L

(S
P

-2
) L

(S
P

-2
) H

D
-

D
(P

C
)

0
7

L
D

-
D

(P
C

)
0

7
H

M
a
ch
in
e
C
yc
le
(M

)
1

M
a
ch
in
e
C
yc
le
(M

)
2

M
a
ch
in
e
C
yc
le
(M

)
3

M
a
ch
in
e
C
yc
le
(M

)
4

M
a
ch
in
e
C
yc
le
(M

)
5

T
1

T
2

T
3

T
4

T
5

T
6

T
1

T
2

T
3

T
1

T
2

T
3

T
1

T
2

T
3

T
1

T
2

T
3

A
-
A

0
1
5
H
ig
h
e
r
O
rd
e
r
A
d
d
re
ss
B
u
s

L
o
w
e
r

A
d
d
re
ss

O
P
C
O
D
E

A
D
-
A
D

0
7

A
L
E

IN
T
A

IO
/M
,
S
,S
1

0

W
R

(1
,
1
,
1
)

(1
,
1
,
1
)

(1
,
1
,
1
)

(1
,
0
,
1
)

(1
,
0
,
1
)

H
ig
h
e
r
O
rd
e
r
A
d
d
re
ss
B
u
s

H
ig
h
e
r
O
rd
e
r
A
d
d
re
ss
B
u
s

D
a
ta

P
C
H

P
C
H

D
-
D

0
7

P
C
L

D
-
D

0
7

P
C
L

D
a
ta

Figure 8.33 shows the generation of RST 5 opcode. RST
5 opcode is 11101111 (EFH). If INTR is acknowledged by the
microprocessor, INTA signal becomes low. The RST 5 is gated
into the system bus. Then microprocessor saves the content of
program counter in the stack and jumps to the memory location
0028H. In this address, the interrupt service starts and ends with
RET instruction. After execution of RET instruction, the proces-
sor restores the saved address in the stack to the program counter
so that normal execution of main program can be started.

In the first machine cycle of the RST operation, the micro-
processor activates the INTA signal. This signal will enable the
tri-state buffers, which will place the value EFH on the data bus.
Therefore, it sends the microprocessor the RST 5 instruction.
The RST 5 instruction is exactly equivalent to CALL 0028H.

RST 7.5 is positive edge
sensitive. When a positive edge appears on the RST 7.5 line,
logic ‘1’ is stored in the flip-flop as a ‘pending’ interrupt. Since
the value has been stored in the flip-flop, the line does not have
to be high when the microprocessor checks for the interrupt to
be recognized. The line must go to zero and back to one before
a new interrupt is recognized.

RST 6.5 and RST 5.5 are level sensitive. The interrupting
signal must remain present until the microprocessor checks for
interrupts.

TRAP is edge triggered as well as level triggered. Therefore,
TRAP must be high until this is acknowledged. Figure 8.30
shows the TRAP interrupt. When the interrupt is acknowledged,
the flip-flop of TRAP interrupt will be cleared so that the next
new TRAP interrupt can be entertained. The summary of all 8085 interrupts is given in Table 8.10.

Interrupt Maskable Masking method Vectored Memory Triggering method

INTR Yes DI/EI No No Level sensitive

RST 5.5 Yes DI/EI SIM Yes No Level sensitive

RST 6.5 Yes DI/EI SIM Yes No Level sensitive

RST 7.5 Yes DI/EI SIM Yes Yes Edge sensitive

TRAP No None Yes No Level and edge sensitive

The Enable interrupts (EI) and Disable Interrupts (DI) instructions authorize the microprocessor to allow or
reject interrupts. In case of EI, the interrupts will be enabled following the completion of the next instruc-
tion following the EI. This allows at least one more instruction like JMP or RET to be executed before the
microprocessor allows itself to be interrupted again. In the DI, the interrupts are disabled immediately and
no flags are affected.

+5V

IK
74LS244

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

INTS

The Read Interrupt Mask (RIM) and Set Interrupt Mask (SIM) instructions are used to provide inter-
rupt services of the 8085 microprocessor with the help of the Serial Input Data (SID) and Serial Output Data
(SOD) pins on the device. The discussion of the above two instructions are as follows:

Sometimes it is required to enable some selected interrupts and disable some
other interrupts. The selected interrupts are enabling through the set interrupt mask. The accumulator (A)
is loaded with the specified mask bits. The SIM instruction reads the accumulator content and enables and
disables the interrupts.

The individual masks for RST 5.5, RST 6.5 and RST 7.5 are manipulated using the SIM instruction. This
instruction takes the bit pattern in the accumulator. The SIM instruction reads the accumulator content and
enables or disables the specific interrupts. Figure. 8.34 shows the accumulator content for SIM instruction.

SOD

D7 D6 D5 D4 D3 D2 D1 D0

SDE XXX R 7.5 MSE M 7.5 M 6.5 M 5.5

Serial Data Out

Enable serial data, 0- ignore bit 7
1-send bit 7 to SOD pin

Not used

Force RST 7.5 Flip flop to reset

Mask Set enable
0-ignore bit 0-2
1-set the masks according
to bits 0-2

RST 7.5 Mask
0-Available, 1-Masked

RST 6.5 Mask
0-Available, 1-Masked

RST 5.5 Mask
0-Available, 1-Masked

Bit D0 is the mask for RST 5.5, bit D1 is the mask for RST 6.5 and
bit D2 is the mask for RST 7.5. If the mask bit is 0, the interrupt is available. If the mask bit is 1, the interrupt
is masked. If bits D0 or D1 are set to 1, a signal applied to their respective pins causes no action. When D0 or
D1 are set to 0, their respective bits will be visible through the RIM instruction, and the call to the interrupt
vector will occur. In the case of bit D2, the RIM instruction can indicate that RST 7.5 interrupt is pending,
and an automatic call will not occur.

Bit D3 is Mask Set Enable (MSE) and this is an enable for setting the mask.
If it is set to 0, the mask is ignored and the old settings remain. If it is set to 1, the new settings are applied.
The SIM instruction is used for multiple purposes and not only for setting interrupt masks. It is also used to
control functionality such as serial data transmission. Therefore, bit D3 is necessary to tell the microprocessor
whether or not the interrupt masks should be modified.

Bit D4 is RST 7.5. The RST 7.5 interrupt is the only 8085 interrupt that has
memory. If a signal on RST 7.5 arrives while it is masked, a flip-flop will remember the signal. When RST
7.5 is unmasked, the microprocessor will be interrupted even if the device has removed the interrupt signal.
This flip-flop will be automatically reset when the microprocessor responds to an RST 7.5 interrupt. Bit

4 of the accumulator in the SIM instruction allows explicitly resetting the RST 7.5 memory even if the
microprocessor did not respond to it.

Bit D5 is not used by the SIM instruction.

Bit D6 is used for serial output data enable.

 Bit D7 is used for serial output data. The SIM instruction is used for serial
data transmission. When the SIM instruction is executed, the content of bit D7 of accumulator will be output
on the SOD line.

Set the interrupt masks so that RST5.5 is enabled, RST6.5 is masked, and RST7.5
is enabled.

Initially determine the contents of the accumulator:

 Enable 5.5 bit D0 = 0

 Disable 6.5 bit D1 = 1

 Enable 7.5 bit D2 = 0

 Allow setting the masks bit D3 = 1

 Don’t reset the flip flop bit D4 = 0

 Bit 5 is not used bit D5 = 0

 Don’t use serial data bit D6 = 0

 Serial data is ignored bit D7 = 0

Content of accumulator is 0AH. The program for the above operation is given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 EB EI Enable all interrupts

8001 3E, 0A MVI A, 0AH mask to enable RST 7.5, and 5.5, disable 6.5

8003 30 SIM Apply the settings RST masks

The RIM instruction loads the accumulator with 8 bits, which consists of the
status of the interrupt mask, the interrupt, enable, the pending interrupts and one bit of serial input data.
Figure 8.35 shows the accumulator content for RIM instruction

Bits D0, D1 and D2 represent the current setting of the mask for
each of RST 7.5, RST 6.5 and RST 5.5. A high level shows that interrupt is masked and low level means that
interrupt is not masked. Bits D0, D1 and D2 return the contents of the three mask flip flops. These bits can be
used by a program to read the mask settings in order to modify only the right mask.

Bit D3 is the interrupt enable flag. This bit shows whether the maskable
interrupt process is enabled or not. When it is high, interrupt is enabled. If it is low, interrupt is disabled. It

returns the contents of the interrupt enable flip-flop. It can be used by a program to determine whether or not
interrupts are enabled.

Bits D4, D5 and D6 represent the pending interrupts. Bits D4 and
D5 return the current value of the RST5.5 and RST6.5 pins. Bit D6 returns the current value of the RST7.5
memory flip-flop. A high level on bits D4, D5 and D6 tates that interrupt are pending. A low level on bits D4,
D5 and D6 states that interrupts are not pending.

Bit D7 is used for serial data input. The RIM instruction reads the value of
the SID pin on the microprocessor and returns it in this bit.

Write instructions to call interrupt service subroutine 003CH corresponding to RST
7.5 if it is pending. Assume the content of accumulator is 20H on executing of RIM
instruction.

The program for the above operation is given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

9000 20 RIM Accumulator content is 20H on
 executing RIM instruction

9001 E6, 40 ANI 40H AND immediate with 40H

9003 CD, 3C, 00 CALL 003CH Call interrupts service routine for RST
 7.5, when RST 7.5 is pending.

Initially, the contents of the accumulator is 20H.

 SID P7.5 P6.5 P5.5 IE M7.5 M6.5 M5.5

 0 0 1 0 0 0 0 0

SID

D7 D6 D5 D4 D3 D2 D1 D0

P 7.5 P 6.5 P 5.5 IE M 7.5 M 6.5 M 5.5

Serial Data in

RST 7.5 Interrupt Pending

RST 6.5 Interrupt Pending

RST 5.5 Interrupt Pending

Interrupt enable value
of the interrupt enable
Flip flop

RST 7.5 Mask
0-Available, 1-Masked

RST 6.5 Mask
0-Available, 1-Masked

RST 5.5 Mask
0-Available, 1-Masked

After immediate ANDing with 40H, the content of accumulator is given below.

 SID P7.5 P6.5 P5.5 IE M7.5 M6.5 M5.5

 0 1 0 0 0 0 0 0

The 8085 microprocessor has two additional instructions such as
Enable Interrupt (EI) and Disable Interrupt (DI). These instructions can
enable or disable all the interrupts except TRAP interrupt. The interrupt
enable flip-flop is manipulated using the EI/DI instructions. Actually, EI
and DI instruction generates internally EI and DI signals. The connections
of EI and DI are depicted in Fig. 8.30. The EI signal sets the SR flip-
flop and generates an interrupt output signal. The interrupt enable signal
enables the AND gates at the RST 7.5, RST 6.5 and RST 5.5 inputs. The
DI signal can reset the SR flip-flop and makes the interrupt enable output
becomes low. Then all maskable interrupts are disabled. The application of
EI and DI is shown in Fig. 8.36.

Write instructions to enable interrupt RST 7.5 and
disable RST 6.5 and RST 5.5.

The content of accumulator for the SIM instruction to enable interrupt
RST 7.5 and disable RST 6.5 and RST 5.5 are given below.

 SOD SOE x R7.5 MSE M7.5 M6.5 M5.5

 0 0 0 0 1 0 1 1

Bit D2 is set to 0 and bits D1 and D0 are reset to 1 to enable interrupt
RST 7.5 and disable RST 6.5 and RST 5.5 respectively. The content of
accumulator is 0BH. The instructions for the above operation are given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8500 FB EI Enable all interrupts

8501 3E, 0B MVI A, 0BH Load 0BH to enable RST 7.5, and
 disable RST5.5 and RST 6.5

8502 30 SIM Apply the settings to enable RST 7.5,
 and disable RST5.5 and RST 6.5

Write instructions for the following operations The microprocessor has completed the
RST 7.5 interrupt. Check if RST 5.5 is pending. When RST 5.5 is pending, enable
RST 5.5 interrupt.

The content of accumulator for the RIM instruction for RST 5.5 pending is 10H.

 SID P7.5 P6.5 P5.5 IE M7.5 M6.5 M5.5

 0 0 0 1 0 0 0 0

Execution of
Main Program

Execution of DI to
Disable the interrupts

Instructions are executed
independent of any interrupt

Execution of EI to
enable the interrupt

Execution of Instructions
with interrupts

The content of accumulator for the SIM instruction to enable interrupt RST 5.5 and disable RST 6.5 and
RST 7.5 are given below.

 SOD SOE x R7.5 MSE M7.5 M6.5 M5.5

 0 0 0 0 1 1 1 0

Bit D0 is set to 0 and bits D1and D2 are reset to 1 to enable interrupt RST 5.5 and disable RST 6.5 and
RST 7.5 respectively. Then content of accumulator is 0EH. The instructions for the above operation are as
follows:

Memory Machine

address Codes Labels Mnemonics Operands Comments

9000H 20 RIM Read interrupt mask

9001H 47 MOV B,A Store mask information into B register

9002H E6, 10 ANI 10H Check whether RST 5.5 is pending or not

9004H C2, Level JNZ Level

9007H FB EI
9008H C9 RET RST 5.5 is not pending, and return to
 main program

9009H 78 MOV A,B Read bit pattern and RST 5.5 is pending

900AH E6, 0E ANI 0EH Enable RST 5.5
900CH F6, 08 ORI 08H Enable SIM by setting D3
900EH 30 SIM
900FH CD, 2C, 00 CALL 002CH Call service routine from 002CH

The RIM instructions checks whether any interrupts are pending. The ANI 10H masks all bits except
D4 to check pending RST 5.5 interrupt. Bit D4 indicates that RST 5.5 is pending. The ANI 0E and ORI 08H
instructions enable RST 5.5 interrupt. The CALL instruction transfers the execution of program to the service
routine of RST 5.5.

The 8085 microprocessor has five interrupt lines. One interrupt may occur during an ISR and other interrupts
remain pending.

If more than one interrupt wants servicing simultaneously, the microprocessor can only response to one
interrupt at a time. Therefore, some priority has been assigned to different interrupt lines which allows their
signals to reach the microprocessor according to the priority. This problem can be solved by one additional
circuit known as the priority encoder, 74LS148. This circuit has 8 inputs and 3 outputs. The inputs are
assigned increasing priorities according to the increasing index of the input so that input 7 has highest prior-
ity and input 0 has the lowest. Using the RIM instruction, the programmer can read the status of the interrupt
lines and find if there are any pending interrupts.

An interrupt is an external signal which sends information to the CPU so that an external device gets service
from CPU. This signal provides a mechanism for changing one program environment to an other. Due to
an interrupt, the microprocessor stops execution of its current instruction and calls a procedure to provide

service to interrupt. At the end of the interrupt service procedure, an IRET instruction is executed to return
back to the main program. The 8086/8088 processor has the following interrupts:

 Software interrupts

 Nonmaskable interrupts

 Internal interrupts

 External hardware interrupts

 Reset

When the source of interrupt is the execution of interrupt instructions, this interrupt is known as software
interrupt. In 8086/8088, there are about 256 interrupts such as INT 00H, INT 01H, INT 02H to INT FFH.
Whenever the INT interrupt instruction is executed, the microprocessor automatically saves the content of the
flag register, Instruction Pointer (IP) and code segment register on the stack and jumps to a specified memory
location. In 8086, the memory location is always four times the value of the interrupt number. When INT n
is executed, the interrupt service routine is located at n × 4 H memory address. For example, INT 02H goes
to 00008H. Software interrupts are always generated by INT instructions and used for divide-by-zero error,
single-step, NMI, break-point, and overflow interrupts.

For each interrupt, there is a program associated with a specified interrupt. This program is known as
Interrupt Service Routine (ISR). It is also called interrupt handler. When the interrupts occurs, the processor
runs the interrupt service routine according to the interrupt vector table as given in Table 8.11.

 Physical address assuming

 INT Number CS = 0000H

 INT 00H 00000H

 INT 01H 00004H

 — —

 — —

 INT FEH 003F8H

 INT FFH 003FCH

The interrupt vector table has 256 entries, each containing four bytes. Each interrupt vector consists of
a 16-bit offset and the 16-bit segment address. The initial 32 interrupt vectors are spared for various micro-
processor operations and the remaining 224 interrupt vectors are user defined. The lower vector number has
the higher priority, when more than two interrupts occur simultaneously. Figure 8.37 shows the interrupt
pointers. There are 256 address pointers. The starting addresses of their service routines are available in the
program memory as depicted in Fig. 8.37.

The 8086 generates a type 0 interrupt,
if the result of DIV or IDIV operation is too large to fit in the destination register. For this interrupt, 8086
pushes the content of flag register on the stack, resets IF and TF and also pushes the content of CS and IP onto
the stack. Then 8086 gets the starting address of the interrupt service procedure from the interrupt pointer
table. Therefore, load the new value of CS from addresses 00002H and 00003H; also load the new value of
IP from addresses 00000H and 00001H.

During execution of a sequence of instructions,
there is frequently a need to examine the contents of the CPU’s registers and system memory. This is done by
executing one instruction at a time and then inspecting the registers and memory. If they are correct, the user
can give the command to go on and execute the next instruction. This called the single stepping. When the
8086 Trap Flag (TF) is set, the 8086 perform a type 1 interrupt after execution of each instruction.

When the CPU gets a type 1 interrupt, initially it pushes the flag register onto the stack, changing the trap
bit and pops the flag register back from the stack. Then it loads the CS value from starting address 00006H
and the IP value from starting address 00004H for the type 1 interrupt service routine. The 8086 has no
instruction to set or reset the trap flag. A sequence of instructions is used to set the trap flag as given below:

PUSHF ; Push flags onto stack

MOV BP, SP ; Copy SP to BP

OR [BP+0], 001000H ; Set TF bit

POP F ; Pop flag register and TF is set

To reset the trap flag, the OR instruction will be replaced by AND [BP + 0], 0FEFFH. After reset the trap
flag, when the 8086 processor sends a type 1 interrupt, single-step mode will be disabled.

Code Segment 255

Instruction Pointer 255

Instruction Pointer 32

Code Segment 32

Instruction Pointer 31

Code Segment 31

Instruction Pointer 5

Code Segment 5

Instruction Pointer 4

Code Segment 4

Instruction Pointer 3

Code Segment 3

Instruction Pointer 2

Code Segment 2

Instruction Pointer 1

Code Segment 1

Instruction Pointer 0

Code Segment 0

Memory Address

03FE

03FC

0082

0080

007E

007C

0016

0014

0012

0010

000E

000C

000A

0008

0004

0002

0000

0006

^

^
^

^
^
^
^
^
^

Interrupt
Vector-255

Interrupt
Vector-32

Interrupt
Vector-31

Interrupt
Vector-5

Interrupt
Vector-4

Interrupt
Vector-3

Interrupt
Vector-2

Interrupt
Vector-1

User defined^
Reserved^
Overflow

Break point

NMI

Single step

Divide Error
Interrupt
Vector-0

The 8086 performs a type 2
interrupt when the NMI pin receives a low to high transition signal. Then the CPU, 8086 pushes the content
of flag register on the stack, resets IF and TF and also pushes the content of CS and IP onto the stack. After
that, the CPU jumps to 00008H to fetch the CS: IP of the ISR associated with NMI. As the type 2 interrupt
response cannot be disabled (masked) by any instruction, this interrupt is called a nonmaskable interrupt.
Usually, the type 2 interrupt is used to switch off a circuit for protection.

The type 3 interrupt is generated by the execution
of INT 03H instruction. This interrupt is used to implement a break-point function in a system. When we
insert a break point in the main program, the system executes all instructions up to the break point and then
jumps to the break-point subroutine. When 8086 executes the INT 03H instruction, it pushes the content of
the flag register onto the stack, resets TF and IF and pushes the CS and IP values onto the stack. Then 8086
gets the new IP value from the starting address 0000CH and the CS value from the starting address 0000EH.

If the result of addition of two signed
numbers is too large to represent in the destination register, the overflow (OF) flag will be set. For example,
if we add 0110 1100 (10810) and 0101 0001(8110), the result is 1011 1101. The above result will be correct
only for unsigned binary numbers. For signed number addition, “1” in the MSB of the result represents that
the result is negative and it is in 2’s complement form. Hence the result, 1011 1101 represents –6710, but
the correct result is (18910). If the overflow flag is set, the 8086 provides type 4 interrupt after executing the
INTO instruction.

During execution of type 4 instruction, the 8086 pushes the content of flag register on the stack, resets
TF and IF and pushes the values of CS and IP on the stack. Then 8086 gets a new IP value from the starting
address 00010H and a new CS value from the starting address 00012H. After that instructions in the ISR
perform the desired operation.

The INTR input pin of 8086 allows external signal to interrupt the execution of a program. INTR can be
masked or disabled so that it cannot cause any interrupt. When the Interrupt Flag (IF) is cleared, INTR input
pin becomes disabled. The IF can be cleared by Clear Interrupt Instruction (CLI).

When the IF is set, the INTR input will be enabled. The IF can be set by Set Interrupt Instruction (STI).
After reset of 8086 microprocessor, the interrupt flag is automatically cleared. The INTR interrupt is sent to
the 8086 from the 8259A interrupt controller as shown in Fig. 8.38.

8086/8088
CPU

ALE

INTA

INTR

8259A
interrupt
controller

AD – AD7 0

INTA

INT

Interrupt Inputs

IR7

IR6

IR5

IR4

IR3

IR2

IR1

IR0

When the 8259A receives an interrupt signal on any one of the IR inputs, it provides an interrupt request
signal to the INTR input of 8086. When the INTR input is enabled with an STI instruction, the 8086 proces-
sor sends an interrupt acknowledge signal. Figure 8.39. shows the interrupt acknowledge bus cycle of 8086.

Vector from 8259A/
external hardware

circuit

Interrupt Acknowledge
Machine Cycle (M)1

Interrupt Acknowledge
Machine Cycle (M)2

T1 T2 T3 T4 T1 T2 T3 T4

Clock

ALE

INTA

AD – AD7 0

Figure 8.40 shows the minimum-mode hardware interrupt interface of 8086 microprocessor. The external
hardware interrupt circuit can identify which of the pending interrupts has highest priority. Subsequently,
hardware interrupt circuit passes its type number to the microprocessor. Then 8086 CPU samples INTR input
during the last clock period of each interrupt execution cycle.

INTR is a level-triggered input. The logic level ‘1’ must be maintained until it is sampled, but it must be
removed before it is sampled next time. Otherwise the same interrupt service routine (ISR) will be repeated.

Interrupt Inputs

INT 255

INT 254

INT 253

INT 32

INT 33

External hardware
Interrupt circuit

8086/8088
CPU

ALE

INTA

INTR

AD – AD7 0

INTA becomes logic level ‘0’ in the first interrupt bus cycle to acknowledge the interrupt as the 8086
CPU has decided to respond to the interrupt.

It goes to ‘0’ again in the second bus cycle to request for the interrupt vector type from external device.
Then interrupt-type number is read by the microprocessor and the new value of CS and IP are also read from
the memory. Figure 8.39 shows the interrupt acknowledge bus cycle of 8086.

In the 8086/8088 microprocessor, all interrupts must be serviced as priority order. The highest-priority inter-
rupt will be serviced first and then the next highest-priority interrupt will be serviced. Therefore, lower-prior-
ity interrupt service will be provided after a higher-priority one. The priority of interrupts will be controlled
by ISR. The priority order of 8086/8088 interrupts are

 Reset

 Internal interrupts

 Software interrupts

 Nonmaskable interrupts

 Hardware interrupts

The interrupt instructions of 8086/8088 microprocessors are CLI, STI, INT n INTO, HLT and WAIT. The
functional operation of interrupt instructions are given in Table 8.12.

Mnemonics Function Operation

CLI Clear interrupt instruction, IF affected IF 0

STI Set Interrupt flag, IF affected IF 1

INT n Type n software interrupts. This interrupt (SP – 2) Flags, TF,IF 0, (SP – 4) CS,

 initiates a vectored call of an interrupt CS (2 + 4 × n), IP (SP – 6), IP 4 × n

 service subroutine

IRET Interrupt return, All flags affected IP (SP), CS (SP + 2),

 Flags (SP + 4), SP (SP + 6)

INTO Interrupt overflow, TF and IF affected Same as INT 4

HLT Halt Wait for an external interrupt

WAIT Wait Wait for TEST input to become active

The sequence of operations of any interrupt (interrupt cycle) is depicted in Fig. 8.41 and the step-by-step
operation for interrupt is given below:

Step 1 The interrupt sequence starts when an external device requests service by sending an interrupt
input.

Step 2 The external hardware circuit or interrupt controller evaluates the priority of the interrupt.

Step 3 The 8086 checks for the INTR at the last T state of the instruction.

Step 4 Check IF before sending interrupt acknowledge signal INTA.

Step 5 8086 initiates the INTA bus cycle. During T1 of the first bus cycle, ALE is high and address/data
bus AD7–AD0 is at high impedance (Z) state and stays high for the bus cycle. During the second interrupt
acknowledge bus cycle, external circuit gates one of the interrupts.

Step 6 The contents of the flag register are pushed on the stack.

Step 7 The Interrupt Flag (IF) and Trap Flag (TF) are cleared. This disables the INTR pin and the trap
or single-step feature.

Step 8 The contents of the Code Segment (CS) is pushed on the stack.

Step 9 The contents of the Instruction Pointer (IP) is pushed on the stack.

Step 10 The interrupt vector type number is multiplied by 4 and generates a memory address. The
contents of this address are fetched and placed into IP. Subsequently, the contents of the memory address
(interrupt vector type number × 4 + 2) are fetched and placed into CS. After that the next instruction executes
at the interrupt service procedure addressed by the interrupt vector.

Step 11 To return from the interrupt service routine, the IRET instruction is executed.

Step 12 Flags return to their state prior to the interrupt. Operation restarts at the prior IP address after
CS and IP are popped.

8086 execute
current instruction

Is there
any

interrupt?

Is
NMI exit ?

No

Yes
Is

INTR exit ?
Is

IF set ?

No

Yes

No

Is
TF set ?

Execute next
instruction Pop CS and IP

Pop Flags
Resume interrupt

Call ISR Execute user
interrupt procedure

Push Flags
Push CS and IP

Read type
Code

Interrupt
acknowledge

Yes

No

Yes

Yes

No

Microprocessor-based system design requires many I/O devices such as keyboards, displays, sensors and
other components. These devices should receive servicing in an efficient manner from the CPU. The most
common method of servicing such devices is known
as the polled approach. In this approach, the processor
must test each device in sequence and find the device
that requires servicing. For this, a large portion of the
main program is looped through this continuous polling
cycle. Such a method would have a serious detrimental
effect on system throughput, thus limiting the tasks that
could be assumed by the microprocessor and reduc-
ing the cost effectiveness of using such devices. The
other most desirable method is that the microprocessor
can execute its main program and only stop to service
peripheral devices when CPU receives a signal from the
device itself.

Then the processor should complete whatever
instruction is currently being executed and fetch a
new routine that will service the requesting device.
However, after completion of service, the processor
would resume exactly where it left off. This method is
known as interrupt. Interrupts are used in a microcom-
puter system for different applications. When the number of I/O devices are less, the already available inter-
rupts of microprocessors are sufficient and there is no requirement of programmable interrupt controller as
shown in Fig. 8.42.

The CPU can access many devices using interrupt
signals. In multiple interrupt systems, the CPU must
take care of the priorities for the interrupts and simul-
taneously occurred interrupts.

To overcome all difficulties, a Programmable
Interrupt Controller (PIC) has been designed and
can be used to handle many interrupts at a time. This
controller handles all simultaneous interrupt requests
along with their priorities and the microprocessor
will be relieved from this task. The Programmable
Interrupt Controller (PIC) functions as an overall
manager in an interrupt-driven system environment
as depicted in Fig. 8.43. It accepts requests from the
peripheral equipment, and then it determines priority
value of all incoming requests and issues an interrupt
to the CPU based on this determination. The 8259A
Programmable Interrupt Controller can be interface-
able with 8085, 8086 and 8088 processors. The fea-
tures of these devices are given below:

MUX I/O (1) I/O (2) I/O (N)

C
P
U

RAM ROM

I / O (1)

I / O (2)

I / O (N)

CPU

RAM

ROM

PIC

FEATURES

 8085, 8086, and 8088 compatible Programmable interrupt modes

 This device is an eight-level priority controller Single a +5 V supply (no clocks)

 Individual request mask capability Available in 28-pin DIP and 28-lead

 This device is able to accept level-triggered or This interrupt can be expandable to 64 levels
 edge-triggered inputs

The Intel 8259A programmable Interrupt Controller handles up to eight-vectored priority interrupts for the
CPU. This IC is cascadable for up to 64-vectored priority interrupts without additional circuitry. This IC is
available in a 28-pin DIP package and uses NMOS technology and requires a single 5 V supply. Circuitry is
static, requiring no clock input. The schematic diagram of 8259A is depicted in Fig. 8.44. The pin diagram of
8259A is also shown in Fig. 8.45 and the pin functions are explained below:

VCC 5 V supply.

GND GROUND

When the chip select pin is active low, this pin enables read RD and write WR
operation between the CPU and the 8259A. INTA functions are independent of CS.

A low on this pin, when CS is low, enables the 8259A for write operation. This pin also
enables to accept command words from the CPU.

When RD is active low and CS is low, this pin enables the 8259A to release status onto
the data bus for the CPU.

8259A

A0

RD

WR

D - D
7 0

CS

CAS
0

CAS
1

CAS
2

SP / EN

IR
0

IR
1

IR
2

IR
3

IR
4

IR
5

IR
6

IR
7

INT

INTA

VCC

CND

These pins are used as bidirectional data buses. The
control, status and interrupt-vector informations are
transferred through this bus.

A
8279A has only eight interrupts. When the number of
interrupts requirement is more, a multiple interrupt
controller must be connected in cascade. The CAS
lines of a 8259A bus is used to control a multiple
8259A structure. These pins are outputs for a master
8259A and inputs for a slave 8259A.

This is a dual-function pin. When this IC is used in
the buffered mode, it can be used as an output to
control buffer transceivers (EN). If this IC is not in
the buffered mode, it is used as an input to designate
a master (SP = 1) or slave (SP = 0).

This pin goes high
whenever a valid interrupt request is asserted. This
pin signal is used to interrupt the CPU. Therefore, it
is connected to the CPU’s interrupt pin.

These
pins are used as asynchronous inputs. Each pin can
be used to receive an interrupt request to the CPU by raising an IR input from low to high. The interrupt pin
must be maintained at high level until this is acknowledged (edge-triggered mode), or just by a high level on
an IR input (level-triggered mode).

This pin becomes high when a valid interrupt request is
asserted. This pin is used to enable 8259A interrupt vector data onto the data bus by a sequence of interrupt
acknowledge pulses issued by the CPU.

This pin works in conjunction with the CS, WR, and RD pins. This is also used
by the 8259A to read various command words the CPU writes and status the CPU wishes to read. Generally,
this is connected to the CPU A0 address line.

The functional block diagram of 8259A Programmable Interrupt Controller is shown in Fig. 8.46. Each func-
tional block has been explained below:

The interrupts at the IR input lines are handled by two
internal registers, the Interrupt Request Register (IRR) and the In-Service register (ISR). The IRR is used to
store all the interrupt requests, which are requesting service and it provides service one by one on the priority
basis.

CS

WR

RD

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

CAS
0

GND

CAS
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

V
CC

A
0

INTA

IR
7

IR
6

IR
5

IR
4

IR
3

IR
2

IR
1

IR
0

INT

SP/EN

CAS
2

8259A

The In-Service Register (ISR) is used to store all the interrupt levels
which are being serviced, and also keeps a track of the request being served.

This logic block determines the priorities of the interrupt requests in the IRR. The
highest priority is selected and strobed into the corresponding interrupt request of the ISR during INTA pulse.

This Interrupt Mask Register (IMR) stores the bits that mask
the interrupt lines to be masked. The IMR operates on the IRR based priority resolver.

The interrupt control logic block manages the interrupt and the
interrupt acknowledge signals. The interrupt (INT) and interrupt acknowledge (INTA) signals are directly
send to the CPU interrupt input. The INTA signal from CPU that will cause the 8259A to release vectoring
information onto the data bus.

This 3-state, bidirectional 8-bit buffer is used to interface the 8259A to the
microprocessor data bus. Control words and status information are transferred through the data bus buffer.

This block is used to accept Output commands from the CPU. It
contains the Initialization Command Word (ICW) registers and Operation Command Word (OCW) registers
which store the various control formats for device operation. This function block also allows the status of the
8259A to be transferred onto the data bus.

The cascade buffer/comparator block stores and compares the
IDs of all 8259A’s used in the microprocessor system. The associated three I/O pins (CAS0, CAS1 and CAS2)
are outputs when the 8259A is used as a master and are inputs when the 8259A is used as a slave. When the

DATA
BUS

BUFER

READ/
WRITE
LOGIC

CASCADE
BUFFER
COMPA-
RATOR

D – D7 0

RD

WR

A0

CS

CAS0

SP/EN

CAS1

CAS2
INTERRUPT MASK

REGISTER
(IMR)

IN
SERVICE
REGISTER

(IR)

PRIORITY
REGISTER

(PR)

INTERRUPT
REQUEST
REGISTER

(IRR)

CONTROL
LOGIC

INTA INT

IN
T
E
R
N
A
L
B
U
S

IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

8259A is used as a master, the 8259A sends the ID of the interrupting slave device onto the CAS0 to CAS2
lines. The slave thus selected will send its preprogrammed subroutine address onto the data bus during the
subsequent INTA pulses.

The most powerful features of 8259A are programmability and the interrupt routine addressing capability.
This device allows direct or indirect jumping to the specified interrupt service routine without any polling
of the interrupting devices. The interrupt sequence for an interrupt in 8085 microprocessor system has been
explained below:

 1. One or more of the Interrupt Request lines (IR7 to IR0) are raised high, setting the corresponding IRR
bits.

 2. The 8259A evaluates these requests, and sends an INT to the CPU.

 3. The CPU acknowledges the INT and responds with an INTA pulse.

 4. After receiving an INTA from the CPU group, the highest priority ISR bit is set, and the correspond-
ing IRR bit is reset. The 8259A will also release a CALL instruction code (11001101) onto the 8-bit
data bus through its D7 to D0 pins.

 5. This CALL instruction will initiate two more INTA pulses to be sent to the 8259A from the CPU
group.

 6. These two INTA pulses allow the 8259A to release its preprogrammed subroutine address onto the
data bus. The lower 8-bit address is released at the first INTA pulse and the higher 8-bit address is
released at the second INTA pulse.

 7. This completes the 3-byte CALL instruction released by the 8259A. In the AEOI (automatic end of
interrupt) mode, the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR bit remains
set until an appropriate EOI (end of interrupt) command is issued at the end of the interrupt sequence.

Figure 8.47 shows the interfacing of 8259A with 8085. When the 8259A PIC receives an interrupt, INT
becomes active and an interrupt acknowledge cycle is started. If a higher-priority interrupt occurs between the
two INTA pulses, the INT line goes inactive immediately after the second INTA pulse. After an unspecified
amount of time, the INT line is activated again to signify the higher priority interrupt waiting for service. This
inactive time is not specified and can vary between parts. The designer should be aware of this consideration
when designing a system that uses the 8259A. It is recommended that proper asynchronous design techniques
be followed.

The interfacing steps are explained below:

 1. The address decoder output is connected with the CS input of the IC.

 2. A0 line is used to select one of the two internal addresses in the device. This is connected to A0 of the
address lines of the microprocessor.

 3. As the device operates in I/O-mapped I/O mode, the RD and WR signals are connected to IOR and
IOW signals respectively.

 4. The interrupt INT pin of 8259A is connected to the INTR input of the 8085 microprocessor.

 5. INTA output of the processor is connected to the INTA input.

 6. When SP / EN pin is high, only one IC is used in the microprocessor-based system. If more than one
ICs are connected in cascade, this pin must be low.

 7. CAS0, CAS1 and CAS2 lines are generally opened.

 8. There are eight IR input lines (IR0–IR7) are available. When the IR inputs are not used, they must be
grounded properly to avoid noise pulse in interrupt lines.

The 8259A accepts two types of command words generated by the microprocessor. These two types of com-
mand words are Initialization Command Words (ICWs) and Operation Command Words (OCWs).

The 8259A programmable interrupt controller can
be initialized by sending a sequence of initialization control words (ICWs) to the controller. There are four
initialization control words. The ICW1 and ICW2 always send to 8259 systems. When the system has any
slave 8259A in cascade mode, ICW3 must be used. In some special operations such as fully nested mode,
ICW4 can be used. All initialization command words are explained below:

Whenever a write command is received with A0
= 0 and D4 = 1, it is interpreted by 8259 as Initialization Command Word 1 (ICW1). The ICW1 starts the
initialization sequence during which the following automatically occur.

ADDRESS BUS

CONTROL BUS

DATA BUS

I/OR I/OW INT INTA

A0
CS

CAS0

CAS1

CAS2

D – D0 7 RW WR INT INTA

Cascade
lines

Slave Progress/
Enable buffer

Interrupt Requests

SP/EN IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0

 1. The edge sense circuit is reset, which means that following initialization, an Interrupt Request (IR)
input must make a low-to-high transition to generate an interrupt.

 2. The Interrupt Mask Register (IMR) is cleared.

 3. IR7 input is assigned lowest priority 7.

 4. The slave mode address is set to 7.

 5. The special mask mode is cleared and status read is set to IRR.

 6. If IC4 is 0 then all functions selected in ICW4 are set to zero. Master/Slave in ICW4 is only used in the
buffered mode.

The format of ICW1 is shown in Fig. 8.48.

ICW1

A0 D7 D6 D5 D4 D3 D2 D1 D0

0 A
7

A
6

A
5

1 LTIM ADI SNGL IC
4

A - A of Interrupt

Vector Address
7 5

1 = Level triggered
0 = Edge triggered

Call Address Interval
1 = Interval of 4 bytes
0 = Interval of 8 bytes

1 = Single
0 = Cascade

1 = ICW Needed

0 = No ICW Needed
4

4

It indicates whether ICW4 is needed or not. If it is 1, ICW4 is needed and if it is 0, ICW4 is not
needed.

When this bit is 0, then only one 8259 is in the system. If it is 1, the additional 8259A are there
in the system.

ADI stands for address interval. If this bit is ‘0’ then call address interval is 8 and if it is ‘1’ then
call address interval becomes 4.

Bit D3 determines recognition of the interrupts either in level triggered or edge-triggered mode.
If this bit is 1 then the input interrupts will be recognized if they are in the level-triggered mode.

These are A5–A7 bits as shown in Fig. 8.48. For an interval spacing of 4, A0–A4 bits are
automatically inserted by 8259A while A0–A5 are inserted automatically for an interval of 8. A5–A7 bits are
programmable as set by the bits D5–D7 of ICW1.

The Initialization Command Word 2 (ICW2) is shown
in Fig. 8.49.

Bits D7 – D3 specify address bits A15–A11 interrupt
vector address when operating in MCS 80/85 mode.

ICW
2

A
0

D
7

D
6

D
5

D
4 D

3
D

2
D

4
D

0

A
8

A
9

A
10

A /A
11 3

A /A
12 4

A /A
13 5

A /A
14 6

A /A
15 71

Bits D2–D0 specify address bits A10–A8 for the interrupt vector address when operating in MCS 80/85
mode. These bits can be set to 0 when working on an 8086 system. T3–T7 are interrupt vector address when
the controller operates in 8086/8088 mode.

The ICW3 is used only when there is more than
one 8259A in the system and cascading is used, in which
case SNGL = 0. This will load the 8-bit slave register.
The functions of this register are as follows:

In the master mode (either when SP = 1, or in buff-
ered mode when M/S = 1 in ICW4) a ‘1’ is set for each
slave in the system. The master then will release byte 1
of the call sequence (for MCS 80/85 system) and will
enable the corresponding slave to release bytes 2 and 3
(for 8086 only byte 2) through the cascade lines.

In the slave mode (either when SP = 0, or if BUF = 1 and M/S = 0 in ICW4) bits 2 ± 0 identify the slave.
The slave compares its cascade input with these bits and, if they are equal, it releases bytes 2 and 3 of the call
sequence for 8086 on the data bus.

S0 – S7 = 1 IR input has a slave and S0 – S7 = 0 IR –input does not have a slave

Slave Mode ICW
3

A
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

1 0 0 0 0 0 ID
2

ID
1

ID
0

IR

0 1 2 3 4 5 6 7

0

0

0

0

0 0 0

0 0

0001 1 1 1

1111

1 1 1 1

Master Mode ICW
3

A
0

D
7

D
6

D
5

D
4 D

3
D

2
D

4
D

0

S
71 S

6
S

5
S

4
S

3
S

2
S

1
S

0

The format of ICW4 is shown in Fig. 8.51. ICW4 is
loaded only if D0 bit of ICW1 (IC4) is set. The position D0–D4 are explained below:

MPM stands for microprocessor mode. MPM = 0 sets the 8259A for MCS-80, 85 system
operation, but MPM = 1 sets the 8259A for 8086 system operation

AEOI stands for the automatic end of interrupt mode. If AEOI = 1, then it is in auto EOI
mode and if it is = 0, it is normal EOI mode.

When buffered mode is selected, M/S = 1 means the 8259A is programmed to be a master,
and M/S = 0 means the 8259A is programmed to be a slave. If BUF = 0, M/S has no function.

Bit D3 determines buffered/non-buffered mode of operation. If BUF = 1 the buffered mode
is programmed. In buffered mode, SP/EN becomes an enable output and the master/ slave determination is
by M/S.

SFNM stands for the Special Fully Nested Mode. If SFNM = 1 then this mode is
programmed. In the cascaded mode of operation, when a slave receives a higher priority interrupt request
than one, which is already in service (through the same slave), it would not be recognized by the master. This
is happening as the master ISR bit is already in the set condition; thereby it ignores all requests of equal or
lower priority. Therefore the higher priority interrupt won’t be serviced until the master ISR bit is reset by an
EOI command. This is most likely to happen after the completion of the lower priority routine.

If a truly fully nested structure is required within a slave 8259A, the especially fully nested mode should
be used. The SFNM is programmed for the master mode only and done during master initialization through
ICW4. In this mode, the master will ignore interrupt requests of lower priority, and will respond to requests
of equal or higher priority.

The Fully Nested Mode (FNM) is auto set after initialization is over. In this mode all interrupt requests
are arranged from highest priority (IR0) to lowest priority (IR7). This mode can also be changed through
operation command words (OCWs). When 8259 acknowledges an interrupt request through INTR pin, the
device can find out the highest priority and the corresponding bit in the Interrupt Service Register (ISR) is set.
The SFNM is different from FNM and the difference between SFNM and FNM are given below:

 1. In SFNM, the slave is able to place an interrupt request, which has higher priority than the present
interrupt being serviced. The master recognises the higher-level interrupt and can place this interrupt
request to the CPU.

 2. Before issuing an EOI command to the slave, the software must determine if any other slave inter-
rupts are pending in SFNM. After that it reads its ISR (In Service Register). When the ISR contains all
zeros, there is no interrupt from the slave in service and an EOI command can be sent to the master.
If the ISR is not all zeros, an EOI command should not be sent to the master. When the master ISR
bit is cleared with an EOI command while there are still slave interrupts in service, the lower-priority
interrupt may be recognised by the master.

0

1

1 1

0

X Non-buffered Mode

Buffered Mode / Slave

Buffered Mode / Master

A0 D7
D6 D5 D4 D3 D2 D1 D0

1 0 0 0 SFNM BUF M/S AEOI MPM

1 - Special fully nested mode

0 - Not special fully nested mode

1 - 8086 / 8088 Mode
0 - MCS - 80 / 85 Mode

1 - Auto EOI
0 - Normal EOI

ICW4

8259 is programmed by issuing initialization of command words and operation command words. Initialization
of command words are issued in a sequence. The algorithm for initializing 8259 is given below:

 1. Write ICW1

 2. Write ICW2

 3. If 8259 does not go in the cascade mode of operation, go to Step 5

 4. Write ICW3

 5. If ICW4 is not required, Go to step 7

 6. Write ICW4

 7. Ready to accept interrupt sequence

The algorithm for initialization of 8259A programmable interrupt con-
troller is depicted in Fig. 8.52.

These are the
command words which command the 8259A to operate in various interrupts
modes. These operating modes are:

 1. Fully nested mode

 2. Rotating priority mode

 3. Special mask mode

 4. Polled mode

There are three operation command words such as OCW1, OCW2 and
OCW3. These OCWs may be programmed to change the manner in which
the interrupts are to be processed. The OCWs can be loaded into the 8259A
any time after initialization.

The format of OCW1
is shown in Fig. 8.53. OCW1 sets and clears the mask bits by programming
the Interrupt Mask Register (IMR). M7 –M0 represents the eight mask
bits. If M = 1, then corresponding interrupt is masked (inhibited) and M
= 0 indicates the interrupt is unmasked. A write command with A0 = 1 is
interpreted as OCW1, and written after ICW2.

The OCW2 enables the user to program 8259 in
different modes. The format OCW2 is shown in Fig.
8.54. Bits 3 and 4 are always set to 0. L2, L1, L0 bits
can be used to set the interrupt level acted upon which
the controller must react. R, SL, EOI–these three bits
control the rotate and end of interrupt modes and
combinations of the two. A chart of these combinations
is given below:

R SL EOI Selection

0 0 0 Rotate in automatic EOI mode (CLEAR)

0 0 1 Non-specific EOI command
0 1 0 No Operation
0 1 1 Specific EOI command
1 0 0 Rotate in automatic EOI mode (SET)
1 0 1 Rotate in non-specific EOI
1 1 0 Set priority command
1 1 1 Rotate on specific EOI

ICW1

ICW2

Is Cascade
Mode ?

ICW3

Is ICW

required?
4

ICW4

Ready to accept
interrupt request

No

Yes

No

Yes

Yes

A0 D7 D6 D5 D4 D3 D2 D1 D0

M7 M6 M5 M4 M3 M2
M1 M0

1

1 = Mask Set, 0 = Mask Reset

OCW1

The EOI command stands for End Of Interrupt. The interrupt service bit may be reset by an End of
Interrupt command. Generally, this command is issued by the CPU just before sending the interrupt ser-
vice routine. There are two different EOI commands such as non-specific EOI command and specific EOI
command.

The CPU issues a nonspecific EOI command. Actually, this is an
OUT instruction by the CPU to 8259A. The 8259A automatically determine the interrupt level, i.e., highest
priority interrupt in service and reset the correct bit in the ISR. The nonspecific EOI command must be used
when the most recent level acknowledged and serviced is always the highest priority level. On receiving a
nonspecific EOI command, 8259A simply resets the highest priority ISR bit, thus confirming to the 8259A
that the highest priority routine of the routine in service is finished. The nonspecific EOI command is also
known as Fully Nested Mode (FNM). The advantage of the nonspecific EOI command is that IR level
specification is not necessary as in the specific EOI Command. But some special consideration must be taken
when deciding to use the nonspecific EOI.

A SEOI command sent from the microprocessor to 8259A lets
it know when a service routine of a particular interrupt level is completed. A SEOI command resets a specific
ISR bit and any one of the eight IR levels can be specified. A SEOI command is required when 8259A is
unable to determine the IR level. This command is best suited for situations in which priorities of the interrupt
levels are changed during an interrupt routine (specific rotation).

In AEOI mode, no command has to be issued. Therefore, AEOI
mode simplifies programming and lower code requirements within interrupt routines.

AEOI mode must be used continuously as the ISR bit of a routine presently in service is reset right after
its acknowledgement. Thus it leaves no designation in the ISR that a service routine is being executed. If
any interrupt request occurs during this time and interrupts are enabled, it will be serviced regardless of its

Non specific EOI Command

A0 D7
D6 D5 D4 D3 D2 D1 D0

L0L1L200EOISLR1

Specific EOI Command

Rotate in NEOI Command

Rotate in AEOI Mode (set)

Rotate in AEOI Mode (Clear)

Rotate on specific EOI

Set priority Command

No operation

0 0 0

00

0 0

0

0 0

0

0

1

1

1 1

1

1 1

1 1

11 1

L1L2 L0

0 0 0 0

IR No.

0 0

0 0

0

0 0

0

0

1 1

1

1 1

1

1 1

1 1

11 1 7

6

5

4

3

2

IR Level to be
acted upon

End of
Interrupt

Automatic
Rotation

Specific
Rotation

priority, whether low or high. The problem of ‘over-nesting’ may happen in this case. It occurs when an IR
input keeps interrupting its own routine. This results in unnecessary stack pushes, which could fill up the
stack in a worst-case condition.

When several communication channels are connected
to a microcomputer system, all the channels should be accorded equal priority in sharing information with
the microcomputer.

In this method once a peripheral is serviced, all other equal priority peripheral should be given a chance
to be serviced before the original peripheral is serviced again. This is accomplished automatically assigning
a peripheral the lowest priority after being serviced. In this way the device, presently being serviced, would
have to wait until all other devices are serviced.

The automatic rotation is two types:

 1. Rotate on nonspecific EOI Command

 2. Rotate on automatic EOI Mode

When the rotate on NSEOI command is issued, the
highest ISR bit is reset. Just after it is reset by a nonspecific EOI command, the corresponding IR level is
assigned lowest priority. Figure 8.55 shows how the rotate on nonspecific EOI command effects the interrupt
priorities.

Let us assume that the IR0 has the highest priority and IR7 has the lowest priority before command
as shown in Fig. 8.55 (a). It is also assumed that IR6 and IR4 are already in service but neither is
completed. As IR4 has the highest priority, IR4 routine be executed. When a NSEOI command is executed, Bit
4 in the ISR is reset. Then IR4 becomes the lowest priority and IR5 becomes the highest priority as depicted
in Fig. 8.55 (b).

IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

Before
Command

Highest PriorityLowest Priority

0 0 0 0 0 0

0

1 1

17 6 5 4 3 2

ISR Status

Priority

ISR Status

Priority

IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

After
Command

Lowest Priority

Highest Priority

0 0 0 0 0 0

3

1 1

42 1 0 7 6 5

The rotate in Automatic EOI Mode (AEOI) works like the
rotate on nonspecific EOI (NSEOI) command. The difference between NSEOI and AEOI is that priority
routine is done automatically after the last INTA pulse of an interrupt request. To enter or exit from this mode,
a rotate-in-automatic EOI set command and rotate-in-automatic EOI clear command are provided.

The set priority command is used to assign an IR level the lowest priority.
All other interrupt levels will be in the fully rested mode based on the newly assigned low priority. The
relative priorities of the interrupt levels before the set priority command and after the set priority command
are depicted in Fig. 8.56(a) and 8.56(b) respectively. As IR3 has the highest priority, IR3 routine be executed
next. When the IR3 routine is executing and set priority command is issued to the 8259A, priorities will be
changed. Then IR6 is the highest and IR5 as the lowest priority as given in Fig. 8.56 (b).

The rotate on specific EOI command is the combination of
set priority command and specific EOI command. Just like the set priority command, a specified IR level will
be assigned lowest priority. Similar to the specific EOI command, a specified level will be reset in the ISR. In
this way the rotate on specific EOI command achieves two operations in only one command.

IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

Before
Command

Highest PriorityLowest Priority

0 0 1 0 0 0

0

1 0

17 6 5 4 3 2

ISR Status

Priority

IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

After
Command

Lowest Priority

Highest Priority

0 0 0 0 0 0

2

1 0

31 0 7 6 5 4

ISR Status

Priority

The OCW3 are used to perform the following operations:

 1. To read the status of registers (IRR and ISR)

 2. To set/reset the special mask and polled modes

The format of OCW3 is shown in Fig. 8.57.

This bit is used to select the In service register (ISR) or the Interrupt Request Register (IRR) and
then read register. When RIS = 0 and RR = 1, IRR is selected. If RIS = 1and RR = 1, ISR is selected.

This bit is used to execute the read register command. When RR = 0, the read register command
will not issued and no action takes place. If RR = 1, the read register command is issued and the state of RIS
decide the register to be read.

This bit is used for POLL command. When P = 1, the poll command is issued. If P = 0,
the poll command is not issued. In this mode, the interrupting devices seeking services from 8085 are polled
one after another and to detect which device has sought for interrupt request? In the polled mode (P = 1),
8259A is then read by masking its RD and CS pins ‘0’. The ISR bit is set corresponding to the highest level
interrupt in the IRR. The poll word is shown in Fig. 8.58.

A0 D7 D6 D5 D4 D3 D2 D1 D0

1 X ESMM SMM 0 1 P RR RIS

0

01

1 1

X No Action

Reset Special Mask

Set Special Mask

1 – Poll Command
0 – No Poll Command

0 X

1 0

1 1

No Action

Read IR Register on next read pulse

Read IS Register on next read pulse

OCW3

D7 D6 D5 D4 D3 D2 D1 D0

W2 W1 W01 – – – –

1 if an interrupt occurred W – W = Binary code of highest

priority level requesting service
2 0

The special mask mode enables interrupt from all levels except the
level currently in service. When SMM = 1, the special mask mode is selected. Once the special mask mode
is set, it remains in effect until reset. If SMM = 0, the special mask mode is not selected. The special mask
mode can be set when ESSM bit enables SMM (ESSM = 1) in OCW3. The special mask mode can be cleared
by loading OCW3 with ESSM = 1 and SMM = 0.

This bit is used to enable/disable the effect of the special mask mode (SMM). When ESMM = 1,
the special mask mode is enabled. If ESMM = 0, the special mask mode is disabled.

8255 is a programmable peripheral interface IC and is a multiport input/output device. This is a general-
purpose programmable I/O device, which may be used with many different microprocessors. There are
24 I/O pins, which may be individually programmed in 2 groups of 12 and used, in 3 major modes of
operation.

The I/O ports can be programmed in a variety of ways as per requirement of the programmer. The fea-
tures of this device are given below:

 24 programmable I/O pins

 Fully TTL compatible

 High speed, no ‘Wait State’ operation with 5 MHz 8085, 8 MHz 80C86 and 80C88

 Direct bit set/reset capability

 Enhanced control word read capability

 2.5 mA drive capability on all I/O ports

 Low standby power static CMOS circuit design insures low operating power

Generally, this device is used to read data from an external device and write data into an external device.
Some interface circuits are available for reading/writing data in an external device. These interface circuits
are called peripheral interface circuits. These circuits are also known as programmable I/O ports as I/O ports
are programmed to perform specified functions.

The schematic and pin diagrams of Intel 8255A are shown in Fig. 8.59 and Fig. 8.60 respectively. It is a
40-pin. IC package and operates on a single +5 V dc supply. The 8255A has 24 I/O pins, which may be
individually programmed in two groups of twelve input/output lines or three groups of eight lines. The two
groups of I/O pins are called Group A and Group B. Each group contains a subgroup of eight bits known as
8-bit port and a subgroup of four bits known as 4-bit port. This IC has three eight-bit ports: Port A (PA7–PA0),
Port B (PB7–PB0), and Port C (PC7–PC0). Port C is divided into subgroups such as Port C upper, (PC7–PC4)

and Port C lower, (PC3–PC0). Group A consists of Port A and Port C upper. Group B consists of Port B and
Port C lower. The internal block diagram of 8255 is depicted in Fig. 8. 61. The pins for various ports are as
follows:

PA0–PA7 are 8 pins of Port A, PB0–PB7 are 8 pins of Port B, PC0–PC3 are 4 pins of Port C lower and
PC4-PC7 are 4 pins of Port C upper

PA - PA
7 0

PC - Pc
7 4

PC - Pc
3 0

PB - PB
7 0

D - D
7 0

RD

WR

A1

A0

RESET

CS
VCC

GND

8255A

GROUPA
CONTROL

GROUPA
PORT C
UPPER

(4)

GROUP A
PORT A

(8)

GROUP B
PORT C
LOWER

(4)

GROUP B
PORT B

(8)

DATA BUS
BUFFER

READ
WRITE

CONTROL
LOGIC

GROUP B
CONTROL

8 BIT
INTERNAL
DATA BUS

BI-DIRECTIONAL
DATA BUS
D – D7 0

RD

WR

A1

A0

REST

CS

I/O
PA – PA7 0

I/O
PC – PC7 4

I/O
PC – PC3 0

I/O
PB – PB7 0

The functional descriptions of pins are as follows:

 Symbol Type Description

 PA0–PA7 I/O PORT A: 8-bit input and output port. Depending upon the control words bus hold

 highs and bus hold low which are present on this port.

 PB0–PB7 I/O PORT B: 8-bit input and output port. This port is used to hold high or low in
 the same way as Port A.

 PC0–PC7 I/O PORT C: 8-bit input and output port. This port may be used as output latch or
 input buffer.

 D0–D7 I/O DATA BUS: The data bus lines are bi-directional three-state pins connected to the
 system data bus. This three-state bi-directional 8-bit buffer is used to interface the
 82C55A to the system data bus. Data is transmitted or received by the buffer upon
 execution of input or output instructions by the microprocessor. Control words and
 status information are also transferred through the data bus buffer.

 RESET I RESET: A ‘high’ on this input initialises the control register to 9BH and all ports
 (A, B, C) are set to the input mode. ‘Bus hold’ devices internal to the 82C55A will
 hold the I/O port inputs to a logic ‘1’ state with a maximum hold current of 400 µA.

CS I CHIP SELECT: Chip select is an active low input used to enable the 82C55A on to
 the data bus for CPU communications.

(Contd.)

RD (Read) I READ: Read is an active low input control signal used by the CPU to read status
 information or data via the data bus. When RD is LOW, the 8255 sends output data
 or status information to the microprocessor on the data bus or the microprocessor
 can read data from the input port of 8255.

WR I WRITE: Write is an active low input control signal used by the CPU to load control
 words and data into the 82C55A. When WR is LOW, the CPU writes data into the
 output port of 8255 or writes control word into the control word register of 8255.

 A0–A1 I ADDRESS: These input signals, in conjunction with the RD and WR inputs, control
 the selection of one of the three ports or the control word register, A0 and A1 are
 normally connected to the least significant bits of the address bus A0, A1. These
 lines are used to select input ports and control word register.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

40

39

38

37

36

35

34

33

PA4

RESET

15

16

17

18

19

20

28

27

26

25

24

23

22

21

29

30

31

32

V
CC

PA5

PA6

PA7

WR

D0

D1

D2

D3

D4

D5

D6

D7

PB7

PB6

PB5

PB4

PB3

PC2

PC3

PB0

PB1

PB2

PC1

PC4

PC0

PC5

PC6

PC7

A0

A1

GND

CS

RD

PA0

PA1

PA2

PA3

8255A

(Contd.)

The functional configuration of each port can be programmed by the instruction. For this, the CPU stores a
control word to the 82C55A. The control word contains information about the mode of operation, bit set, bit
reset, etc. The control word initialises the functional configuration of the 82C55A. Each of the control blocks,
Group A and Group B, receive ‘commands’ from the control logic signals; RD and WR receive ‘control
words’ from the internal data bus and issue the proper commands to their associated ports.

 Control Group A—Port A and Port C upper (PC7–PC4)

 Control Group B—Port B and Port C lower (PC3–PC0)

The control word register can be both written and read as shown in the ‘Basic Operation’ Table 8.13. The
control word format for both read and write operations is depicted in Fig. 8.62. When the control word is read,
the bit D7 will always be a logic ‘1’, as this implies control-word mode information.

A1 A0 RD WR CS Input Operation (READ Cycle)

0 0 0 1 0 Port A to data bus

0 1 0 1 0 Port B to data bus

1 0 0 1 0 Port C to data bus

1 1 0 1 0 Control word to data bus

{D7 D6 D5 D4 D3 D2 D1 D0

{
{

G
R
O
U
P
B

G
R
O
U
P
A

PORT C (LOWER)
1 = INPUT
0 = OUTPUT

PORT B
1 = INPUT
0 = OUTPUT

MODE SELECTION
0 = MODE 0
1 = MODE 1

PORT C (UPPER)
1 = INPUT
0 = OUTPUT

PORT A
1 = INPUT
0 = OUTPUT

MODE SELECTION
00 = MODE 0
01 = MODE 1
1X = MODE 2

MODE SET FLAG
1 = ACTIVE

A
1
 A

0
 RD WR CS Output Operation (WRITE)

0 0 1 0 0 Data bus to Port A

0 1 1 0 0 Data bus to Port B

1 0 1 0 0 Data bus to Port C

1 1 1 0 0 Data bus to control

A
1
 A

0
 RD WR CS Disable Function

X X X X 1 Data bus to three-state

X X 1 1 0 Data bus to three-state

There are three basic modes of operation of 8255 as follows:

 Mode 0—Basic input/output

 Mode 1—Strobed input/output

 Mode 2—Bi-directional bus

The system software can select the mode
of operation. When the reset input becomes
‘high’, all ports will be set to the input mode
with all 24-port lines held at logic ‘one’ level
by internal bus hold devices. When the reset
is removed, the 82C55A can remain in the
input mode with no additional initialisation
required. This eliminates the need to pull up
or pull down resistors in all CMOS designs.
Then the control word register will contain
9B H. During the execution of the system
program, any of the other modes may be
selected using a single output instruction.
This allows a single 82C55A to service a
variety of peripheral devices with a simple
software maintenance routine. Any port pro-
grammed as an output port is initialised to all
zeros when the control word is written.

The 8255A has two 8-bit ports (Port A
and Port B) and two 4-bit ports (Port C upper
and Port C lower). The modes for Port A and Port B can be separately defined, though Port C is divided into
two portions as required by the Group A and Group B definitions.

DATA BUS

CONTROL BUS

ADDRESS BUS

A
1 A0 D – D

0 7

B C A

8255A

PC – PC
3 0

PB – PB
7 0

I/O

PC – PC
7 4

PA – PA
7 0

I/O I/O I/O

CS

A
1
A
0

RW WR

A
1
A
0

B C

8255A

A

I/OI/O

PB – PB
7 0

PA – PA
7 0Control or I/OControl or I/O

ADDRESS BUS

CONTROL BUS

DATA BUS

A
1
A
0 CS D – D

0 7
RW WR

A
1
A

0

A
1
A

0

B C

8255A

A

I/OI/O

CS D – D
0 7

RW WR

PB – PB
7 0

PA – PA
7 0

ControlI/O

ADDRESS BUS

CONTROL BUS

DATA BUS

This functional configuration provides simple input and output
operations for each of the three ports. Each of the four ports of 8255 can be programmed to be either an input
or output port. No handshaking is required; data is simply written to or read from a specific port.

Basic functional definitions of Mode 0 are as follows:

 Two 8-bit ports and two 4-bit ports

 Any port can be input or output

 Outputs are latched

 Inputs are not latched

 16 different input/output configurations
possible

This
is strobed input/output mode of operation. Only Port
A and Port B both can be operating in this mode of
operation. When Port A and Port B are programmed in
Mode 1, six pins from Port C are used as control signals.
These control signals are used for handshaking. PC0,
PC1 and PC2 pins of PC lower are used to control Port
B and PC3, PC4, and PC5 pins of PC upper are used to
control Port A. The other pins of Port C, i.e., PC6 and
PC7, can be used as either input or output. While Port A
is operated as an output port, pins PC3, PC6 and PC7 are
used for its control. The pins PC4 and PC5 can be used
either as input or output. The combination of Mode 0
and Mode 1 operation is also possible. When Port A
is programmed to operate in Mode 1, Port B can also be operated in Mode 0. Figure 8.66 shows the timing
diagram of Mode 1(input).

This functional configuration provides a means for transferring I/O data to or from a specified port in
conjunction with strobes or handshaking signals. In Mode 1, Port A and Port B use the lines on Port C to gen-
erate or accept these handshaking signals. In Mode 1, the 8255A has two functional groups, namely, Group
A and Group B. Each group contains one 8-bit port and a 4-bit control/data port. The 8-bit data port can be
either input or output. Both inputs and outputs are latched. The 4-bit port can be used for control and status of
the 8-bit port. Figure 8.67 shows the Mode 1 operation of Port A and Port B as input ports. Figure 8.68 shows
the Mode 1 operation of Port A and Port B as output ports.

A low on this input loads data into the input latch.

A high on this output indicates that the data has been loaded into the
input latch: in essence, and acknowledgment. IBF is set by STB input being low and is reset by the rising
edge of the RD input.

A ‘high’ on this output can be used to interrupt the CPU when an input
device is requesting service. INTR is set by the conditions: STB is a ‘one’, IBF is a ‘one’ and INTE is a ‘one’.
It is reset by the falling edge of RD. This procedure allows an input device to request service from the CPU
by simply strobing its data into the port.

STB

IBF

INTR

RD

Data
input

From
I/O

PC
4

PC
5

PA – PA
7 0

INTE

A
STB

A

IBF
A

INTR
A

I/O

PC
3

PC – PC
6 2

RD

PC
2

PC
1

PB – PB
7 0

INTE

B
STB

B

IBF
B

INTR
B

PC
0

RD

PC
7

PC
6

PA – PA
7 0

INTE

A
OBF

A

ACK
A

INTR
A

I/O

PC
3

PC – PC
4 5

WR

PC
2

PC
1

PB – PB
7 0

INTE

B

INTR
B

PC
0

WR

ACK
B

OBF
B

I/OPC – PC
4 5

WR

OBF

INTR

ACK

Output

Controlled by bit set/reset of PC4.

Controlled by bit set/reset of PC2.

The OBF output will go ‘low’ to indicate that the CPU has written
data out to be specified port. This does not mean valid data is sent out of the part at this time since OBF can
go true before data is available. Data is guaranteed valid at the rising edge of OBF. The OBF F/F will be set
by the rising edge of the WR input and reset by ACK input being low.

A ‘low’ on this input informs the 82C55A that the data from Port A or
Port B is ready to be accepted. In essence, a response from the peripheral device indicates that it is ready to
accept data.

A ‘high’ on this output can be used to interrupt the CPU when an output
device has been accepted by data transmitted by the CPU. INTR is set when ACK is a ‘one’, OBF is a ‘one’
and INTE is a ‘one’. It is reset by the falling edge of WR.

Controlled by bit set/reset of PC6.

Controlled by bit set/reset of PC2.

The strobe line is in a handshaking mode. The user needs to send OBF to the peripheral device, generate
an ACK from the peripheral device and then latch data into the peripheral device on the rising edge of OBF

The timing diagram of 8255 in Mode 1 operation of Port A and Port B as output port is illustrated in Fig. 8.69.

This mode is strobed bi-directional of operation of port with input
and output capability. Mode 2 operation is only feasible for Port A. Therefore, Port A can be programmed to
operate as a bi-directional port. If Port A is programmed in Mode 2, Port B can be used in either Mode 1 or
Mode 0. In this mode of operation, PC3 to PC7 pins are used to control signals of Port A.

The basic functional definitions of Mode 2 are

(Port A)

A high on this output can be used to interrupt the CPU for both input or
output operations.

The OBF output will go ‘low’ to indicate that the CPU has written data out
to Port A.

A ‘low’ on this input enables the three-state output buffer of Port A to send out the
data. Otherwise, the output buffer will be in the high-impedance state.

Controlled by bit set/reset of PC4.

A ‘low’ on this input loads data into the input latch.

A ‘high’ on this output indicates that data has been loaded into the input
latch.

Controlled by bit set/reset of PC4. The timing
diagram of Mode 2 operation of 8255 is depicted in Fig. 8.71.

PC
3

PC
7

PC
6

PC
4

PC
5

INTR
A

OBF
A

ACK
A

STB
A

IBF
A

I / O

INTE

2

INTE

1

WR

RD

PC –PC
2 0

PA –PA
7 0

WR

OBF

INTR

ACK

STB

IBF

Port A

RD

In this mode, any of the eight bits of Port C can be set or reset using a single output instruction. This feature
reduces software requirements in control-based applications.

When Port C is being used as status/control for Port A or B, these bits can be set or reset by using the bit
set/reset operation just as if they were output ports. Figure 8.72 shows the bit set/reset format.

{D7 D6 D5 D4 D3 D2 D1 D0

BIT SET / RESET

1 = SET, 0 = RESET

BIT SELECT

XXX

DON'T CARE

0 1 2 3 4 5 6 7

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

B0

B1

B2

BIT SET/ RESET FLAG

0 = ACTIVE

The ports of 8255A can be operating any one mode by programming the internal register of 8255A. This
internal register of 8255 PPI is known as Control Word Register (CWR). To program the ports of 8255, a con-
trol word is formed. Figure 8.72 shows the bits of the control word. Only write operation of the control word
register is permissible and no read operation of the control word register is allowed. Writing the control word
into control word register, the IC will be configured to operate specified modes of operation. The functional
description of the bits of the control word is as follows:

The D0 bit is used to set Port C lower. When this bit is set to 1, Port C lower is an input port.
If the bit is set to 0, Port C lower is an output port.

This bit is used for Port B. When this bit is set to 1, Port B is an input port. If the bit is set
to 0, Port B is an output port.

The bit D2 is used for the selection of the mode operation of Port B. If this bit is set to 0, Port
B can be operating in Mode 0. For Mode 1 operation, D2 is set 1.

It is used for the Port C upper If the bit is set to 1, Port C upper is an input port. When the
bit is set to 0, Port C upper is an output port.

The bit D4 sets Port A for input or output operation. When this bit is 1, Port A can be used
as input port. When it is 0, Port A becomes output port.

These bits are used to select the operating mode of Port A, for Port A can be operate
in Mode 0, Mode 1 and Mode 2. The mode of operation is selected by D5 and D6 as given below:

 Mode of Port A Bit No. D6 Bit No. D5

 Mode 0 0 0

 Mode 1 0 1

 Mode 2 1 0 or 1

For Mode 2, bit No. 5 is set to either 0 or 1; it is immaterial.

This bit selects the I/O mode or bit set/reset mode. When it is 1 ports A, B and C are defined
as input/output port. If it is set to 0, bit set/reset mode is selected.

Control word bits Control word Port A Port C lower Port B Port C lower

D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 1 1 0 1 1 9B input input input input

1 0 0 1 1 0 1 0 9A input input input output

1 0 0 1 1 0 0 1 99 input input output input

1 0 0 1 1 0 0 0 98 input input output output

1 0 0 1 0 0 1 1 93 input output input input

1 0 0 1 0 0 1 0 92 input output input output

1 0 0 1 0 0 0 1 91 input output output input

1 0 0 1 0 0 0 0 90 input output output output

1 0 0 0 1 0 1 1 8B output input input input

1 0 0 0 1 0 1 0 8A output input input output

1 0 0 0 1 0 0 1 89 output input output input

1 0 0 0 1 0 0 0 88 output input output output

1 0 0 0 0 0 1 1 83 output output input input

1 0 0 0 0 0 1 0 82 output output input output

1 0 0 0 0 0 0 1 81 output output output input

1 0 0 0 0 0 0 0 80 output output output output

The determination of control word bit corresponding to a particular port is set to either 1 or 0 depending upon
the definition of the port, whether it is to be made an input port or output port. If a particular port is to be made
an input port, the bit corresponding to that port is set to 1. For making a port an output port, the corresponding
bit for the port is set to 0.

The control words for various configurations of the ports of 8255 for Mode 0 operation are illustrated in
Table 8.14. The following examples will illustrate how to make control words:

Determine control words when the ports of Intel 8255 are defined as follows:
 Port A as an input port. Mode of the Port A is Mode 0.

 Port B as an input port. Mode of the Port B is Mode 0.

 Port C upper and C lower are input ports.

The control word bits for the above
definition of ports are as shown in Fig. 8.73.

Bit. No. D0 is set to 1, as the Port C lower is an
input port.

Bit No. D1 is set to 1, as the Port B is an input
port.

Bit No. D2 is set to 0, as the Port B has to operate
in Mode 0.

Bit No. D3 is set to 1, as the Port C upper is an input port.

Bit No. D4 is set to 1, as the Port A is an input port.

Bit No. D5 and D6 are set to 00 as the Port A has to operate in Mode 0.

Bit No. D7 is set to 1, as the Ports A, B and C are used as simple input/output port.

Thus the control word for above operation is 9B H.

Determine the control word for the following configuration of the ports of Intel 8255
for Mode 1 operation:

Port A is used as input and operation mode of Port A is Mode 1.

Port B can be used as output and operates in Mode 1.

PC6 and PC7 act as input.

 Six pins of Port C, PC0–PC5 are used to control
Port A and Port B in Mode 1 operation. PC0–
PC2 are used for the control of Port B. Port B
can be programmed as an input or output port.
When Port A is operated as an input port, PC3–
PC5 are used to control this port. In this operat-
ing mode, PC6 and PC7 may be used as input or output. Figure 8.74 shows the control word bits for the above
configuration of the ports. The control word for the above definition of the ports of Intel 8255 is BD H.

The 8255 PPI IC is a very powerful tool for interfacing peripheral equipment to the microprocessor-based
system. It represents the optimum use of available pins and is flexible enough to interface almost any I/O
device without the need for additional external logic.

Each peripheral device in a microprocessor-based system usually has a ‘service routine’ associated with
it. The routine manages the software interface between the device and the microprocessor. The functional
definition of the 8255 can be programmed by the I/O service routine and becomes an extension of the system
software. By examining the I/O device interface characteristics for both data transfer and timing, and match-
ing this information to the examples and tables in the detailed operational description, a control word must

9 B

1 0 0 1 101 1

D
7

Bit No.

Control

word

Bits

D
6

D
5

D
4

D
3

D
2

D
1

D
0

B D

1 0 1 1 1 1 0 x

D
7

BIT

CONTROL

WORD

D
6

D
5

D
4

D
3

D
2

D
1

D
0

be developed and loaded into control word register to initialise the 8255 IC to get a specified operation. The
typical applications of the 8255 are given below:

 Putting on LED as specified by the designer

 Generating a square wave at Port A

 Interfacing A/D converter

 Keyboard operation

 Sequential switching of lights

 Traffic light control

 Interfacing with dc motors and stepper motors

In the process control system or automation industry, a number of operations are generally performed sequen-
tially. Between two operations, a fixed time delay is specified. In a microprocessor-based system, time delay
can be generated using software. Sequences of operations are also performed based on software. Therefore
time delay, sequence and counting can be done under the control of a microprocessor. These most common
problems can be solved using the 8253 in any microcomputer system.

The 8253 is a programmable interval timer/counter specifically designed for use in real-time application
for timing and counting function such as binary counting, generation of accurate time delay, generation of
square wave, rate generation, hardware/software triggered strobe signal, one-shot signal of desired width, etc.
The function of 8253 timer is that of a general purpose, multi-timing element which can be treated as an array
of I/O ports in the system software.

The generation of accurate time delay using software control or writing instruction is possible. But
instead of writing instructions for time delay loop, the 8253 timer may be used for this. The programmer con-
figures the 8253 as per requirements. When the counters of the 8253 are initialising with the desired control
word, the counter operates as per requirement. Then a command is given to the 8253 to count out the delay
and interrupt the CPU. At the instant it has completed its tasks, the output will be obtained from the output
terminal. Multiple delays can easily be implemented by assignment of priority levels in the microprocessor.

The counter/timer can also used for non-delay in nature such as Programmable Rate Generator, Event
Counter, Binary Rate Multiplier, Real Time Clock, Digital One-Shot, and Complex Motor Controller. The
8253 operates in the frequency range of dc to 2.6 MHz while the 8253 use NMOS technology. The 8253 is
compatible to the 8085 microprocessor. Generally, 8253 can be operating in the following modes.

 Mode 0 Interrupt on terminal count

 Mode 1 Programmable one-shot

 Mode 2 Rate generator

 Mode 3 Square-wave generator

 Mode 4 Software triggered mode

 Mode 5 Hardware triggered mode

The pin diagram, block diagram of 8253, interfacing with 8085 microprocessor and operation of each
mode have been explained in this section.

The 8253 timer is a 24-pin IC and operates at +5 V dc. It consists of three independent programmable 16-bit
counters: Counter 0, Counter 1, and Counter 2. Each counter operates as a 16-bit down counter and each
counter consists of clock input, gate input and output as depicted in Fig. 8.75. The schematic block diagram
is given in Fig. 8.75. The gate input is used to enable the counting process. Therefore the starting of counting
may be controlled by external input pulse in gate terminal. After gate triggered, the counter starts count down.
When the counter has completed counting, output signal would be available at the out terminal.

The programmer can program 8253 using software in any one of the six operating modes: Mode 0, Mode
1, Mode 2, Mode 3, Mode 4, and Mode 5. The
pin diagram of 8253 is shown in Fig. 8.76 and
Fig. 8.77. The functional descriptions of pins
are as follows:

When this pin is low, the CPU
is inputting data in the counter.

When this is low, the CPU is
outputting data in the form of mode information
or loading of counters.

These pins are normally connected
to the address bus. The function of these pins
is used to select one of the three counters to
be operated and to address the control word
registers for mode selection as given below:

RD

WR

A0

A1

CS

VCC

GND

D – D
7 0

CLK
0

GATE
0

OUT
0

CLK
1

GATE
1

OUT
1

CLK
2

GATE
2

OUT
2

8253

DATA

BUS

BUFFER

COUNTER

0

READ/

WRITE

LOGIC

CONTROL

WORD

REGISTER

COUNTER

1

COUNTER

2

IN
T
E
R
N
A
L
B
U
S

D – D
7 0

RD

WR

A
1

A
0

CS

CLK
0

GATE
0

OUT
0

CLK
1

GATE
1

OUT
1

CLK
2

GATE
2

OUT
2

A1 A0 Selection of Counters and Control word register

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control Word Register

 A ‘low’ on CS input enables the 8253. No reading or writing operation will be performed
until the device is selected. The CS input signal is not
used to control the actual operation of the counters.

The 3-state, bi-directional,
8-bit buffers exist in 8253. These buffers are used
to interface the 8253 to the systems data bus D0–D7
lines. Data can be transmitted or received by the buffer
upon execution of input and output CPU instructions.
The data bus buffer has three basic functions, namely,
programming the Modes of the 8253, loading the
count registers and reading the count values.

There are
eight data lines through which the control word
will be written in the control word register of 8253
counter/timer during programming. The counter will
be written and read through the data bus.

The read/write Logic
accepts inputs from the system bus and in turn
generates control signals for operation of 8253. This
is enabled by CS. Therefore, no operation can take
place to change the function unless the device has
been selected by the system logic. Table 8.15 shows
the various functions of 8253 based on the status of
pins associated with read/write logic.

CS RD WR A
1
 A

0
 Function

0 1 0 0 0 Load Counter 0

0 1 0 0 1 Load Counter 1

0 1 0 1 0 Load Counter 2

0 1 0 1 1 Write Mode word

0 0 1 0 0 Read Counte 0

0 0 1 0 1 Read Counter 1

0 0 1 1 0 Read Counter 2

0 0 1 1 1 No Operation 3-State

1 X X X X Disable 3 State

0 1 1 X X No Operation 3-State

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

V
CC

8253

Clk 0

Out 0

Gate 0

GND

WR

RD

CS

A
1

A
0

Clk 2

Out 2

Gate 2

Clk 1

Out 1

Gate 1

CLK0, CLK1 and CLK2
are clock for Counter 0, Counter 1 and Counter 2 respectively.

The countdown of the counter takes place on each high to low transition of clock input.

GATE0, GATE1 and GATE2
are gate terminals of Counter 0, Counter 1 and

Counter 2 respectively. The function of the GATE in different modes is illustrated in Table 8.16.

OUT0, OUT1 and OUT2
are output terminals of Counter 0, Counter 1 and Counter

2 respectively. The output of the 8253 timer depends upon the mode of operation.

Single status mode Low or going low Rising High

0 Disables counting Enables counting

1 -- Initiates counting --

 Resets output after next clock

2 Disables counting Initiates counting Enables counting

 Sets output immediately high

3 Disables counting Initiates counting Enables counting

 Sets output immediately high

4 Disables counting -- Enables counting

5 -- Initiates counting --

The functional block diagram is illustrated in Fig. 8.75. This device can be divided into functional blocks
such as the counter section and the CPU interface section.

The 8253 consists of three programmable independent counters: Counter #0,
Counter #1, and Counter #2. These three functional blocks of counters are identical in operation. Each
counter consists of a single 16-bit down counter. The counter can operate in either binary or BCD and its
input, gate and output are configured by the selection of modes stored in the Control Word Register. The
counters are fully independent and each can have separate mode configuration and counting operation, binary
or BCD. Each counter can be operated in any of six modes (Mode 0 to Mode 5).

The reading of the contents of each counter is available to the programmer with simple READ operations
for event counting applications. Special commands and logic are incorporated in the 8253 so that the contents
of each counter can be read without having to inhibit the clock input.

The CS input signal enables the 8253 timer/counter IC. The RD and WR
signals are used to read and write operation respectively. The 8253 can be interfaced with the microprocessor
in the same manner as all other peripherals of the family. The 8253 timer/counter, which consists of three
counters and the control register, will be treated by the systems software as an array of peripheral I/O ports
for all modes of programming.

Figure 8.78 shows the interfacing between microprocessor and 8253 timer. The data bus D0–D7 is con-
nected with the data bus of the microprocessor. The select inputs A0, A1 of 8253 connect to the A0, A1 address
bus signals of the CPU. The CS can be derived directly from the address bus using a linear select method or
it can be connected to the output of a decoder.

The systems software programs are all functions of the 8253. This device is programmed to initialise the
counter, select the specified counter mode, and read the count value. A control word must be sent out by CPU
to initialise each counter of the 8253 to operate in the desired mode. Before initialisation, the mode count and
output of all counters are undefined. The control words program the mode, loading sequence and selection of
binary or BCD counting. Once programmed, the 8253 is ready to perform any operation which is assigned
to carry out.

The control word register is selected when the pins A0 and A1 are 11. Then the control word register
accepts information from the data bus buffer and stores it. The information stored in this register controls
the operation of each counter. Each counter has three terminals: CLK, GATE and OUT. The output signal
depends on the operating mode. The GATE signal controls the output signal.

All of the modes for each counter are programmed by a simple instruction. Writing a control word into
the control word register individually programs each counter of the 8253. The control word format is shown
below:

 D7 D6 D5 D4 D3 D2 D1 D0

 SC1 SC0 RL1 RL0 M2 M1 M0 BCD

A
1

OUT

A
0

ADDRESS BUS

GATE CLK

OUT
0
GATE

0 CLK0

A
1
A
0
CS RW WR

OUT
1
GATE

1 CLK1
OUT

2
GATE

2 CLK
2

COUNTER 0

OUT GATE CLK

COUNTER 1

OUT GATE CLK

COUNTER 2

O O
0 1

DATA BUS

CONTROL BUS

The SC0 and SC1 bits of the control word select a counter. The selection of
counters is given below:

SC1 SC0 Select Counter

0 0 Select Counter 0

0 1 Select Counter 1

1 0 Select Counter 2

1 1 Illegal

The RL0 and RL1 are used to load/read counts as follows:

RL1 RL0 Read/Load

0 0 Counter latching operation

0 1 Read/Load least significant byte only

1 0 Read/Load most significant byte only

1 1 Read/Load least significant byte first, then most significant byte

Mode selecting bits M0, M1 and M2 select any one of six modes as given below:

M2 M1 M0 Mode

 0 0 0 Mode 0

 0 0 1 Mode 1

 × 1 0 Mode 2

 × 1 1 Mode 3

 1 0 0 Mode 4

 1 0 1 Mode 5

0 Binary counter (16 bits)

1 Binary coded decimal (BCD) counter (4 decades)

The 8253 timer has an command for latching the content of a counter
to read the count value without stopping the counting. This device has a special internal logic to achieve this.
The count value can be read after loading a control word in the control word register. The bit pattern for the
control word for this operation is as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 SC1 SC0 0 0 × × × ×

 SC1 and SC0–specify counter to be latched.

 D5 and D4–00 makes counter latching operation

 X–indicates ‘don’t care’.

For example, the control word for reading the count value of Counter 1 is

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 0 × × × ×

Bits D7 and D6 are 0 and 1 respectively to represent Counter 1.

Bits D5 and D4 are 0 and 0 to represent latching operation.

Other bits are either 1 or 0.

Therefore, the control word for the above operation is 40H.

Whenever the microprocessor wants to latch the counter the latching command must be issued every
time and then the content of counter read. In this mode of operation, counter operation will not be affected
by the latching command. After receiving the latching command, the 8253 latches the content of the counter
and stores it in a storage register. Then the microprocessor reads the content of the register by issuing a read
instruction. This read operation is generally specified by RL1 and RL0 bits of the original mode set command.
For counter latching operation, RL1 and RL0 are 0 and 0 respectively. If RL1 = 0 and RL0 = 1, only read least
significant byte LSB of the counter. When RL1 = 1 and RL0 = 0, only read MSB of the count, If RL1 = 1 and
RL0 = 1, read LSB of the count first, and thereafter read MSB of the count.

The 8253 consists of three independent negative edge triggered 16-bit down counters, namely, Counter 0,
Counter 1 and Counter 2. As the counters are fully independent, each counter of 8253 can be programmed
in a different mode configuration and counting operation. The programmer must write the control word in
the control word register and the load the count value in the selected count register. For writing the mode
control word, the counter may be selected in any sequence. Each counter’s mode control word register has a
separate address so that it can be loaded independently. Usually, the 8253 is available on a microprocessor kit.
Sometimes 8253 timer/counter is also connected with a microprocessor kit externally. The clock frequency
is about 1.5 MHz, which is available on the kit. If the clock frequency is about 3 MHz, an edge-triggered
flip-flop can be used to divide this clock frequency by two to obtain a desired clock frequency for operating
8253 properly.

IOR

D – D7 0
CLK0

GATE0

OUT0

CLK1

GATE1

OUT1

CLK2

GATE2

OUT2

8253

A1

A0

IOW

A7

A6

A5

A4

A3

A2

+5V

CS

C
o

u
n

te
r

2
C

o
u

n
te

r
1

C
o

u
n

te
r

0

Control
Word

Register

The port address for control word register and the counters of 8253 are as follows:

A7 A6 A5 A4 A3 A2 A1 A0

1 0 0 0 0 0 1 1 83H Address of control word register

1 0 0 0 0 0 0 0 80H Address of Counter 0

1 0 0 0 0 0 0 1 81H Address of Counter 1

1 0 0 0 0 0 1 0 82H Address of Counter 2

A counter can be used for various applications such as BCD/binary counter, programmable rate genera-
tor, square wave generator, hardware/software triggered strobe, programmable one-shot, to generate time
delay, etc. Descriptions of some applications are given below.

Generally, Mode 0 is used to generate accurate time
delay under software control. Firstly any one counter of 8253 timer/counter is initialised and loaded with
a suitable count to develop the desired time delay. After termination of counting, the counter interrupts the
microprocessor. When counter interrupts the microprocessor, the specified operations will be performed by
the microprocessor. When the control word is loaded into the control word register, the 8253 timer/counter
sets the mode. In Mode 0 operation, the output of the counter becomes initially low after the mode is set. After
mode set operation, the selected counter must be loaded by the desired count value N.

In this mode of operation, GATE is kept high. Therefore, just after loading the count registers, the coun-
ter starts to decrement. When counting is going on, the counter output terminal OUT remains low. As soon as
the terminal count reaches 0, the output becomes high. The output remains high until the counter is reloaded
or a new count value is loaded into the counter. When the count is reloaded or a new count is loaded, the
counting restarts from new count value and again OUT becomes low. The timing diagram for Mode 0 opera-
tion is shown in Fig. 8.80.

Clock

Gate = 1

WR

Out

N = 7

7 6 5 4 3 2 1 0

While counting is going on, GATE becomes low suddenly and the counter stops counting operation.
After some time if the GATE returns to 1, counting is resumed from the count value at which the counting
discontinued. The count value can be changed at any time. A new count value can also be loaded while count-
ing is going on. But the changes will be effective only after the next GATE trigger. This mode of operation
can be used to generate accurate time delay. This can also be used to perform specified operation after some
delay. The output of OUT terminal may be used to interrupt the microprocessor. The examples of Mode 0
operation are given below:

Write a subroutine program to initialise Counter 0 in Mode 0 with count value 8000H.

The control word for Mode 0 operation as given below:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 1 0 0 0 0 = 30H

D7 and D6 have been set to 00 to initialise Counter 0.

D5 and D4 have been set 11 to load the least significant byte of the count first, then the most significant byte.

D3, D2, D1 are set to 000 for Mode 0 operation.

D0 is set to 0 as counting is to be done in binary.

The address of the control register is 83H and the address of Counter 0 is 80H

The program for loading the control word and 16-bit number in Counter 0 is given below:

Memory Machine

address Codes Mnemonics Operands Comments

9000 3E, 30 MVI A, 30 Control word for Mode 0 to initialise counter 0

9002 D3, 83 OUT 83 Write the control word into control word register

9004 3E, 00 MVI A, 00 H Least significant byte of the count

9006 D3, 80 OUT 80 Load counter 0 by 00H, LSB of count

9008 3E, 80 MVI A, 80 Most significant byte of the count

900A D3, 80 OUT 80 Load counter 0 by 80H, MSB of count

After execution of the program, the gate signal becomes ONE

Counter 0 of 8253 timers is used in Mode 0 to perform addition of an array after
certain delay. Assume count value for delay = 2000H. After completion of counting,
the counter interrupts the microprocessor to jump a memory location for addition of
two 8-bit numbers.

It is a very simple task to jump from one memory location to another memory location. But, here the task is
to jump from one memory location to another memory location after the microprocessor is interrupted. For
this, all interrupts must be enabled. Then the content of the accumulator will be enable RST 7.5, 6.5 and 5.5
for SIM instruction as given below:

 7 6 5 4 3 2 1 0

 SOD SOE X R7.5 MSE M7.5 M6.5 M5.5

 0 0 0 0 1 0 0 0 = 08H

The control word for Mode 0 operation of Counter 0 is as follows.

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 1 0 0 0 0 = 30 H

D7 and D6 are set to 0 and 0 respectively to initialise Counter 0.

D5 and D4 have been set 11 to load the least significant byte of the count first, after that most significant
byte must be loaded.

D3, D2, D1 are set to 0 0 0 for Mode 0 operation.

D0 is set to 0 as counting is to be done in binary. Connect OUT terminal of Counter 0 with RST 7.5 of
microprocessor.

Memory Machine

address Codes Mnemonics Operands Comments

8000 FB EI All interrupts are enable

8001 3E, 08 MVI A, 08 Load bit pattern to accumulator to enable
 RST 7.5, 6.5 and 5.5

8003 30 SIM RST 7.5, 6.5 and 5.5 are enable

8004 3E, 30 MVI A, 30 The control word for Mode 0 to initialise counter 0

8006 D3, 13 OUT 83 Write control word into control word register

8008 3E, 00 MVI A, 00 H Load least significant byte of the count in
 Counter 0

800A D3, 11 OUT 80 Load Counter 0 by LSB of count value

800C 3E, 20 MVI A, 20 MSB of count value

800E D3, 11 OUT 80 Load Counter 0 by MSB of count value

8010 C3, 10, 80 JMP 8010

As soon as the count value is loaded in Counter 0, the counter starts decrementing. When the counting
has been completed, RST7.5 interrupts microprocessor and the program jumps to the memory location 003C.
After that the monitor transfers the program from 003C location to 9000H. Then the jump instruction which
is stored at 9000H location can transfer the program from 9000 H to the starting address of the subroutine,
8500H. The subroutine program has given below:

9000 C3, 00, 85 JMP 8500 Jump to subroutine at 8500H

SERVICE SUBROUTINE

8500 21 00 86 LXI H 8600 Load 8600 in H-L register pair

8503 7E MOV A,M Move content of 8600 into Accumulator

8504 23 INX H Increment H-L pair

8505 86 ADD M Add the 2nd data with accumulator

8506 32 02 86 STA 8602 Store result in 8602 memory location

8509 FB EI Enable all interrupts

850A C9 RET

DATA

8600 22 RESULT

8601 44 8602 66

After execution of subroutine, the program returns from the subroutine to the main program. Before
it returns to the main program, all interrupts must be enabled so that any additional interrupts can be
acknowledged.

In this mode, the counter acts as a retriggerable and
programmable one-shot. The rising edge trigger signal is applied to GATE terminal of the counter. In this
mode, initially OUT is high after the mode is set. The control word and the count value must be loaded into
the counter. When the mode set operation is done and the counter is loaded by a count value, the counter starts
decrement count. At the first negative edge of the clock after the rising edge trigger signal of the GATE input,

output becomes low. Then the output (OUT) will be low for a number of count clock cycles. After completion
of count, the output becomes high as depicted in Fig. 8.81. The width of the output pulse depends upon the
count value. Consequently, the width of the output pulse can be varied by changing the count value in the
program. Therefore, this mode of operation can be called programmable one-shot.

Clock

WR
N = 6

6 5 4 3 2 1 0

Gate

Out

Write a program to operate Counter 0 of 8253 timer/counter in MODE 1

The control word for Counter 0 and Mode 1 was determined as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 1 0 0 1 0 = 12 H

D7 and D6 are set to 0 and 0 respectively to select Counter 0.

D5 and D4 are also set to 0 and 1 respectively for loading only Least Significant Bits (LSB) of the count.

D3, D2 and D1 are set to 001 for Mode 1.

D0 is set to 0 for binary counting.

Memory Machine

address Codes Mnemonics Operands Comments

8000 3E, 12 MVI A, 12H Load control word to initialise counter 0 in Mode 1.
8002 D3, 83 OUT 83 Write the control word in control word register
8004 3E, 10 MVI A, 10 Get count
8006 D3 80 OUT 80 Load Counter 0 with the count

In Mode 2, the counter behaves as a divide by N counter. Generally, it
is used to generate a real-time clock interrupt. The control word and the count value are loaded into the control
word register and counter respectively. After
the mode is set, the output of the counter will
be initially high. If the counter is loaded by a
count of value N, the output remains high for
(N–1) clock pulses. After (N–1) clock pulses,
output will be low for one clock pulse and
then output becomes high again as shown
in Fig. 8.82. Thereafter the count value N is
reloaded into counter and the output remains
high for (N–1) clock pulses and will be low

Clock

WR

4 3 1

Gate

Out

N = 4

0(4)2

for one clock pulse. If a new count value is reloaded into the count register between output pulses, the present
period is not affected. The subsequent period reflects the new value of the count.

Counter 1 of 8253 time operates in MODE 2, divide by N binary counter. Assume
N = 6 in decimal.

When Counter 1 of 8253 time operates in Mode 2 and divide by N binary counter, the control word are as
follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 1 0 1 0 0 = 54 hex

D7 and D6 are set to 0 and 1 respectively to initialise Counter 1.

D5 and D4 have been set 0 and 1 to load the only least significant byte of the count.

D3, D2, D1 are used for mode select. Mode 0 operation D3, D2, D1 are set to 0 1 0.

D0 is set to 0 as counting is to be done in binary.

54H is the control word for Mode 2 operation

In counter 1, GATE 1, OUT1 and CLK1 terminals are available at microprocessor kit. Apply + 5V to
GATE1 of counter 1 to make it high. Clock has been connected to terminal CLK1. The clock frequency must
be the desired frequency, approximately 1.5 MHz.

Memory Machine

address Codes Mnemonics Operands Comments

8000 3E, 54 MVI A, 54H Load control word for counter 1, MODE 2,
 binary counting.

8002 D3, 83 OUT 83 83H is address for writing control word in control
 word used.

8004 3E, 06 MVI A, 06 H Load count value N. A = 06H

8006 D3 81 OUT 81 81 H is the address for counter-1

8008 76 HLT Stop

In this mode, the counter operates as a square-wave
generator. To operate Counter 1 in Mode 3, the control word must be loaded into control word register. After
mode setting the counter is loaded by a count of value N. When the GATE becomes high, the counter starts
counting. The output remains high for half of the count value, N/2 clock pulses and it remains low for the
rest of the count values or N/2 clock pulses. Therefore, a continuous square wave of specified period can be
generated at output terminal as depicted in Fig. 8.83.

For even values of N, the output is high for N/2 clock pulses and low for next N/2 clock pulses. For odd

values of N, the output remains high for
2

1+ clock pulses and low for remaining clock pulses. By changing

the count value, time period of square wave can be controlled. After completion of count, the output state is
changed and the counter is automatically reloaded with the full count and the above process will be repeated.

Write a program to use Counter 1 of 8253 in Mode 3 as a square wave generator

Assume N = 16. The counter operates as a binary counter.

The counter 1 has been used as a square-wave generator and the control word for this operation is

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 1 0 1 1 0 = 56 H

D7 and D6 have been set to 0 and 1 to select counter 1.

D5 and D4 are set to 0 and 1 for loading only LSB of the count.

D3, D2 and D1 are set to 011 for Mode 3 operation.

D0 is set to 0 for binary counting.

Memory Machine

address Codes Mnemonics Operands Comments

9000 3E,56 MVI A, 56H Load the control word for Mode 3 in control word
 register to initialise Counter 1

9002 D3, 83 OUT 83 Write in control word register

9004 3E, 10 MVI A, 10 H Load the count value for binary counting.

9006 D3 81 OUT 81 Load counter 1 with the count value

9008 76 HLT Stop

If N = 16, the output will be high for 8 clock cycles and then it will be low for the next 8 clock cycles. When
N = 17, the output remains high for 9 clock pulses and then low for remaining 8 clock pulses. A continuous
square wave can be generated at output as the counter is reloaded by same value and the timer repeats the
process repeatedly.

Clock

WR

Out

= 6N

Gate = 1

= 6N

3 3 3

Clock

WR

Out

= 5N

Gate = 1

= 5N

3 2 3

In software triggered strobe operation, the counter
output will be high after mode is set. The GATE is always high for this mode of operation. When the counter
is loaded with a count value, the counter starts counting. As soon as the count value is loaded into the counter
register, it triggers the generation of the strobe. Therefore, this mode of operation is known as software
triggered strobe. When the counter content becomes 0, the output will be low for one clock period and
thereafter, output will be remaining high as illustrated in Fig. 8.84.

Clock

WR
N = 6

6 5 4 3 2 1 0

Gate = 1

Out

Write a program using Counter 2 of 8253 in Mode 4.

The control word for Counter 2 for Mode 4 operation is as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 1 1 1 0 0 0 = B8 hex

D7 and D6 are set to 10 to select Counter 2.

D5 and D4 have been set to 11 to load the LSB of the count value first, then load MSB of the count value.

D3, D2 and D1 have been set to 100 for Mode 4 operation.

D0 is set to 0 for binary counting.

Memory Machine

address Codes Lables Mnemonics Operands Comments

8000 3E,B8 MVI A, B8H Load control word to initialise
 Counter 2 for Mode 4 operation.

8002 D3, 83 OUT 83 Write control word in control word
 register

8004 3E, 05 LOOP MVI A, 05 Load LSB of the count.

8006 D3, 82 OUT 82 Load Counter 2 with LSB of the
 count.

8008 3E, 00 MVI A, 00 Load MSB of the count

800A D3, 82 OUT 82 Load counter 2 with MSB of the count

800C C3, 04, 80 JMP LOOP

In this mode of operation, initially the output is high.
The control word and count value are loaded in the counter register. Here GATE input acts as a trigger signal.
When low to high transition of the GATE input occurs, the counter starts to decrement the count value and
the output becomes initially high. The output goes low for one clock period, when the counter completes the
count value. As the low to high transition of the GATE input or the rising edge of GATE trigger the counter,
this mode is called as hardware triggered strobe.

This mode of counter operation is also retriggerable. When the GATE input becomes low to high again,
the counter is reloaded by the count value N and the counter starts to decrement the count value once again.
The output will also be low for one clock period on terminal count.

Write a program to use Counter 2 of 8253 in MODE 5 operation.

The control word for Counter 2 in Mode 5 is as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 1 1 1 0 1 0 = BA H

D7 and D6 are set to 1 and 0 respectively to select Counter 2. D5 and D4 are set to 11 for loading least
significant bit first, then most significant bit. D3, D2 and D1 are set to 101 for MODE 5 operation. D0 is set
to 0 for binary counting.

Memory Machine

address Codes Lables Mnemonics Operands Comments

8000 3E,BA MVI A, BA Load control word to initialise
 Counter 2 in Mode 5 operations.

8002 D3, 83 OUT 83 Write the control word into control
 word register

8004 3E, 06 MVI A, 06 Load LSB of the count.

8006 D3, 82 OUT 82 Load the Counter 2 with LSB of the
 count value.

8008 3E, 00 MVI A, 00 Get MSB of the count

800A D3, 82 OUT 82 Load MSB of counter into Counter 2

800C 3E, 80 LOOP MVI A,80 H Initialise ports of 8255.2

800E D3, 0B OUT OB Load the Counter 2 with MSB of the
 count value

Clock

WR
N = 6

6 5 4 3 2 1 0

Gate

Out

(Contd.)

8010 3E, 00 MVI A, 00 Generate a pulse output at PC0

 terminal, which is connected to GATE

 of 8253.

8012 D3, 0A OUT 0A

8014 3E, 01 MVI A, 01

8016 D3, 0A OUT 0A

8018 C3, 0C, 80 JMP LOOP

 In the beginning of this chapter, the basic concept of memory and it’s organization have been discussed.
Memory can be classified into two groups such as Read Only Memory (ROM) and Random Access
Memory (RAM). ROM is nonvolatile and data is permanently stored in this memory and once ROM is
programmed, its stored data cannot be changed. RAM is of volatile type and can be used to read and
write. This is known as the user memory. List of ROM and RAM ICs are incorporated in this chapter.

 The memory addresses assigned to a memory IC in any microprocessor-based system are known as
memory maps. Generally, the chip select logic and address decoding are used for the assignment of
memory addresses.

 There are two types of address mapping such as I/O mapped I/O and memory mapped I/O. In I/O
mapped I/O, the microprocessor uses an 8-bit address to identify an I/O device, and IN and OUT
instructions for data transfer. In memory mapped I/O, the microprocessor uses a 16-bit address to iden-
tify an I/O device, and memory instructions such as LDA, STA, MOV M, R are used for data transfer.

 In this chapter, the concept of interfacing of I/O devices with 8085 microprocessor has been discussed.
This chapter also covers the execution of I/O instructions, and the data transfer process in the peripheral
devices.

 Interrupt is a process where an external device can get the attention of the microprocessor for com-
munication and data transfer. Actually the interrupt process starts from peripheral devices and it is an
asynchronous type data transfer as it can be started at any time.

 Interrupts are two types: maskable interrupt and nonmaskable interrupt. The maskable interrupts can be
delayed or rejected but the nonmaskable interrupts cannot be delayed or rejected.

 Interrupts can also be classified into vectored and nonvectored interrupts. In vectored interrupts, the
address of the interrupt service routine is hard-wired but in nonvectored interrupts, the address of the
interrupt service routine needs to be supplied externally by the device. In the 8085 interrupts section,
all types of interrupts and operation of EI, DI, SIM and SIM instructions are explained.

 In this chapter, architecture, functional block diagram, pin diagram and operation of programmable
devices such as Programmable Peripheral Interface 8255, Programmable Timer 8253, Programmable
Interrupt Controller 8259A, have been discussed. These general-purpose devices have been designed
to provide services for different purposes in I/O communication and data transfer. Each device has a
control word register and operation instructions. Therefore, each device must be initialised by writing
control word in the control word register for appropriate operation. Interfacing of these devices with
microprocessors has been incorporated in this chapter.

 8255 Programmable Peripheral Interface (PPI) and 8253 timer/counter are two widely used

(Contd.)

(Contd.)

general-purpose programmable devices and they are compatible with any microprocessor. The 8255
PPI has three programmable ports, one of which can be used for bi-directional data transfer. The 8253
timer/counter has three 16-bit independent timers, which can operate in various modes such as pro-
grammable rate generator, square wave generator, soft ware and hardware trigger strobe, etc.

8.1 How many address lines are required to access
1 MB RAM using microprocessor?

 (a) 16 (b) 8
 (c) 20 (d) 12

8.2 What are the control signals of 8085 micropro-
cessor used to interface I/O devices?

 (a) IO / M, RD, WR (b) IO / M
 (c) RD (d) WR

8.3 To design a 4 KB RAM with 1024 byte RAM
ICs, how many ICs are required?

 (a) 4 (b) 8
 (c) 2 (d) None of these

8.4 In I/O mapped I/O device interfacing, the de-
vice has

 (a) 16-bit address lines
 (b) 8-bit address lines
 (c) 20-bit address lines
 (d) 12-bit address lines

8.5 In memory mapped I/O device interfacing, the
device has

 (a) 16-bit address lines
 (b) 8-bit address lines
 (c) 20-bit address lines
 (d) 12-bit address lines

8.6 When the starting address of 4K RAM is
8000H, the memory map will be

 (a) 8000H–9000H (b) 8000H–8500H
 (c) 8000H–9500H (d) 8000H–A000H

8.7 If the starting address of 2K RAM is 4000H,
the end address of memory map will be

 (a) 4800H (b) 8400H
 (c) 8000H (d) 4000H

8.8 A 64K bit memory device can be organized as
 (a) 64K × 1 (b) 14K × 4
 (c) 8K × 8 (d) all of these

8.9 How many address lines are used to identify
an I/O port in I/O mapped I/O and memory
mapped I/O?

 (a) 16-bit and 8-bit address lines
 (b) 8-bit and 16-bit address lines
 (c) 8-bit and 20-bit address lines
 (d) 16-bit and 12-bit address lines

8.10 The number of 4K × 4 memory devices are
required for 16K × 8 memory

 (a) 2 (b) 3
 (c) 4 (d) 8

8.11 The memory map of a 4K-byte memory chip
begins at the location 3000H. The last location
of memory address and number of pages in the
chip are

 (a) 2000, 2 (b) 3000, 4
 (c) 4000, 8 (d) 5000, 9

8.12 The number of address lines are required to
access 2M byte of data from microprocessor

 (a) 16-bit address lines
 (b) 8-bit address lines
 (c) 20-bit address lines
 (d) 21-bit address lines

8.13 What is the vector address of a software
interrupt?

 (a) vector address = interrupt number × 8
 (b) vector address = interrupt number × 16
 (c) vector address = interrupt number × 12
 (d) vector address = interrupt number × 4

(Contd.)

8.14 If interrupt instruction RST 5 is executed, the
program will jump to memory location

 (a) 2000H (b) 0020H
 (c) 0028H (d) 0016H

8.15 Which is the highest priority interrupt?
 (a) TRAP (b) RST 6.5
 (c) RST 5.5 (d) RST 7.5

8.16 SIM instruction is used to
 (a) enable RST 7.5, 6.5 and 5.5
 (b) disable RST 7.5, 6.5 and 5.5
 (c) enable or disable RST 7.5, 6.5 and 5.5
 (d) None of these

8.17 If A0 and A1 pins of 8255 are 00, which port
will be selected?

 (a) Port A (b) Port B
 (c) Port C (d) None of these

8.18 To select Port B of 8255 A0 and A1 are
 (a) 00 (b) 01
 (c) 10 (d) None of these

8.19 When Port A input, Port B and Port C output,
the control word of 8255 is

 (a) 80H (b) 90H
 (c) 85H (d) 86H

8.20 8259 is a
 (a) programmable interrupt controller
 (b) DMA controller
 (c) programmable keyboard display interface
 (d) programmable counter

8.21 8259 can handle
 (a) 8-vectored priority interrupt controller
 (b) 18-vectored priority interrupt controller
 (c) 16-vectored priority interrupt controller

(d) 6-vectored priority interrupt controller

8.22 In cascade mode, 8259 can handle
 (a) up to 64-vectored priority interrupt
 (b) up to 46-vectored priority interrupt
 (c) up to 60-vectored priority interrupt
 (d) up to 40-vectored priority interrupt

8.23 Which pin used to control the output of coun-
ter 2 of 8253 in Mode 2?

 (a) GATE 0 (b) GATE 1
 (b) GATE 2 (d) GATE 3
8.24 What are the bits of the control word to select

a counter?
 (a) SC0 SC1 (b) RW0 RW1

 (c) M0 M1 M2 (d) BCD, RW0 & RW1

8.25 The control word register is selected by the
read/write logic when

 (a) A0A1 = 11 (b) A0A1 = 01
 (c) A0A1 = 10 (d) A0A1 = 00
8.26 8253 has
 (a) 6 modes of operation
 (b) 5 modes of operation
 (c) 4 modes of operation
 (d) 3 modes of operation
8.27 8253 is capable to handle clock frequency at
 (a) 1 MHz (b) 2 MHz
 (c) 3 MHz (d) 4 MHz

8.1 What are the types of memory? Explain the comparison between different types of memory.
8.2 What are the advantages and disadvantages of memory mapped I/O over I/O mapped I/O?
8.3 What are the interrupt pins of 8085/8086/808 microprocessor ?
8.4 Give a list of applications of the 8253 timer.
8.5 What do you mean by maskable and nonmaskable interrupts?.
8.6 Define priority interrupts?
8.7 What is programmable interrupt controller?
8.8 What happens when the RESET pin of 8255 is made high?
8.9 What are the types of rotating priority mode of interrupt?.
8.10 Mention the different modes of operation of 8253 IC.
8.11 What the applications of 8255 PP1?

8.1 Explain memory mapped I/O and I/O mapped I/O. Write the comparison between memory mapped
I/O and I/O mapped I/O. What are the instructions available in memory mapped I/O and I/O mapped
I/O scheme?

8.2 What are the advantages and disadvantages of I/O mapped I/O over CPU initiated data transfer?
Explain why I/O mapped I/O data transfer technique is limited to 256 input and 256 out peripherals.

8.3 A semiconductor memory is specified as 4K × 8. Mention the number of words, word size and total
capacity of this memory?

8.4 Design a memory 16 × 8 from 16 × 4 memory IC.

8.5. Develop a 32 × 4 memory using 16 × 4 memory ICs.

8.6 Draw a memory read cycle and explain briefly.

8.7 Draw a memory write cycle and explain briefly.

8.8 Draw the timing diagram of I/O read cycle and explain briefly.

8.9 Draw the timing diagram of I/O write cycle and explain briefly.

8.10 What are the control signals are used for memory and I/O read and writes operations?

8.11 Explain the generation of MEMR, MEMW, IOR and IOW control signals from IO / M, RD, WR
signals.

8.12 Compare the memory mapped I/O with peripheral mapped I/O.

8.13 Design to interface 2K × 8RAM and 4K × 8RAM to a 8085 microprocessor.

8.14 Discuss address decoding with a suitable example.

8.15 Explain memory interfacing with 8085 microprocessor. Design a memory interfacing circuit to in-
terface the following memory ICs.

 (i) 2K × 8-bit EPROM 2716. Assume starting address is 8000H.
 (ii) 2K × 4-bit RAM 6116. Consider starting address is 9000H.

 Write the memory map of the above ICs.

8.16 Compare static RAM and dynamic RAM.

8.17 Design the interfacing of 8K × 8 bit RAM with 8085 microprocessor. Assume the starting address
is 7000H. Show the memory map.

8.18 Design the interfacing circuit to interface two 8K RAM and two 4K EPROM with the 8085 micro-
processor. Assume the starting address is 8000H. Show the memory map.

8.19 Explain in detail the interrupt system of 8085 microprocessor.

8.20 What are the software interrupts of 8085 microprocessor? Mention interrupts instructions with their
Hex code and vector address. How is the vector address for a software interrupt determined?

8.21 Draw the TRAP interrupt and explain briefly. Why TRAP input the edge and level sensitive? Can
the TRAP interrupt be disabled by a combination of hardware and software? Write some applications
of TRAP interrupt.

8.22 Draw the interrupt circuit diagram for 8085 and explain in detail.

8.23 What are nested interrupts? How you can handle the nested interrupt. Write a short note on pending
interrupt.

8.24 Draw the SIM instruction format and discuss with examples.

8.25 Draw the RIM instruction format and discuss with examples. “A RIM instruction should be performed
immediately after TRAP occurs”. Why?

8.26 Design and explain a scheme to interrupt on INTR of 8085.

8.27 Explain the software instructions EI and DI. ‘When returning back to the main program for interrupt
service subroutine (ISS), the software instruction EI is inserted at the end of the ISS’. Why?

8.28 What do you mean by priority interrupts? Explain the operation of different interrupts available in
8085 with the help of circuit diagram.

8.29 Distinguish between
 (i) Vectored and nonvectored interrupt
 (ii) Maskable and nonmaskable interrupt
 (iii) Internal and external interrup
 (iv) Software and hardware interrupt

8.30 Draw the timing diagram of RST 5 instruction and explain briefly.

8.31 Give the comparison between INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP interrupts.

8.32 Write a program to call the interrupt service routine 003CH corresponding to RST 7.5 if it is pend-
ing. Assume the content of accumulator is 20H on executing the RIM instruction.

8.33 Write the software instructions EI and DI. Explain their operations.

8.34 Explain interrupt driven I/O technique. How does 8085 microprocessor respond to INTR interrupt
signal?

8.35 Explain the triggering levels of RST7.5, RST 6.5 and RST 5.5.

8.36 Discuss the INTR and INTA signals of 8085.

8.37 Mention all the pins of 8085 microprocessor through which the processor can be interrupted. Write
instructions to enable interrupt RST 6.5 and disable RST 7.5 and 5.5.

8.38 Define interrupt. Explain the importance of interrupt in a microprocessor-based system.

8.39 Draw the architecture of 8259A and explain briefly. Write the features of 8259.

8.40 Draw the functional block diagram of 8259. What are the different functional blocks in 8259?

8.41 Write the functions of the following pins of 8259A.

 (i) INT (ii) INTA (iii) IR0–IR7 (iv) CAS0–CAS2 (v) SP / EN

8.42 Draw the block schematic showing the interconnections between I/O devices with 8259, RAM, ROM.

8.43 How many interrupt levels can be handled by 8259. What are the ICWs and OCWs? Describe how
the PIC 8259 responds to interrupts.

8.44 Write down the sequence of operation for programming 8259?

8.45 Write the functions of IR0–IR7 pins. Describe the functions of pins CAS0–CAS2.

8.46 Describe the vector data formats when 8085 is interrupted via INTR.

8.47 Describe the following initialisation command words:

 (i) ICW1 (ii) ICW2 (iii) ICW3 (iv) ICW4

8.48 Discuss the operation command word 2 OCWs. Describe the fully nested mode.

8.49 Describe the EOI and AEOI command. In cascade mode, how many EOI commands are to be issued?

8.50 Explain Special Fully Nested Mode (SFNM). Describe special mask mode, and polled mode inter-
rupt. Distinguish between NSEOI, SEOI, and AEOI.

8.51 Explain the interfacing of 8259A with 8085/8088/8086 microprocessor.

8.52 Draw the functional block diagram of 8255 and explain the operation of each sub-block.

8.53 What are the different operating modes of 8255? Explain any one operating mode of 8255.

8.54 Explain different ports and control words of 8255.

8.55 Explain BSR mode of 8255. Discuss the control word format in the BSR mode.

8.56 Write a BSR control word to set bits PC7 and PC0 and to reset them after 1 second delay.

8.57 Write the control word format for I/O mode operation of 8255. Explain the operation of 8255 PPI
IC with its internal block diagram. Explain its Mode 0, Mode 1 and Mode 2 operations.

8.58 Write control word in Mode 0 operation for the following cases:

 (i) Port A = Input port, port B = output port, Port C = output port

 (ii) Port A = Input port, port B = output port, Port CU = output port, Port CL = input port

8.59 What are the control signals when ports A and B act as input ports during Mode 1 operation?

 Discuss the control signals. Draw the timing waveforms for a stored input.

8.60 What are the control signals when ports A and B act as input ports during Mode 1 operation?.
Discuss the control signals. Draw the timing waveforms for a stored output.

8.61 Draw Port A and the control signals when 8255 is operated in mode 2. Explain the Mode 2 opera-
tion with a timing diagram.

8.62 What are input and output control signals in Mode 2? Discuss them. Write applications of 8255.
Write a program to generate a square wave using 8255.

8.63 Write the difference between three different modes of 8255 PPI. Explain Mode 1 operation and draw
the timing diagram of port A in mode 1 operation.

8.64 Discuss the control signals when ports A and B act as output ports. Draw the timing diagram for
strobed input.

8.65 Determine the control word for the following configuration of the ports of 8255
 (i) Port A–output and mode of Port A is Mode 1
 (ii) Port B–output and mode of Port B is Mode 1
 Remaining pins of Port C are used as input

8.66 Explain the operation of 8253 timer IC with its functional block diagram.

8.67 Explain the features of 8253. Briefly explain its different modes of operation.

8.68 Draw the functional block diagram of 8253. How many counters are there in 8253 and how many
modes are there?

8.69 Explain Mode 0 operation with timing diagram.

8.70 Explain the importance of GATE signal. How it is used to control the operation of counters?

8.71 Explain Mode 1 and Mode 2 operations with timing diagrams. Write the difference between Mode
2 and Mode 3 of 8253.

8.72 Explain Mode 3 and Mode 4 of 8253 with timing diagrams.

8.73 Write the interfacing procedure to interface 8253 with 8085 microprocessor. Write control word
format and explain for all modes of operation.

8.74 Show in a tabular form the conditions of different modes corresponding to the different status of
gate signals.

8.75 Discuss different methods of reading the value of the count in a counter while the counting is in
progress.

8.76 Write a program to read the count value of counter while counting is going on. Assume Counter 0
in Mode 0 with count value 7000H.

8.77 Write a program to generate a square wave using 8253.

8.78 Write a program to use Counter 2 of 8253 in Mode 5 operation.

8.79 What is the difference between software interrupt and hardware interrupt?

8.80 What are the different interrupts of 8086 microprocessor? Explain software interrupts in detail.

8.81 What is interrupt vector table of 8086 microprocessor?

8.82 Draw the flow chart for interrupt operator and discuss interrupt cycle of 8088 microprocessors.

 8.1 (c) 8.2 (a) 8.3 (a) 8.4 (b) 8.5 (a) 8.6 (a) 8.7 (a) 8.8 (d) 8.9 (b)

 8.10 (d) 8.11 (d) 8.12 (d) 8.13 (a) 8.14 (c) 8.15 (a) 8.16 (c) 8.17 (a) 8.18 (c)

 8.19 (b) 8.20 (a) 8.21 (a) 8.22 (a) 8.23 (c) 8.24 (a) 8.25 (a) 8.26 (a) 8.27 (b)

The microprocessor is a very powerful IC, used to perform various ALU functions with the help of data from
the environment. For this, the microprocessor is connected with the memory and input/output devices and
forms a microcomputer. The technique of connection between input/output devices and a microprocessor
is known as interfacing. Special attention must always be given during the connection of pins of peripheral
devices and microprocessor pins, as ICs cannot be simply connected. In the development of a microproces-
sor-based system, all memory ICs and input/output devices are selected as per requirement of the system
and then interfaced with the microprocessor. Actually address, data and control lines are used for connecting
peripherals. After connecting properly, programs are written in the microprocessor. Programs will be differ-
ent for different applications. When the program is executed, the microprocessor communicates with input/
output devices and performs system operations. In this chapter, the interfacing of Programmable Keyboard
and Display Interface 8279, Serial Communication Interface 8251, Direct Memory Access Controller 8257,
8275 CRT Controller, A/D converter and D/A converter, Bus interface, RS 232C, IEEE-488, parallel printer
interface, 8250 UART, 16550 UART and 8089 I/O processor are explained.

The serial data transfer is a method of data transfer in which one bit is transferred at a time. This transmission
is always used when the distance is greater than five metres. This method of transmission requires very few
data lines compared to parallel transmission. Serial data transmission can be classified as simplex, half-duplex
and full-duplex data transfer. In the simplex serial-data-transfer system, data is transfer only in one direction.
In the half-duplex system, data can be transferred in either direction but in one direction at a time only. In the
full-duplex system, data can be transmitted in both directions simultaneously.

The serial data-transfer systems can also be classified based on timing signals such as synchronous and
asynchronous data transfer. The difference between synchronous and asynchronous data transfer is given in
Table 9.1.

Asynchronous Data Transfer Synchronous Data Transfer

In asynchronous data transfer, a word or character is In synchronous data transfer, the transmission begins with
preceded by a start bit and is followed by a stop bit. a block header, which is a sequence of bits.
The start bit is a logical 0. The stop bit(s) is (are) a
logical 1.

Data can be sent one character at a time. This can be used for transferring large amounts of data
 without frequent starts or stops.

When no data is sent over the line, it is maintained at Since the data sent is synchronous, the end of data is
an idle value, logic ‘1’. indicated by the sync character(s). After that, the line
 can be either low or high.

A parity bit can be included along with each word or A parity bit can be included along with each word or
character. Each character data can be of 5, 6, 7 or 8 bits. character. Each character data can be of 5, 6, 7 or 8 bits.

The start and stop bits are sent with each character. In synchronous data transfer, the transmitter sends
Generally, the stop bits may be either one or more bits. synchronous characters, which is a pattern of bits to
The stop bits must be sent at the end of the character. indicate end of transmission.
It is used to ensure that the start bit of the next
character will cause a start bit transition on the line.

Asynchronous mode data transfer is used for low-speed Synchronous mode data transfer is used for high-speed
data transfer. Data can move in simplex, half-duplex data transfer. Data can move in simplex, half-duplex and
and full-duplex methods. full-duplex methods.

In this data transfer, the transmitter is not synchronized In synchronous mode data transfer, the receiver and
with the receiver by the same clock. The clock is an transmitter is perfectly synchronized on the same clock
integral multiple of the baud rate (number of bits per pulse.
second). Generally, this multiplication factor is 1, 16,
or 64.

Synchronization between the receiver and transmitter Synchronism between the transmitter and receiver is
is required only for the duration of a single character maintained over a block of characters.
at a time.

Asynchronous data transfer can be implemented by Synchronous data transfer can be implemented by
hardware and software. hardware.

The 8251 is a powerful programmable communication interface IC through which the serial data trans-
fer can be effectively carried out. The Programmable Communication Interface 8251 is a programmable I/O
device designed for serial communication. This IC can be used either in synchronous mode or asynchronous
mode. Therefore, it is called Universal Synchronous Asynchronous Receiver and Transmitter (USART).

The IC chip is fabricated using N-channel silicon gate technology. The 8251 can be used to transmit and
receive serial data. It accepts data in parallel format from the microprocessor and converts them into serial
data for transmission. This IC also receives serial data and converts them into parallel and sends the data in
parallel. It is available in a 28-pin dual in-line package and has the following features:

 Synchronous and asynchronous operation

 Programmable data word length, parity and stop bits

 Parity, overrun and framing error-checking instructions and counting-loop interactions

 Programmed for three different baud rates

 Supports up to 1.750 Mbps transmission rates

 Divide-by 1, 16, 64 mode
 False start bit deletion
 Number of stops increase of asynchronous data transfer can be 1 bit 1 ½ or 2 bits
 Full-duplex double-buffered transmitter and receiver
 Automatic break detection
 Internal and external sync character detection
 Peripheral modem control functions

This device is mainly used as the asynchronous serial interface between the processor and the external
equipment. This IC can also be used to generate the baud-rate clock using external clock and convert outgo-
ing parallel data into serial data. This IC can also be used to convert incoming serial data into parallel data
and it can control the modem.

The functional block diagram of 8251 IC is shown in Fig. 9.1. This IC consists of four major sections,
namely, transmitter, receiver, modem control and microprocessor interface section. These four sections are
communicated with each other on an internal data bus for serial data transfer.

Data Bus
Buffer

Transmit
Buffer

Transmit
Control

Read / Write
Control
Logic

Modem
Control

Receive
Control

RDRDY

SYNDET /
BRKDET

Receiver
Buffer R × D

T × C

T × EMPTY

T × RDY

T × D

I
N
T
E
R
N
A
L

B
U
S

D – D7 0

WR

RD

CLK

CS

8251

R×C

Reset

C/D

DSR

DTR

CTS

RTS

Figure 9.2 shows the transmitter section. The section consists of transmitter buffer
register, output register and transmit control logic. This section has one input and three outputs. The transmitter
buffer register accepts parallel data from the data bus of the microprocessor. Then data can be shifted out
of the output register on the T × D pin after addition of framing bits. The serial data bits are preceded by
the START bit and succeeded by the STOP bit, which are known as framing bits. For this operation the
transmitter must be enabled and CTS signal must be active low. The T × C signal is the transmitter clock
signal which controls the bit rate on the T × D line. The clock frequency may be 1, 16 or 64 times the baud.

Transmit
Buffer
Register

Control Logic

Data Bus
Buffer

Output
Register

D – D7 0

T × D

T × C

T × RDY

T × E

In the asynchronous mode, the transmitter adds a START bit, depending on how the unit is programmed;
it also adds an optional even or odd parity bit, and either 1, 1 1/2 or 2 STOP bits.

When the transmitter buffer register is empty, it outputs a signal T × RDY. It indicates to the CPU that
the 8251 is ready to accept a data character.

When there is no data in the transmitter output register then it raises a T × E signal to indicate that the
transmission is stopped. It is reset when the data is transferred from the buffer register.

The block diagram of a receiver section is depicted in Fig. 9.3. This section consists of a
receiver buffer register, receiver control logic and input register. The receiver section of 8251 USART accepts
serial data on the R × D pin. Then it converts the data into parallel data according to the required format.
When the 8251 is in the asynchronous mode and it is ready to accept a character, it looks for a low level on
the R × D line.

Receiver
Buffer
Register

Control Logic

Data Bus
Buffer

Input
Register

D – D7 0

R × D

R × C

R × RDY

When it gets a low level, it assumes that it is a START bit and enables an internal counter. At a count
equivalent to onehalf of a bit time, the R × D line is sampled again. If the line is still low, a valid START bit
has probably been received and the 8251 proceeds to assemble the character. If the R × D line is high when
it is sampled then either a noise pulse has occurred or the receiver has become enabled in the middle of the
transmission of a character. In either case, the receiver aborts its operation and prepares itself to accept a new
character. After the successful reception of a START bit, the 8251 clocks in the data, parity and STOP bits
in the input register, the data is separated and converted into parallel data and then transfers the data to the
receiver buffer register. The R × RDY signal is asserted to indicate that a character is available. The R × C
falling edge clock signal is used to disassemble the bits from the serial data.

When this register is full, the R × RDY line becomes high. This line is then used either to interrupt the
microprocessor or to indicate its own status. The microprocessor then accepts the data from the register.

The R × C line stands for receiver clock. This signal controls the rate at which bits are received by the
input register. The clock can be set to 1, 16, or 64 times the baud in the asynchronous mode.

The modem connection of the IC 8251 is shown in Fig. 9.4. The modem control
section provides the generation of RTS (request to send) and the reception of CTS (clear to send). This section
also provides a general-purpose output DTR (Data Terminal Ready) and a general-purpose input DSR (Data
Set Ready). DTR is generally assigned to the modem, indicating that the terminal is ready to communicate
and DSR is a signal from the modem indicating that it is ready for communication.

R× D

A
s
y
n
c
h
ro
n
o
u
s

M
o
d
e
m

Baud Rate
Generator

Phone
Interfacce

T
e
le
p
h
o
n
ic

L
in
e

T × D

8251

T× C

R× C

RTS

CTS

DTR

DSP

DATA BUS

ADDRESS BUS

CONTROL BUS

Figure 9.5 shows a schematic diagram of Intel 8251 and the pin configuration of 8251 A is depicted in Fig.
9.6. The description of pins is as follows:

D2

D3

R X D

GND

D4

D7

D5

D6

T x C

WR

CS

C/D

RD

R x Rdy

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

8251A

D1

D0

VCC

R x C

DTR

RTS

DSR

RESET

CLK

T x D

T x Empty

CTS

Syndet/BD

T x Rdy

CLK

CS

DB – DB
7 0

DATA BUS

RESET

RD

WR

C/D

DSR

DTR

CTS

RTS

T × D

T × RDY

T × E

T × C

R × D

R × RDY

R × C

SYNDET/

BRDET

GND

V
CC

8251

The 8-bit data bus is used to read or write status, command word or data from
or to the 8251 A.

The Read/Write Control Logic consists of three buffer
registers such as data buffer register, control register and status register. It has six input signals CS, C / D, RD,
WR, CS (Chip select), RESET and CLK.

An active-low on this input select inputs 8251 A for communication. When CS is
high, no reading or writing operation can be performed. The data bus is tristated and RD and WR have no
effect on the device.

This pin is used to inform the 8251A that the word on the data bus is
either data or control word/status information. When C / D pin is high, either the control register or status
register will be selected. If this pin is low, the data bus buffer is selected. The RD and WR signals are used to
distinguish the control register and the status register respectively.

 Pin Name Function
 D0 – D7 Data Bus

 CS Chip select

 C / D Control Word/Data

 RD Read

 WR Write

 RESET RESET

(Contd.)

 CLK CLOCK

 T × D Transmit data.

 T × C Transmitter clock

 T × RDY Transmitter ready

 T × E Transmitter empty

 R × D Receiving data

 R × C Receiver clock

 R × RDY Receiver ready

 DSR Data set ready

 DTR Data terminal ready

 CTS Clear to send

 RTS Request to send

An active-low on this input informs 8251A that the microprocessor is reading either data or
status information from internal registers of 8251.

The active-low input on WR is used to inform it that the microprocessor is writing data or
control word to 8251.

A high on this input forces the 8251A into an ‘idle’ state. This device will remain idle until a
new set of control words is written into it. The minimum required reset pulse width is 6 clock states for each
reset operation.

The CLK input is used to generate internal device timings and is normally connected to
the output of a clock generator. The input frequency of CLK should be greater than 30 times the receiver or
transmitter data-bit transfer rate.

Data Bus
Buffer

Control
Register
16 Bit

Status
Register
8 Bit

Read / Write
Control
Logic

I
N
T
E
R
N
A
L

B
U
S

D – D7 0

C/D = 0

RD = 0WR

RD

RESET

CLK

C / D

CS

C/D = 1

RD = 1

C/D = 1

WR = 1

Transmitter

Receiver

(Contd.)

CS C / D RD WR State

0 1 1 0 Microprocessor writes instructions in the control register

0 1 0 1 Microprocessor reads status from the status register

0 0 1 0 Microprocessor outputs data to the data buffer

0 0 0 1 Microprocessor accepts data from data buffer

1 x x X USART is not selected for communication

Transmitter control pins are T × D, T × C , T × RDY, T × E which are explained below:
The serial data output from the output register is transmitted on T ×

D pin. The transmitted data bits consist of data along with other informations such as start bit, stop bits and
parity bit.

The transmitter clock input T × C controls the rate at which the
data is to be transmitted. The baud rate is equal to the T × C frequency in synchronous transmission mode.
In asynchronous transmission mode, the baud rate is 1, 1/16 or 1/64 times the T × C. The serial data is
transmitted out by the successive negative edge of the T × C.

This is output signal, which indicates to the CPU that the transmitter
buffer is empty. The internal circuit of the transmitter is ready to receive a byte of data from the CPU for
transmission. The T × RDY signal is set only when CTS and T × E are active. The T × RDY is reset when the
CPU writes a byte into the buffer register by the rising edge of the WR signal. The T × RDY status bit will
indicate the empty or full status of the transmitter data input register.

When the T × E output is high, the 8251 has no characters to transmit.
This automatically goes low when a character is received from the CPU for further transmission. If this pin
is high in synchronous mode, it indicates that a character has not been loaded and the SYNC character or
characters are being transmitted or about to be transmitted. The T × E signal can be used to indicate the end
of a transmission mode.

Transmitter control pins are R × D, R × C , R × RDY which are explained below:

This input pin of 8251A receives serial data from outside environment,
and delivers to the input register via R × D line which is subsequently put into parallel from and placed in
the receiver buffer register.

The R × C receiver clock input pin controls the rate at which the bits
are received by the input register. In synchronous mode, the baud rate is equal to the R × C frequency. In
asynchronous mode, the baud rate can be set to either 1 or 1/16 or l/64th of the R × C frequency. The received
data is read into the 8251 on rising edge of R × C.

This is an output pin which indicates that 8251A contains a character to be
read by the CPU. This signal can be used to interrupt the CPU as well as polled by the CPU. In synchronous
mode, the receiver must be enabled to set the R × RDY signal and a character must finish assembly and then
be transferred to the data output register. When the data does not read properly from the receiver data output
register before assembly of the next data byte, the overrun condition error flag is set and the previous byte is
overwritten by the next byte of the incoming data and hence it is lost.

8251 has four modem control pins: DSR , DTR, CTS and RTS. The DSR
and RTS are inputs but DTR and CTS are output pins. All these pins are active low. The description of modem
control pins are given below:

The DSR input can be used as a general-purpose one-bit inverting input port.
The CPU using a status read operation can test its status. This input is normally used to check the modem
condition such as data set is ready.

This is a general-purpose one-bit inverting output port. This can be
used by 8251 to signal the modem about the information that the device is ready to accept data. This port can
be programmed using the command word.

This is a one-bit inverting input port. When the CTS input line is low, the 8251A
will be enabled to send the serial data, provided D0, the enable bit in the command instruction word should
be enabled. If D0 becomes low in the command instruction word while data transmission takes place, CTS is
switched off, and the transmitter will complete sending the stored data.

This is a general-purpose one-bit inverting output port. This can be used
by 8251 to indicate the modem that the receiver is ready to receive a data byte from the modem. Bit D5 of the
command instruction format controls the status of the pin.

This pin is used for detection of synchronous
characters in synchronous mode and break characters in asynchronous mode. This pin can be programmed
using the appropriate control word. In the input mode or the external synchronous detect mode, a rising edge
on this pin will cause 8251 to start collecting data characters on the rising edge of the next R × C .

This pin can be used as a break detect in the asynchronous mode. When R × D pin remains low through
two consecutive stop bit sequences, the stop bit sequence contains a stop bit, a start bit, data bits and parity
bits. This is reset when master chip reset or the R × D becomes high.

The interfacing connection of 8251 with the microprocessor is shown in Fig. 9.8. This circuit consists of eight
data lines, which are connected to the data bus of the CPU. The 8251 IC can be used either in I/O mapped
I/O or memory mapped I/O mode. In I/O mapped I/O interface mode, the RD and WR lines are connected to
IOR and IOW control lines. The CLK pin
is connected with to the CLK OUT of the
microprocessor to provide synchronization
between the microprocessor and 8251. The
RESET terminal is connected to the RESET
OUT of the microprocessor. When RESET
pin is in high level, the I.C 8251 is forced
into the idle mode. The address decoder
output is connected to the CS terminal of
8251. C / D terminal is used to select inter-
nal registers such as control register and
data register. Generally this is connected to
the A0 address bus.

The 8251 can be operated in different modes
based on mode control words. A set of con-
trol words can be written into the internal
registers of 8251A to make it operate in the

IOW

Data Bus

A
7

A
6

A
5

A
4

A
3

A
2

A
1

IOR

A
0

CLK CLK

CS

C/D

WR

RD

R x D

T x D
T × D

R D×

RS232C

Connector

R x C

T x C

Clock

desired mode. The control words of 8251A are two functional types, namely,

 Mode Instruction Control word

 Command Instruction Control word

There are two 8-bit control registers in 8251 to load the mode word and command word. The control
logic and registers of the 8251 IC are depicted in Fig. 9.7. The mode instruction word informs about the initial
parameters such as mode, baud rate, stop bits and parity bit. The command instruction word explains about
enabling the transmitter and receiver section. The mode instruction word and command instruction control
word are explained below.

Mode instruction control word defines the general
operational characteristics of 8251A. After reset by using internal reset command or external reset command,
the mode instruction control word must be loaded into 8251
to configure the device as per requirements. These control
words are different for synchronous and asynchronous mode
operation. Once the mode instruction control word has been
written into 8251, SYNC characters (synchronous mode only)
or command instructions (synchronous or asynchronous
mode) may be programmed. The mode of operation from
synchronous to asynchronous or from asynchronous to
synchronous can be changed by resetting the 8251. The
typical data is given in Fig. 9.9. The mode instruction format
for asynchronous mode is shown in Fig. 9.10.

Mode instruction

Sync character 1

Sync character 2

Command instruction

Data

Command instruction

Data

Command instruction

C D/ = 1

C D/ = 1

C D/ = 1

C D/ = 1

C D/ = 0

C D/ = 1

C D/ = 0

C D/ = 1

Sync
mode
only

Stopbit
Selection

Invalid

I bit

2 bits

S2 S1

D6D7 D5 D4 D3 D2 D1 D0

B1B2L1L2PENEP

S2 S1

0 0

0

0

0

1

1

1

1 – Parity
enable

0 – Disable

1 – Even
Parity

0 – Odd
Parity

Character Length
Selection

Baud Rate Select

L2 L1

0 0 5 Bits

0 1 6 Bits

1 0 7 Bits

1 1 8 Bits

B2 B1

0 0
Synch,
Mode

1 × Asynch

16 × Asynch

64 × Asynch

0

0

1

1

1 1

12
1 bit

 Find the mode instruction for the following operations:

 8251 can be operated in asynchronous mode for data transmit
 The baud rate is 16 × Asynch
 The length of character is 8 bits and number of stop bits is 2

Assume odd parity, the address of the control register is 41H and the address of data register is 40H.

The mode instruction word for the above operations is DEH as given below:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 0 1 1 1 1 0

To load the instruction word into the control word register, the following statements will be written:

MVI A, DEH

OUT 41H

The general transmission format for asynchronous
communication is shown in Fig. 9.11. The transmission format consists of start bit, data character, parity

D –D0 1

Programmed
character length

Transmitter Output

T X D Marking
Start Bit

Generated by 8251

Dx

Parity Bit Stop Bit

D –D0 1

Programmed
character length

Transmitter Input

R X D
Start Bit

Does not appear
on data bus

Dx

Parity Bit Stop Bit

Data Character

Transmission Format
Assembled Data O/P T X D

CPU Byte (5-8 bits/char.)

Start Bit Data Character Parity Bit Stop Bit

Data Character

Receive Format Serial Data Input R x D

CPU Byte (5-8 bits)

Start Bit

Data Character

Parity Bit Stop Bit

bit and stop bits. The 8251 starts to send data on the T × D pin after adding a start bit which is a 1 to 0
transmission. Then data bits are transmitted using the T × D pin on the falling edge of the transmitter clock
(T × C) followed by stop bits. When no data is transmitted by the CPU to 8251, the T × D output pin remains
‘high’. If a ‘break’ has been detected, T × D the line will go low.

The general receive format for asynchronous communication
is shown in Fig. 9.11. Data reception starts with a falling edge of R × D input which indicates the arrival of
start bit. The high to low transition on the R × D line triggers the ‘False start Bit Detection Circuit’ and the
output of this circuit samples the R × D line half-a-bit time later to confirm about the start-bit. If R × D is low,
it indicates a valid start bit which starts
counting. Then the bit counter locates
data bits, parity bits and stop bits. If any
error occurs during the receiving of data
with regard to parity, framing or overrun,
the corresponding flags in the status
word will be set. The receiver requires
only one stop bit to mark end of the data
bit string though the number of stop bits
affects the transmitter.

The synchronous mode
instruction format is shown in Fig. 9.12.
For synchronous transition/receiving of
data both D0, D1 will be low. Bits D2
and D3 indicate the character length. Bit
D4 stands for Parity Enable (PEN) and
D5 stands for Even Parity (EP). Bit D6
stands for External Synchronous Detect
(ESD). D6 = 1 for input and D6 = 0 for output. Bit D7 = 1 indicates a Single Synchronous Character (SCS).
But D7 = 0 represents double synchronous characters.

The
general transmission/receive format for synchronous
communication is shown in Fig. 9.13. In transmission
format, one or two synchronous characters are sent
followed by data characters. When the CTS line
becomes low, the first character is serially transmitted
out. All the characters are shifted out of the serial
output register on the falling edge of the transmitter
clock (T×C) at the same rate as T×C . After completion
of transmission, the CPU replenishes the transmitter
buffer. When the CPU fails to provide a character
before the transmitter buffer becomes empty, 8251
should send SYNC characters. In that case, T × E pin
becomes high to indicate that the transmitter buffer
is empty.

CPU Byte (5-8 bits/char.)

Data CharactersSync char 2Sync char 1

Transmission Format

Assembled serial Data output T X D

Data CharactersSync char 2Sync char 1

Receive Format Serial Data Input R x D

Data Characters

CPU Byte (5-8 bits/char.)

Data Characters

S2 S1

D6D7 D5 D4 D3 D2 D1 D0

0L1L2PENEP

1 – Parity
enable
0 – Disable

1 – Even Parity
0 – Odd Parity

Character Length
Selection

L2 L1

0 0 5 Bits

0 1 6 Bits

1 0 7 Bits

1 1 8 Bits

0

External
Synchronous
Detect
1 – input
0 – Output

Single
Character
Synchronous
1 – single Char
0 – Output Char

In synchronous receive mode, the character synchronization
can be achieved internally or externally. In the internal SYNC mode, the receiver samples the data available
as the R × D pin on the rising edge of R × C. When 8251 is programmed in this mode, ‘ENTER HUNT’
command should be included in the first command instruction word. The data on R × D pin is sampled on
the rising edge of the R × C. The receiver buffer content is compared with the first SYNC character at every
edge till a match occurs. When 8251A is initially programmed for two sync characters, the process can be
extended to two SYNC characters. When both the characters match, the hunting stops. After Hunting is over,
the system goes for character boundary synchronization. The SYNDET pin is set and is rest automatically
by a status read operation. The SYNDET pin gets set in the middle of the parity bit, if the parity is enabled;
otherwise in the middle of the last data bit. In the external SYNC mode, synchronization can be achieved by
applying a high level on the SYNDET input pin, which forces 8251A out of HUNT mode. The parity and
overrun error can be checked in the same way as in asynchronous mode.

The command instruction controls the actual operations of the
selected format like enable transmit/receive, error reset and modem controls. Once the mode instruction has
been written into 8251A and the SYNC characters are loaded (only in synchronous mode), the device is ready
for data communication. The command instructions can be accepted only after mode instruction in case of
asynchronous mode. All further control words written with C / D will load a command instruction. A reset
operation returns the 8251 back to mode instruction format from the command instruction format. The format
of command instruction is depicted in Fig. 9.14.

When the 8251 has been programmed by the mode instruction word, the device is ready for data com-
munication. The command instruction controls the actual operation of the selected format. The command
Instruction format is explained below:

The D6 bit is used as the internal reset. The command word with D6 = 1 returns 8251 in the mode instruc-
tion format. When D0 (T × EN) is high, the transmitter becomes enable and data transmission is possible. If
D2 (R × EN) is high, it enables the receiver for reception. The D1 bit controls the data terminal ready. The
D3 bit forces the transmitter to send continuous break characters. A high on D4 resets the error flags–PE, OE
and FE (parity, overrun and framing errors respectively). The D5 bit controls the request to send the pin of the
device. The D7 bit is used in synchronous mode. This pin enables the receiver to look for the synchronizing
data.

If EH = 1,
Hunt for Sync Charter

Internal Reset, If IR = 1
8251A to Mode

Instruction Format

Request to Send
if = 1 Forces RTS = 0

Request Error Flags
PE, OE, FE if ER = 1

Transmit Enable
1 – Enable; 0 – Disable

Data Terminal Ready
= 0DTR

Receive Enable
1 – Enable; 0 – Disable

Send Brake Character
1 – T × D forced to 0
0 – Normal Operation

D7 D6 D5 D4 D3 D2 D1 D0

EH IR RTS ER SBRK RXE DTR TXEN

The status word can be read with C / D =1. The CPU requires
various information to operate properly. All required information are provided by the status word. The status
word is continuously updated by 8251, except when CPU reads the status word. The status word format is
shown in Fig. 9.15.

 D0 stands for the status of the pin T × RDY.

 Dl represents the status of the pin R × RDY.

 D2 correspond to the status of the pin T × E.

 D3 represents parity error. It is set when there is a parity error.

 D4 stands for overrun error. It is set when the CPU does not read a character before the next one
becomes available.

 D5 represents framing error. It is set when a valid stop bit is not detected.

 D6 is used for synchronous mode (SYNDET)

 D7 reflects the logic level of the DSR (modem control) pin.

This bit indicates,
USART is ready to
accept a data character
or command.

Same definitions
as pins

Parity error—the PE
flat is set when a
parity error is detected.
This is reset by ER bit
of command instruction

D7 D6 D5 D4 D3 D2 D1 D0

DSR FE OE PE T × EMPTY R × RDY T × RDY
SYNDET
BRKDET

Data Set Ready indicated
that DSR is at a zero level

Framing error (Async only)
The FE is set when a valid
stop bit is no detected at the
end of every character and
reset by ER bit of
command instruction

Over run error
The OE flag is set when
CPU doesn’t read a
character before the next
one becomes available and
is reset by command
Instruction

When a bulk of data is transferred between memory and any peripheral devices, if I/O data transfer technique
is used, this process takes more time as each byte of the data is transferred through the CPU. If we want to
transfer data at a faster rate, the CPU must be isolated and data can be transferred between memory and
peripheral devices directly. This I/O technique is known as Direct Memory Access (DMA) operation.

Figure 9.16 shows the DMA operation, which consists of CPU, memory devices, I/O peripheral devices,
DMA controller and switches. Usually, the switch positions will be such that the memory and peripheral
devices are connected to the CPU. Therefore, the data bus, address bus and the control bus of the memory and
I/O peripheral devices are connected to the CPU. While the DMA operation is to be performed, the CPU is
completely isolated and the address bus and control bus are taken over by the DMA controller circuitry. The
DMA operation can be carried out by the following sequence as given below:

 Initially the device, which requires data
transfer between the device and the mem-
ory, should send the DMA request (DRQ)
to the DMA controller.

 The DMA controller sends a Hold Request
(HRQ) line to the CPU and waits for the
CPU to assert the HLDA.

 Then the microprocessor tri-states all the
address bus, data bus and control bus. The
CPU relinquishes the control of the bus and
acknowledges the Hold input signal through
Hold Acknowledge (HLDA) output signal.
The CPU remains in the HOLD state; the
DMA controller becomes the master of bus.
Actually, DMA controller circuit mange the
switching of address, data and control buses
between CPU, Memory, and I/O devices.

 The HLDA signal is fed to the DMA con-
troller. When the DMA controller receives the HLDA signal, the DMA controller takes care of direct
data transfer operation between memory and I/O devices. The DMA controller sends DACK signal
to the peripheral device, which requested for DMA operation.

 Then DMA operation can be performed by sending proper address to the memory and required con-
trol signals to transfer a bank of data.

At the starting of the DMA operation,
the DMA controller should know the starting
address of the memory location, number of
bytes to be transferred and type of data transfer
from memory to I/O or from I/O to memory.

The 8257 IC is a programmable DMA control-
ler. This is available in a 40-pin dual in-line
package. The schematic diagram of 8257 is
shown in Fig. 9.17(a). The pin diagram of 8257
is depicted in Fig. 9.17(b) and the pin functions
are described below:

These are the four
separate DMA request lines. Any I/O device
sends DMA request signal on one of the DRQ0 –
DRQ3 lines. When DRQ is high, a DMA request
signal is received by the DMA controller.
Among four DMA request lines, DRQ0 has
the highest priority and DRQ3 has the lowest
priority in the fixed priority mode.

A

D

C

A

D

C
CPU MEMORY

DMA

CONTROLLER

PERAPHERAL

DEVICES

HOLD HLDA

A

D

C

DACK

DRQ
0

C

D

A

8257

DRQ
1

GND

VCC

DACK
1

DRQ
2

DACK
2

DRQ
3

DACK
3

TC

MARK

ADSTB

AEN

DRQ
0

DACK
0

MEMR

MEMW

HRQ

HLDA

READY

I/OW

CS

D – D
7 0

DATA BUS

RESET

CLK

A – A
3 0

A – A
7 4

I/OR

These are the DMA
acknowledge output lines which sends an
acknowledged signal through any one of these lines to
the I/O peripheral devices. When this signal is active-
low, the line acknowledges the I/O devices.

These are the least significant address
lines. A0 – A3 are bi-directional lines. In master mode,
these four least significant memory address lines are
generated by 8257.

These are the four most significant
address lines of lower byte address generated by 8257
in the master mode DMA operation.

These are bi-directional data lines.
These lines are used to interface CPU with the internal
data bus of 8257 DMA. During programming of the
DMA controller, the CPU sends data through data
lines for DMA address register; byte count register
and mode set register. When the 8257 operates in
master mode, these lines are used to send higher
byte of the memory address. Then these 8 MSBs of
address are latched using an ADSTB signal. During
the first clock cycle of DMA operation, the address
is transferred over D0 – D7. After that, the data bus is
available for data transfer during the rest DMA cycle.

This is a bi-directional tristate input
line. In the slave mode, IOR signal is used to read
the internal registers of 8257 by the CPU. This line
operates as output in master mode. In master mode,
IOR is used to read data from I/O peripheral device
during DMA write cycle.

This is a bi-directional tristate input
line. In the slave mode, the I/OW signal is used to load the content of data lines to the upper or lower byte of a
16-bit DMA address register or terminal count register. In the master mode, data is transferred from memory
to I/O devices during DMA memory read cycle.

This is the memory read output signal. When this is active low, data will be read from memory
during DMA read cycle.

 This is a memory write output signal. When this is active low, data will be written to the
memory during DMA write cycle.

A clock input is applied to 8257 for internal operation of 8257, which will be synchronized with
the clock.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

40

39

38

37

36

35

34

33

A
7

15

16

17

18

19

20

28

27

26

25

24

23

22

21

29

30

31

32

TC

D
0

DACK
0

RESET

DACK
2

CLK

CS

HRQ

AEN

HLDA

MARK

MEMR

I/OW

I/OR

MEMW

READY

ADSTB

DACK
3

DRQ
3

DRQ
2

DRQ
1

DRQ
0

GND

A
6

A
5

A
4

A
3

A
2

A
0

V
CC

D
1

D
2

D
3

D
4

A
1

DACK
1

D
5

D
6

D
7

8257

This is an asynchronous input signal. When this is active high, all DMA channels must be
disabled, all mode registers will be cleared and all the control lines will be in tristates.

 This is an active low chip select signal, which enables the 8257 for read and write operations in
slave mode. In the master mode, this is disabled to prevent the chip from getting selected (by CPU) during
the DMA operation.

This is the address enable signal. When it is high, it indicates that the
DMA operation will be performed. This AEN output can be used to disable the data bus and the control bus
driven by the processor. This output can be used to disable the selection of an I/O device in the system.

This output from 8257 strobes the most significant byte of the memory
address generated by the DMA controller into the latches.

This output indicates that the terminal count register content is zero. If the
TC STOP bit in the mode set register is set, the selected channel will be automatically disabled at the end
of the DMA cycle. This pin will be activated when the 14-bit content of the terminal count register of the
selected channel is equal to zero. The lower-order 14 bits of the terminal count register are to be programmed
for the desired number of DMA cycles.

When the MARK output is one level, it indicates that the current DMA cycle is the 128th
cycle since the previous MARK output. The mark may be activated after each 128 cycles for the particular
peripheral devices.

This is an asynchronous input signal. This is used to extend memory read and write cycles
of 8257 by inserting wait states. This is suitable for interfacing slower I/O peripheral devices.

The DMA controller sends the hold request as it is connected to the Hold
signal input of the microprocessor. This output requests the microprocessor to access the system bus. In the
master, this is connected with the HOLD pin of the CPU. In the slave mode, this pin of a slave is connected
with a DRQ input line of the master 8257 and the master is connected with Hold input of the CPU.

This pin is connected to the HLDA output of the CPU. This input is
high indicates that the microprocessor tristates all the address bus, data bus and control bus.

V +5 V supply
GND Ground

The 8257 is a programmable four-independent channel DMA controller. Therefore, four peripherals can send
request data transfer simultaneously. The block diagram of the internal architecture of 8257 is depicted in Fig.
9.18. This consists of four DMA channels: control logic for data transfer, read/write logic and data bus buffer.

The 8257 performs the DMA operation using four
independent DMA channels. Each DMA channel of 8257 has two 16-bit registers, namely, DMA address
register and terminal count register. There are also two common registers for all the channels such as mode
set register and status register. Therefore, there are ten registers of 8257. The CPU can select any one of the
ten registers using address lines A0 – A3. Table 9.3 shows the selection of one of these registers based on A0

– A3. All registers are explained below:

The 8257 has four separate DMA channels CH-0 to CH-3. Each channel
has a DMA request and DMA acknowledge signal. Each DMA channel has one separate DMA address

D – D
7 0 Data

Bus

Buffer

16-

BIT

ADDR.

CNTR.

CHO

READ/

WRITE

LOGIC

16-

BIT

ADDR.

CNTR.

CH1

16-

BIT

ADDR.

CNTR.

CH2

16-

BIT

ADDR.

CNTR.

CH3

CONTROL

AND

MODE

SET

LOGIC

PRIORITY

RESOLVER

INTERNAL BUS

DRQ
0

DACK
0

DRQ
1

DACK
1

DRQ
2

DACK
2

DRQ
3

DACK
3

MARK

TC

ADSTB

AEN

MEMW

MEMR

HLDA

HRQ

READY

A
7

A
6

A
5

A
4

CS

A
3

A
2

A
1

A
0

RESET

CLK

I/OW

I/OR

register. The DMA address register is used to store the starting address of the memory location from where
data will be accessed by the DMA channel. Therefore, the starting address of the memory block will be
loaded in the DMA address register of the DMA channel. Generally, the 8257 DMA controller will access
the block of memory with the starting address stored in the DMA Address Register and transfer to I/O devices
through DMA channel.

Register Byte Address inputs Bi-directional data bus

 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

CH-O DMA ADDRESS LSB 0 0 0 0 A7 A6 A5 A4 A3 A2 A1 A0

 MSB 0 0 0 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-O Terminal Count LSB 0 0 0 1 C7 C6 C5 C4 C3 C2 C1 C0

 MSB 0 0 0 1 Rd Wr C13 C12 C11 C10 C9 C8

CH-1 DMA ADDRESS LSB 0 0 1 0 A7 A6 A5 A4 A3 A2 A1 A0

 MSB 0 0 1 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-1 Terminal Count LSB 0 0 1 1 C7 C6 C5 C4 C3 C2 C1 C0

 MSB 0 0 1 1 Rd Wr C13 C12 C11 C10 C9 C8

CH-2 DMA ADDRESS LSB 0 1 0 0 A7 A6 A5 A4 A3 A2 A1 A0

 MSB 0 1 0 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-2 Terminal Count LSB 0 1 0 1 C7 C6 C5 C4 C3 C2 C1 C0

 MSB 0 1 0 1 Rd Wr C13 C12 C11 C10 C9 C8

CH-3 DMA ADDRESS LSB 0 1 1 0 A7 A6 A5 A4 A3 A2 A1 A0

 MSB 0 1 1 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-3 Terminal Count LSB 0 1 1 1 C7 C6 C5 C4 C3 C2 C1 C0

 MSB 0 1 1 1 Rd Wr C13 C12 C11 C10 C9 C8

Mode Set (Program only) - 1 0 0 0 AL TCS CH RP EN3 EN2 EN1 EN0

Status (Read only) - 1 0 0 0 0 0 0 UP TC3 TC2 TC1 TC0

A10 – A15 — DMA Starting Address, C0 – C13 —Terminal Count Value,
Rd and Wr—DMA verify (00), Write (01) or Read (10) cycle selection.
AL – Auto Load, TCS–TC STOP, EW–Extended Write, RP–Rotating Priority,
EN3 – EN0—Channel Mask Enable, UP–Update Flag, TC3 – TC0 — Terminal Count Status Bits.

Each DMA channel of 8257 has one terminal count register (TC).
The count register is a 16-bit register and is used to store the number of bytes which will be transferred
through a DMA channel. Therefore, before starting the actual DMA operation, the register must be loaded
the number of bytes. The first 14bits (D0 – D13) of the terminal count register are used for this purpose. The
maximum data transfer using 8257 during one DMA operation can be 16K bytes. One of data transfer is
known as a DMA cycle. Hence to transfer a block of data, large numbers of DMA cycles are required.

The most significant bits D14 and D15 of the count register indicate the type of the DMA function such as
DMA write cycle, DMA read cycle or DMA verify cycle. The DMA operation selection and the correspond-
ing bit configuration of the bits D14 and D15 of the terminal count register is shown in Table 9.4. In the DMA
write operation, this device can able to transfer data from peripheral devices to the memory. During the DMA

read operation, the data is transferred from memory to peripheral devices. In DMA verify operation, the 8257
does not involve with the data transfer.

 Bit 15 Bit 14 DMA Operation

 0 0 Verify DMA Cycle

 0 1 Write DMA Cycle (I/O read and Memory write)

 1 0 Read DMA Cycle (Memory read and I/O write)

 1 1 (Illegal)

The mode set register of 8257 can be programmed as per requirement of
the programmer. The control word in the mode set register is used to enable or disable DMA channels
individually and also determines various modes of operation. To enable a DMA channel, the DMA address
register and the terminal count register must be loaded with proper information. The mode set register format
is shown in Fig. 9.19.

Enables Auto Load

Enables TC Stop

Enables Extended Write

Enables Rotating Priority

D7

Auto
Load

D6 D5 D4 D3 D2 D1 D0

TC
Stop

Exten.
WR

Rotate
Priority

ENCH3 ENCH2 ENCH1 ENCH0

If 1

Enables DMA Channel - 0

Enables DMA Channel - 1

Enables DMA Channel - 2

Enables DMA Channel - 3

If 1

The bits D0 – D3 are used to enable or disable any one of the four DMA channels. When D0 is ‘1’, chan-
nel 0 is enabled.

If Bit D4 of mode set register is set, rotating priority is enabled, or else the normal priority, i.e., fixed pri-
ority. In the rotating priority mode, the priority of the channels has a circular sequence. The rotating priority
is depicted in Fig. 9.20. After each DMA cycle, the priority of channels are changed. The channel which has
just been serviced will have the lowest priority. When the rotating priority bit is reset, each DMA channel has
a fixed priority. In the fixed priority mode, Channel 0 has the highest priority and Channel 3 has the lowest
priority. The priority of DMA operation is shown in Table 9.5.

Priority Channel Just Serviced

 CH 0 CH 1 CH 2 CH 3

Highest priority CH 1 CH 2 CH 3 CH 0

 CH 2 CH 3 CH 0 CH 1

 CH 3 CH 0 CH 1 CH 2

Lowest priority CH 0 CH 1 CH 2 CH 3

CH 2

CH 0

CH 3 CH 1

Bit D5 can enable the ExTENDED WRITE operation. If the bit is set, the duration of MEMW and I/OW
signals are extended by activating them earlier in the DMA cycle. This is very useful to interface the periph-
eral devices with different access times. When the peripheral devices are not accessed within the stipulated
time, it is requested to give one or more wait states in the DMA cycle.

Bit D6 enables terminal count (TC) STOP. When the TC STOP bit is set, a channel is automatically dis-
abled after the terminal count output goes high and prevent any further DMA operation on the same channel.
If the DMA operation is to be continued or else if another operation is to begin, the DMA channel must be
enabled by a fresh mode set operation in the mode set register.

Bit D7 of mode set register enables auto load mode. This bit is set when some DMA operation is repeat-
edly desired—like sending data to CRT monitor. This is known as repetitive or chained DMA operation.
Channel 2 and Channel 3 are used for repetitive DMA operation. Generally, Channel 2 registers are initialized
as usual for the first data block, while Channel 3 registers are used to store the block re-initialization parame-
ters, i.e., the DMA starting address and the terminal count. After the first data block is transferred using DMA
Channel 2, the parameters stored in Channel 3 registers are transferred to Channel 2, if the update flag is set.

The status word register of 8257 is shown in Fig. 9.21. The status word can be
read to know the status of the terminal counts of the four channels CH0 – CH3. Any of the lower order 4-bits
of the status word register (D0 – D3) is set, when the terminal count output corresponding to that channel
becomes high. These bits remain set till the status register is read or the 8257 is reset.

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0

TC Status of Channel - 0

TC Status of Channel - 1

TC Status of Channel - 2

TC Status of Channel - 3Update FLAG

The update flag is not affected when the status read operation is performed. This flag can be cleared
either by resetting 8257 or by resetting the auto load bit in the mode set register. When the update flag is set,
the contents of Channel 3 registers are reloaded to the corresponding registers of Channel 2.

The 8-bit, bi-directional data bus buffer is interfaced with the internal bus of 8257 and
also with the external system bus. The data bus buffer is tri-state type.

The 8257 can operate in either slave mode or master mode. In the slave mode,
the read/write logic accepts the I/O Read (I/OR) or I/O Write (I/OW) control signals. It decodes the A0–A3
lines and either writes the contents of the data bus to the addressed internal register or reads the contents of
the selected register depending on I/OW or I/OR. During the master mode operation, the read/write logic
generates the I/OR and I/OW signals to control the data flow to or from the selected peripheral devices.

The control logic unit controls the sequences of DMA operations and generates the
following control signals: AEN, ADSTB, MEMR, MEMW, TC and MARK. This unit generates the address
lines A4–A7 in master mode.

The priority resolver resolves the priority of DMA channels of 8257 depending on
fixed priority or rotating priority.

The 8257 is able to perform three types of operations such as verify DMA operation, write operation and read
operation. This device operates in four different modes, namely, single-byte data transfer mode, bust mode,
control overdrive mode and not ready mode.

The complete DMA operation of 8257 in single-byte data
transfer mode is described below with the help of a flowchart as shown in Fig. 9.22.

S

Sample DRQn lines set
HRQ if DRQ = 1

1

n

RESET

S

Sample HLDA from Microprocessor
Resolved DRQ priorities

0

n

S

Present and latch upper address
Present lower address

1

S

Activate read command advanced
Write command and DACK

2

n

S

Activate write command activate
MARK and TC if appropriate

3

Ready + Verify

S

Reset Enable for channel if TC stop
and TC are active Deactivate Commands.
Deactivated DACK , MARK and to sample

DRQn HRQ if HLDA = 0 DRQ = 0

4

n

n

DRQn = 0

HLDA

HLDA

DRQ = 1n

Ready + Verify

Ready

Ready

SW
Sample Ready

Line

HLDADRQ +

DRQ.HLDA

S1 is the idle state of DMA operation. In this state, the DMA controller will sample the DMA
request inputs (DRQn) to check whether any peripheral device want to data transfer between the device
and memory. When any DRQ request is received by the 8257, it sends HRQ (HOLD request) signal to the
microprocessor and enters S0 state.

In this state, the DMA controller waits for acknowledgement signal from the CPU at the
HLDA input and resolves the priorities of the DMA requests. After detection of a valid HLDA, it exists S0
and enters S1 state.

 When the DMA controller receives the HLDA signal, it indicates that the bus is available for
the transfer. In the S1 state, the DMA controller write the MSB of the DMA address register on its D0–D7
pins and some external device is used to latch the MSB by making use of the ADSTB signal. The LSB of the
DMA address register is put out on the A0–A7 pins. After that it enters S2 state.

In the S2 state, the DACK line of the used channel is pulled down by the DMA controller to
indicate the peripheral device, which already sends DMA request for the DMA transfer. The read command is
activated in this state. I/OR is used for a DMA write operation, and MEMR is used for a DMA read operation.
When the extended write option is set in this state, it activates the write command. MEMW is used for a DMA
write operation, and I/OW is also used for a DMA read operation. After completion of S2 state, it enters into
S3 state.

In the S3 state, the write command is activated. Then DMA controller sets the TC and MARK
outputs if the appropriate conditions are satisfied, it enters S4 state. During S3 state, it samples the ready
input. If the device in which data will be written is not ready, the device makes the ready input to the DMA
controller low. Then the DMA controller enters into wait state if the ready input is low. It continues to execute
wait cycles until ready input becomes high. When ready input is high, it enters S4 state.

In this state, if the TC stop and the TC are active (high), the channel just serviced is disabled.
The DACK MARK and TC are deactivated. The DMA controller again samples the DMA inputs, and
determines their priorities. If there is no DMA request, it resets the HRQ (HLDA = 0 or DRQ = 0) and enters
S1 state.

When more than one channel request services at a time,
the DMA controller operates in burst mode for data transfer. No overhead is required in switching from one
channel to another. In the S4 state, DRQ lines are sampled and the highest priority request must be indicated
for the next DMA operation. After completion of highest priority DMA channel operations, the next higher
priority DMA request must be serviced. The HRQ line is maintained active till all the DRQ lines become low.

An external device can interrupt the continuous or burst DMA transfer mode
by lowering the HLDA line. After each DMA transfer, the 8257 samples the HLDA line to insure that it is
still active. If it is not active, the 8257 completes the current transfer; releases the HRQ line and then returns
to the idle state. When DRQ lines are still active, the 8257 may raise the HRQ line in the third cycle and
proceed normally.

8257 uses four clock cycles to complete a transfer. Figure 9.23 shows the timing
diagram of DMA operation. The READY input pin is used to interface 8257 with low-speed devices. The
READY pin status is sampled in S3 of the state diagram. If READY = 0, the 8257 enters a wait state. The
status of READY pin is sampled in every state till it becomes high. Once the READY = 1, the 8257 proceeds
to state S4 from S3 state to complete the transfer.

The 8257 can be interfaced as a memory
mapped device or an I/O mapped device. This
device can be operated in slave mode as well
as master mode. In this section, the slave mode
and master-mode operation are explained
briefly with circuit diagram.

The inter
facing of 8257 with the 8085 processor in slave-
mode operation is shown in Fig. 9.24. In this
case, the 8257 IC is connected in I/O mapped
I/O mode and the IOR and IOW pins of the
IC are connected to the IOR and IOW control
signals. The data lines D0 – D7 are connected to
the data bus of the microprocessor.

The 8257 can also be connected to the
system bus as a memory device instead of as
an I/O device. This device operates in memory
mapped I/O mode by connecting the system
memory control lines to the 8257 I/O control

s1
s0 s1 s2 s3 s4

Clock

HRQ

HLDA

AEN

ADRSTB

D – D0 7

A – A0 7

DACK

MEMR

MEMW

Extented Write Operation

A – A8 15

A – A0 7

A
3

A
3

A
2

A
2

A
1

A
1

A
0

A
0

IOR

IOW IOW

IOR

8257A
7

A
6

A
5

A
4

+ 5

CS

Data Bus

lines and the system I/O control lines to 8257 memory
control lines. In this case, the MEMR and MEMW control
lines of the system should be connected to the IOR and
IOW input lines of 8257 as shown in Fig. 9.25. The pro-
gramming of bit 15 (D15) and bit 14 (D14) in the terminal
count register is used for different purpose as shown in
Table 9.4.

The 8257 operates
in master mode when more than one DMA request lines
become active simultaneously. In this mode, CPU is
isolated; the DMA controller is activated for data transfer.
The DMA controller should send the address of memory location and control signals MEMR, MEMW, IOR
and IOW. The Interfacing of 8257 with 8085 microprocessor in master-mode operation is depicted in Fig. 9.26.

In the master mode, the data lines D0–D7 acts as the higher order address line A0–A15. The 8257 enables
the signal AEN (address enable). The AEN is used to disable the demultiplexed address bus of A0–A7 of the
8085 processor. The 8257 loads the low-order address byte of the DMA address register in A0–A7 lines. If the
AEN signal is high, the ADSTB (Address Strobe) signal strobes the higher order byte of the DMA address
register using the data lines D0–D7.

MEMRD

MEMWR

I/O RD

I/O WR

8257

I/O RD

I/O WR

MEMRD

MEMWR

D – D0 7
A – A8 15

MEMR

MEMW

A – A0 7 A – A0 7

8257

HRQ

HLDA
AEN

TC

ADSTB

DRQ

Data Bus

Peripheral
Device

A – A0 15

A – A0 15

Memory

IOR

IOW

DACK

MEMR

MEMW

Depending upon the DMA read or DMA write operation, the control MEMR, MEMW, IOR and IOW are
activated properly by the 8257. After completion of one-byte data transfer, the content of the count register
is decremented by one and the address of the DMA address register is incremented by one. Then 8257 sends
the necessary control signals to transfer next byte. For each byte of data transfer, the DACK signal is active
low. When all the bytes are transferred, the terminal count (TC) signal becomes high.

Write a program for the data transfer from memory to a disk. Assume the start-
ing address of memory location is 8000H and sixteen data will be transferred.

The address of the DMA address register is 70H and the terminal count (TC)
register is 71H. The address of mode set register is 78H. Data transfer is done
though Channel 0.

Figure. 9.27 shows the application of DMA for the data transfer from memory to a disk. The program for the
data transfer from memory to a disk is given below:

Memory address Machine Codes Labels Mnemonics Operands Comments

9000 3E, 41 MVI A, 41H Bit D0 = 1 to enable Channel 0. Bit D6 = 1 to
 enable terminal count stop bit. The control word
 of mode set register is 41 H

9002 D3, 78 OUT 78H Load 41H into mode set register

9004 3E, 10 MVI A, 10H Number of data byte

9006 D3, 71 OUT 71H (10H) will be loaded into least significant byte
 of terminal count register

9008 3E, 80 MVI A, 80H Bit D7 = 1 to indicate the read operation,
 80H will be loaded into most significant byte
 of terminal count register

900A D3, 71 OUT 71H 16 bit starting address of memory location
900C 3E, 00 MVI A, 00H (8000H) will be written into DMA address
900E D3, 70 OUT 70H register of CH-0
9010 3E, 80 MVI A,80H
9012 D3, 70 OUT 70H

System RAM Memory
8257

ADDRESS BUS

Disk 1

Disk 2

Disk 3

Disk 4

DRQ0

DACK0

DRQ1

DACK1

DRQ2

DACK2

DRQ3

DACK3

CONTROL BUS

DATA BUS

IOW IOR

Write a program to transfer 45H byte data from a peripheral device to memory.
Assume the starting address of the memory location is 8000H. The address of the
DMA address register is 72H and the terminal count (TC) register is 73H. The
address of mode set register is 78H. Data is to be input through Channel 1.

Memory Machine

address Codes Labels Mnemonics Operands Comments

9000 3E, 41 MVI A,42H Bit D1 = 1 to enable channel 0. Bit D6 = 1 to
 enable terminal count stop bit. The control
 word of mode set register is 42 H

9002 D3, 78 OUT 78h Load 42H into mode set register

9004 3E, 10 MVI A,45H Number of data byte (45H) will be loaded
 into least significant byte of terminal count
 register

9006 D3, 71 OUT 73H Bit D15 = 0, D14 = 1 and D13–D8 = 0 for
9008 3E, 80 MVI A, 40H write DMA cycle, 40H will be loaded into
 most significant byte of terminal count
 register

900A D3, 71 OUT 73H 16 bit starting address of memory location
900C 3E, 00 MVI A, 00H (8000H) will be written into DMA address
 register of CH 1
900E D3, 70 OUT 72H
9010 3E, 80 MVI A, 80H
9012 D3, 70 OUT 72H

In any microprocessor-based system, the keyboard is most commonly used as input device and seven-seg-
ment display is used as output device. The programmer presses the keys on the keyboard as desired to feed
instruction or data to the CPU. Therefore, the board is constantly scanned to detect a pressed key. The display
section is also constantly supplied with data to hold it steady while the CPU operates as scan key and displays
it. The CPU will be heavily loaded and the system operation becomes slow, as less time will be available for
data processing or ALU operations. If a specific IC performs these operations, then the CPU can handle data
processing or ALU operations done very efficiently.

The 8279 is a general-purpose programmable keyboard and displays I/O interface device designed for
use in microprocessors. The keyboard portion can provide a scanned interface to a 64-contact key matrix. The
keyboard section can also be interfaced to an array of sensors or a strobed interface keyboard. Key depres-
sions can be 2-key lockout or N-key rollover. Keyboard entries are debounced and strobed in an 8-character
FIFO. When more than 8 characters are entered, the overrun status is set. Key entries set the interrupt output
line to the CPU.

The display portion provides a scanned display interface for LED, or any popular display device. Both
numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279 has a

16 × 8 display RAM. This 16 × 8 display can be organized into dual 16 × 4. The CPU can load the RAM. Both
right entry calculator and left entry typewriter display formats are possible. Both read and write of the display
RAM can be done with auto-increment of the display RAM address. The features of 8279 are given below:

 Simultaneous keyboard and display 2-key lockout or N-key rollover with contact
 operations debounce

 Scanned keyboard mode Dual 8- or 16-numerical display

Scanned sensor mode Right or left entry 16-byte display RAM

Strobed input entry mode Mode programmable from CPU

8-character keyboard FIFO Programmable scan timing

Single 16-character display Interrupt output on key entry

The 8279 is packaged in a 40-pin DIP. The pin
configuration of 8279 is depicted in Fig. 9.28. The
schematic diagram of 8279 is shown in Fig. 9.29.
The following is a functional description of each
pin.

All
data and commands between the CPU and the
programmable keyboard interface, of 8279 are
transferred on these lines.

Generally, a system clock is used
to generate internal timing.

A high signal on this pin resets the
8279. After being reset, the 8279 is placed in the
following mode:

–16 8-bit character display—left entry

–Encoded scan keyboard—2 key lockout and
the program clock prescaler is set to 31.

A low on this pin enables
the programmable keyboard interface 8279 to
receive or transmit data.

A high on this line
indicates that the signals in or out are interpreted
as a command or status. A low indicates that they
are data.

This output signal is activated
from microprocessor to 8279 to receive data from
external bus.

This signal enables the data
buffers to send data to the external bus.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

40

39

38

37

36

35

34

33

15

16

17

18

19

20

28

27

26

25

24

23

22

21

29

30

31

32

WR

RESET

CLK

IRQ

DB
7

GND A
0

8279

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

DB
0

RD

RL
7

RL
6

RL
5

RL
4

RL
3

RL
2

CS

BD

A
3

A
2

A
1

A
0

B
3

B
2

B
1

B
0

SL
0

SL
1

SL
2

SL
3

Shift

Cntl/STB

RL
0

RL
1

V
CC

In a keyboard
mode, the interrupt line is high when there is
data in the FIFO/Sensor RAM. The interrupt
line becomes low with each FIFO/Sensor RAM
read and returns high if there is still information
in the RAM. In a sensor mode, the interrupt
line goes high whenever a change in a sensor
is detected.

Scan lines are
used to scan the key switch or sensor matrix
and the display digits. These lines can be either
encoded (1 to 16) or decoded (1 of 4).

These are
return line inputs. These are connected to the
scan lines through the keys or sensor switches.
They have active internal pull ups to keep them
high until switch closures are pulled down. The
switches are connected between the scan lines
and return lines. These lines also serve as an
8-bit input in the strobed input mode.

The shift input status
is stored along with the key position on key
closure in the scanned keyboard modes. Till a
switch closure pulled low, it has an active internal pull up to keep it high.

In keyboard modes, the CNTL/STB line is used as a
control input and stored like status on a key closure. The line can be used as the strobe line that enters the
data into the FIFO in the strobed input mode. It has an active internal pull-up to keep it high until the line is
pulled down with a switch closure.

These are the output ports for the 16 × 4 display
refresh registers. The data from these outputs is synchronized to the scan lines (SL0–SL3) for multiplexed
digit displays. The two 4-bit ports may also be used as one 8-bit port. These two ports may be blanked
independently.

This output pin is used to blank the display during digit switching or by a blanking
command.

As data input and display are an integral part of all microprocessor designs, the system designer needs an
interface that can control these functions without placing a large load on the CPU. The 8279 provides this
function for 8-bit microprocessors. The 8279 has two sections: keyboard section with a set of four scan lines
and eight return lines and display section with a set of eight output lines for interfacing. The functional block
diagram is shown in Fig. 9.30 and the description of the major elements of the 8279 programmable keyboard/
display interface device is given below.

8279

IRQ

D – D
7 0

DATA BUS

40

20

9

22

3

21

11

10

4

RD

WR

A0

CLK

CS

RESET

GND

VCC
BD

37

22

36
SHIFT

CNTL/STB

OUT B – B
0 3

OUT A – A
0 3

SL – SL
0 3

RL – RL
0 3

The I/O control section uses the CS, WR, RD and A0 lines to
control data flow to and from the various internal registers and buffers. All data flow to and from the 8279
is enabled by CS. The character of the information, given or desired by the CPU, is identified by A0. A logic
one means the information is a command or status. A logic zero means the information is data. RD and WR
determine the direction of data flow through the data buffers. The data buffers are bi-directional buffers that
connect the internal bus to the external bus. When the chip is not selected (CS = 1), the devices are in a high
impedance state. The drivers input using WR, CS and output using RD, CS control signals.

STATUS

FIFO/SENSOR

RAM

KEYBOARD

DEBOUNCE

and CONTROL

RETURN

CNTL/

STB

SHIFT

RL – RL
7 0

SCAN

COUNTER
SL – SL

3 0

8 × 8

FIFO/SENSOR

RAM

CONTROL

& TIMING

REGISTER

TIMING

and

CONTROL

DISPLAY

REGISTERS

16 × 8

DISPLAY RAM

DISPLAY ADDRESS

REGISTERS

BD

OUTB –

OUTB

3

0

OUTA –

OUTA

3

0

DATA

BUFFER

I/O

CONTROL

IN
T
E
R
N
A
L
D
A
T
A
B
U
S

IRQ

A0

CS

RD

WR

RESET

CLK

DB – DB
7 0

These registers store the keyboard
and display modes and other operating conditions programmed by the CPU. When A0 = 1, the modes are
programmed by presenting the proper command on the data lines and then sending a WR. The command
is latched on the rising edge of WR. The command is then decoded and the appropriate function is set. The
timing control unit controls the basic timing counter chain. The first counter is a ÷ N pre-scaler that can be
programmed to yield an internal frequency of 100 kHz which gives a 5.1 ms keyboard scan time and a 10.3
ms de-bounce time. The other counters divide down the internal operating frequency of 8279 to provide the
proper key scan, row scan, keyboard matrix scan, and display scan times.

The scan counter has two modes such as encoded mode and decoded mode. In the
encoded mode, the counter provides a binary count that must be externally decoded to provide the scan lines

for the keyboard and display. In the decoded mode, the scan counter decodes the least significant 2 bits and
provides a decoded 1 of 4 scan on SL0–SL3 while the keyboard is in decoded scan, it can display. This means
that only the first 4 characters in the Display RAM are displayed. In the encoded mode, the scan lines are
active high outputs. In the decoded mode, the scan lines are active-low outputs.

The 8 return lines are buffered
and latched by the return buffers. In the keyboard mode, these lines are scanned, for key closures in row
wise. When the debounce circuit detects a closed switch, it waits about 10 ms to check if the switch remains
closed. If the switch is closed, the address of the switch in the matrix, the status of SHIFT and CONTROL
are transferred to the FIFO. In the scanned sensor matrix modes, the contents of the return lines are directly
transferred to the corresponding row of the Sensor RAM (FIFO) each key scan time. In strobed input mode,
the contents of the return lines are transferred to the FIFO on the rising edge of the CNTL/STB line pulse.

In keyboard or strobed input modes, this block is a dual function
8 × 8 RAM and it operates in FIFO. Each new entry is written into successive RAM positions and then can
be read in order of entry. FIFO status keeps track of the number of characters in the FIFO and whether it is
full or empty. Too many reads or writes will be recognized as an error. The status can be read by an RD with
CS low and A0 high. The status logic also provides an IRQ signal when the FIFO is not empty. In scanned
sensor matrix mode, the memory unit acts as a Sensor RAM. Each row of the Sensor RAM is loaded with
the status of the corresponding row of sensor in the sensor matrix. In this mode, IRQ is high if a change in a
sensor is detected.

The display address registers hold the
address of the word currently being written or read by the CPU and the two 4-bit nibbles can be displayed.
The read/ write addresses are programmed by CPU command. The address can be automatically updated
after each read or write operation. The CPU can directly read by the Display RAM after the address is set.
The addresses for the A and B nibbles are automatically updated by the 8279 to match data entry by the CPU.
The A and B nibbles can be entered independently or as one word, depending upon the mode set by the CPU.
Data entry to the display can be set to either left or right entry.

The 8279 is designed to directly connect to the microprocessor bus. Then CPU can program all operat ing
modes for the 8279. The 8279 operates in input (keyboard) modes and output (display) modes:

8279 has three input modes, namely, scanned keyboard, scanned
sensor matrix, and strobed input.

In this mode, 8279 can be encoded (8 × 8 key keyboard) or decoded (4 × 8 key
keyboard) by scan lines. A key depression generates a 6-bit encod ing of key position. Position, and shift and
control status are stored in the FIFO. Keys are automatically debounced with 2-key lockout or N-key rollover.

In this mode, a sensor array will be interfaced with 8279 with encoded (8 ×
8 matrix switches) or decoded (4 × 8 matrix switches) scan lines. Key status are stored in RAM addressable
by CPU.

Data on return lines during control line strobe is stored in the FIFO.

8279 provides two output modes such as display scan and display entry.

 In this mode, Programmable Key Board and Display Controller 8279 provides 8 or 16
character multiplexed displays that can be organized as dual 4-bit or single 8-bit (B0 = D0, A3 = D7) display unit.

Right entry or left entry display formats are executable for 8279 IC.

The following commands program the 8279 operating modes. The commands are sent on the data bus with
CS = 0 and A0 =1 and are loaded to the 8279 on the rising edge of . All commands of 8279 are discussed below:

The command-word format to select different modes of operation
of 8279 is given below:

MSB LSB

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 D D K K K

where DD is the display mode and KKK is the keyboard mode.

0 0 Eight 8-bit character display—Left entry

0 1 Sixteen 8-bit character display—Left entry

1 0 Eight 8-bit character display—Right entry

1 1 Sixteen 8-bit character display—Right entry

0 0 0 Encoded Scan Keyboard—2 Key Lockout

0 0 1 Decoded Scan Keyboard—2-Key Lockout

0 1 0 Encoded Scan Keyboard—N-Key Rollover

0 1 1 Decoded Scan Keyboard—N-Key Rollover

1 0 0 Encoded Scan Sensor Matrix

1 0 1 Decoded Scan Sensor Matrix

1 1 0 Strobed Input, Encoded Display Scan

1 1 1 Strobed Input, Decoded Display Scan

The clock for operation of 8279 is programmable. All timing signals are generated
by an internal prescaler, which divides the external clock by a programmable integer. Bits PPPPP determine
the value of the integer from 2 to 31. When the system clock frequency of 2 MHz is divided by 20 (10100) to
get the clock frequency 2/20 MHz or 100 kHz.

D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 P P P P P

The command format of Read FIFO/Sensor RAM is given below:

D7 D6 D5 D4 D3 D2 D1 D0

0 1 0 AI x A A A

X = Don’t Care, AI = Auto-Increment flag, AAA = Address pointer to 8-bit FIFO RAM

Initially, the command word must be written and the CPU sets the 8279 for a read of the FIFO/Sensor
RAM. In the scan keyboard mode, the Auto-Increment flag (Al) and the RAM address bits (AAA) are irrel-
evant. The 8279 will automatically drive the data bus for each subsequent read (A0 = 0) in the same sequence
in which the data first entered the FIFO. When AI flag is set, each subsequent read will be from the FIFO
until another command is issued.

In the sensor matrix mode, the RAM address bits AAA select one of the 8 rows of the Sensor RAM.
While the Al flag is set (Al = 1), each successive read will be from the subsequent row of the sensor RAM.

To read the display RAM data, the command format is shown below:

D7 D6 D5 D4 D3 D2 D1 D0

0 1 1 AI A A A A

AI = Auto-Increment flag, and AAAA = 4-bit address for 16-byte display RAM.

Firstly, the CPU writes this command to the 8279 for a read of the Display RAM. The address bits
AAAA are used to select one of the 16 rows of the Display RAM. When the Al flag is set (A1 = 1), this row
address will be incremented after each following read or write to the Display RAM. As the same counter
is used for both reading and writing, this command sets the next read or write address. The auto-increment
mode is used for both read and write operations.

To write the Display RAM data, the command format is shown below:

D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 AI A A A A

AI = Auto-Increment flag, and AAAA = 4-bit Address for 16-byte display RAM to be written.

By writing this command, the CPU sets up the 8279 for a write to the Display RAM. After writing the
command with A0 = 1, all subsequent writes with A0 = 0 will be to the Display RAM. The addressing and
auto-increment functions are identical to those for the read Display RAM.

This command format enables the programmer to display
write inhibit/blanking operation.

D7 D6 D5 D4 D3 D2 D1 D0

1 0 1 x IW IW BL BL

Output nibbles A B A B

The IW bits can be used to mask nibbles A and B in case of separate 4-bit display ports. The output lines
are divided into two nibbles (OUTA0–OUTA3) and (OUTB0–OUTB3). By setting the IW flag (IW = 1) for
one of the ports, the port becomes marked so that entries to the Display RAM from the CPU do not affect that
port. As a result, each nibble is input to a BCD decoder, and the CPU may write a digit to the Display RAM
without affecting the other digit being displayed. In this case, the bit B0 corresponds to the bit D0 on the CPU
bus, and that the bit A3 corresponds to bit D7.

If the user requirements is to blank the display, the BL flags are available for each nibble. Both BL bits
will be cleared for blanking both nibbles.

This command format for clear display RAM operation is given below:

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 CD2 CD1 CD0 CF CA

The CD2, CD1, CD0 bits are available in this command to clear all rows of the Display RAM to a select-
able blanking code as given below:

CD2 CD1 CD0

1 0 x All zeros x don’t care

1 1 0 A3–A0 = 2 (0010) and B3–B0 = 0 (0000)

1 1 1 All ones

CD2 must be 1 for enabling the clear display command. When CD2 = 0, the clear display command is
invoked by setting CA = 1 and CD1, CD0 bits must be same.

If the CF bit is 1, the FIFO status is cleared and the interrupt output line is reset. Also, the Sensor RAM
pointer is set to row 0.

If the clear all bit (CA) is set to 1, this combines the effect of CD and CF bits. This CA uses the CD clear-
ing code on the Display RAM and also clears the FIFO status.

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 E x x x x

For the sensor matrix modes, this command lowers the IRQ line and enables further writing into RAM.
Therefore, if any in-sensor value is detected, the IRQ line becomes high which inhibits writing into the RAM.

For the N-key rollover mode, if the E bit is programmed to ‘1’, the 8279 IC can operate in the special
error mode.

In the scanned keyboard mode, the character entered into the FIFO corresponds to
the position of the switch in the keyboard plus the status of the CNTL and SHIFT lines. CNTL is the MSB of
the character and SHIFT is the next most significant bit. The next three bits D5–D3 are from the scan counter
and indicate the position of the row the key was found in. The last three bits D2–D0 are from the column
counter and indicate the position of the column on which the key is pressed.

D7 D6 D5 D4 D3 D2 D1 D0

CNTL SHIFT SCAN RETURN

In the sensor matrix mode, the data on the return lines (RL7–RL0) is entered directly in the row of the
Sensor RAM that corresponds to the row in the matrix being scanned. Therefore, each switch position maps
directly to a Sensor RAM position. The SHIFT and CNTL inputs are ignored in this mode and switches are
not necessarily the only things that can be connected to the return lines. Any logic that can be triggered by
the scan lines can enter data to the return line inputs. Eight multiplexed input ports could be tied to the return
lines and scanned by the 8279.

D7 D6 D5 D4 D3 D2 D1 D0

RL7 RL6 RL5 RL4 RL3 RL2 RL1 RL0

The left-entry mode is the simplest display format. This mode is just like typewriter mode.
In this mode, each display position directly corresponds to a byte in the display RAM. The first entry goes to
the left most display position of the Display RAM; the second entry to just the right of the first one. In this
way, the 16th entry goes to the 15th address position of Display RAM. Entering characters from position zero
causes the display to fill from the left. Therefore, the 17th entry goes to the Display RAM address 0 and 18th
entry goes to Display RAM address 1 as depicted in Fig. 9.31.

The right entry mode is most commonly used in electronic calculators. The first entry is
placed in the right most display character of Display RAM. The second entry goes to the right most character
after the display is shifted left one character as shown in Fig. 9.32. In this way, the 17th entry goes to the
Display RAM address 0 and the 18th entry goes to Display RAM address 1 and the left most character is
shifted off the end and is lost. In this mode, there is no correspondence between Display RAM address and
the display position.

Display RAM Address

14 151

1 entry
st

15 02 3

2 entry
rd

14 150 1

16 entry
th

14 151 2

2

15 02 3

3

17 entry
th

18 entry
th

3

4 16 17

15 16

15 16

1

18

3 4

3 entry
rd

1 2

0

17

14

13

1 2

2 31

0

1

1 2

0

1

Display RAM Address

14 150 1

11 entry
st

14 150 1

12 entry
rd

14 150 1

116 entry
th

14 150 1

17

14 150 1

17

2

17 entry
th

18 entry
th

2

2

18 15 16

15 16

15 16

The 8279 can be used as a memory mapped I/O
or as an I/O mapped I/O device. The interfacing
of 8279 with the microprocessor in I/O mapped
I/O mode is depicted in Fig. 9.33. This circuit
consists of 8 data lines, RESET, RD, WR, CS,
CLK and C / D.

8 data lines D7–D0 are connected to the data
bus of the microprocessor.

The RESET signal is connected to the
RESET OUT of the microprocessor. RD and WR
signals are connected to IOR and IOW control
signals.

The address decoder output is also con-
nected to the CS pin of 8279 in order to access
the IC as an I/O mapped device. When the CS
signal is active low, the device can communicate
with the microprocessor. The address of the data
port is 30H and the address of the command port
is 31H. The command/data signal is connected
to A0 address line of the microprocessor for
addressing data register and command register sequentially. The clock signal CLK is linked to the system
clock.

The keyboard interface of 8279 is depicted in Fig. 9.34. To recognize the keyboard data, the device has a key-
board buffer RAM. The scan lines S0, S1 and S3 are used as inputs of 3 lines to 8 lines decoder. The decoder
output lines drive eight rows of keys. The return lines RL0–R7 are used as column lines for the keyboard. The
8 row and 8 column signals can enable the 8279 to interface a 64-key keyboard.

Sometimes one key may have more than one function. The shift and control keys are used generally for
this purpose. When any key and either shift or control or both are pressed together, three more function keys
are available from a key. In this way, 64 keys are able to provide 256 functions. For this purpose, control and
shift lines take care of the control and shift keys. Once a key is pressed, an 8-bit code must be loaded into the
buffer RAM and the interrupt request sends a signal to the microprocessor which can indicate that the buffer
RAM is not empty.

Figure 9.35 shows the sixteen-digit display using 8279. This consists of sixteen 8 bit buffer RAM to hold the
8-bit data for 16 characters or digits. All display digits are multiplexed by four lines to sixteen lines decoder.
Therefore, all digits are not turned ON at a time, but they are ON sequentially. The four scan lines output 0 to
15 in a cyclic manner, which can be decoded into 16 different lines by the decoder to select any one digit of
the 16-character display. The lines A0–A3 and B0–B3 send the 8-bit information for display. The BD is used
to blank all display digits. If the first digit is selected for display, the content of the first display buffer will
be placed in A0–A3 and B0–B3 lines.

WR

Data Bus

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

CLK CLK

CS

C/D

D – D
0 7

RESET RESET

IOW

RD IOR

8279

IRQ

Data

Bus

RD

WR
RESET

CS
A

0

CLK

Shift

CNTL

8279

S
2

S
1

S
0

3 Line to 8

Line Decoder

T T T T T T T T
TTTTTTTT

T T T T T T T T
T

TT
TT

TT
T

T
T

T
T

T
T

T
T

T
T

T

T
T

T

T
T

T

T
T

T

T
T

T

T
T

T

T
T

T

T
T

T

RL
7

R
6

L

R
5

L

R
4

L

R
3

L

R
0

L

R
1

L

R
2

L

4 line to 16 line
decoder

16 Nos. of Display
Buffer RAM

S0

S1

S2

S3

A – A0 3

B – B0 3

BD Blank Display

The 8275 programmable CRT controller is a single-chip device that generates all the signals which are used
for interfacing a microprocessor system. The main function of the 8275 CRT controller is to refresh the dis-
play by buffering the information from the main memory. This is also used to keep track of the current display
position of the screen. This device has the following features:

 Programmable screen and character format

 Six independent visual field attributes

 Eleven visual character attributes

 Four types of cursor control

 Light pen detection and registers

 Duel row buffer

 Programmable DMA burst mode

Figure 9.36 shows the internal architecture of the 8275 CRT controller and its functional description of each
block have been explained below:

This tri-state bi-directional 8-bit buffer is used to interface the 8275 with the
system data bus. The data bus buffer accepts inputs from the system control bus and generates control signals
for overall device operation. It consists of the command, parameter and status registers. This bus is also used
to read or write the internal registers of 8275 CRT controller.

When RD is active low, the CPU can read data or status information from the 8275.

If WR is active low, the CPU can write data or control words to the 8275.

When the DRQ output pin is high, the 8275 desires a DMA transfer.

The active low input on DECK pins informs the 8275 that a DMA cycle
is in progress.

When the IRQ output pin is high, it informs the CPU that 8275 desires
interrupt service. The operation of read/ write /DMA control logic function is given in Table 9.6.

A0 RD WR CS Operations

0 0 1 0 Write 8275 parameter Register

0 1 0 0 Read 8275 parameter Register

1 0 1 0 Write 8275 command Register

1 1 0 0 Read 8275 status Register

x 1 1 0 Tri-state

x x x 1 Tri-state

The character counter is a programmable counter. It is used to determine the
number of characters to be displayed per row and the length of the horizontal retrace interval. This is driven
by CCLK (Character Clock) input.

This is a programmable counter. It is used to determine the number of horizontal
lines (sweeps) per character row.

The row counter is a programmable counter. It is used to determine the number of
character rows to be displayed per frame and the length of vertical retrace interval.

The light pen registers consists of two registers that can store the contents
of the character counter and row counter whenever a rising edge is detected at the LPEN input pin.

The raster timing circuit controls the timing of the
Horizontal Retrace (HRTC) and Vertical Retrace (VRTC) outputs. The video control circuit generates LA0–
LA1 (Line Attribute), HGLT (Highlight), RVV (Reserve Video), LTEN (Light Enable), VSP (Video Suppress)
and GPA0–GPA1 (General Purpose Attribute) output signals.

(2) 80 × 8 Rows

BuffersData Bus
BufferDB – DB0 7

A0

CS

WR

RD

DACK
IRQ

DRQ

READ/
WRITE
DMA
Control
Logic

Character
Counter CCLK

Buffers
Input

Controller

Buffers
Output

Controller

CC0–6

(2) 16 × 7 FIFOs

Line Counter

Row Counter

LC0–3

LC0–3

Raster Timing
and

Video Control

Light Pen Registers LPEN

GPA0–1

VSP
LTEN
RW
HLGT
VRTC
HRTC

The row buffers have two 80 character buffers. These buffers are filled from the
microcomputer system memory with the character codes to be displayed. When a row buffer is displaying a
row of characters, the other is being filled with the next row of characters to be displayed later.

There are two sixteen-character FIFOs in the 8275 CRT controller. FIFOs are used to provide
extra row buffer length in the transparent attribute mode.

The buffer input/output controllers are used to decode the
character information being placed in the row buffers.
When the character is a character attribute, field attribute
or a special code, these controllers decide the appropriate
action.

The pin diagram of 8275 CRT controller is shown in
Fig. 9.37 and the function of each pin is explained in
this section:

These are the
output signals of the line counter which is used to address
the character generator for the current line position on
the screen.

This output signal
is used to request the 8257 DMA controller for a DMA
operation.

The DACK
input signal is used to acknowledge that the requested
DMA cycle has been accepted.

The
HRTC output signal is active during the programmed
horizontal retrace interval. During the active HRTC, the
VSP is high and the LTEN is low.

The VRTC
output signal is active during the programmed vertical
retrace interval. During this period, the VSP is high and
the LTEN is low.

This RD is a control signal to
read the internal registers of 8275.

The WR input control signal
is used to write commands into the control registers of
8275 or to write data into the row buffers during a DMA
cycle.

This is an input signal from the CRT controller which informs the 8275 that
a light pen signal has been detected.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

40

39

38

37

36

35

34

33

15

16

17

18

19

20

28

27

26

25

24

23

22

21

29

30

31

32

8275

LC
3

LC
2

LC
1

LC
0

DRQ

DACK

HRTC

VRTC

RD

WR

LPEN

DB
0

DB
1

DB
2

DB
3

DB
4

DB
5

DB
6

DB
7

GND

VCC

LA
0

LA
1

LTEN

RVV

VSP

GPA
1

HLGT

IRQ

CCLK

CC
6

A0

GPA
0

CC
5

CC
4

CC
3

CC
2

CC
1

CC
0

CS

The DB7–DB0 lines are bidirectional tri-state data buses that are
used for read or write operations from/to the 8275 internal registers.

This output signal is used to blank the video signal to the CRT.
This signal is active high,

 During the horizontal and vertical retrace intervals,

 At the top and bottom lines of rows, if an underline is programmed to be at line number 8 or greater
than 8

 When an end-of-screen or an end-of-row is detected

 When DMA under-run occurs

 At regular intervals to create blinking displays if specified by the cursor character attribute or field
attributes programmed

This output signal is used to indicate the CRT circuit to reverse the
video signal. This is active at the cursor positions, when a reverse video block cursor is programmed.

The LTEN output signal is used to enable the video signal to CRT.
This output is active at the programmed underline cursor position and at the position specified by the attribute
codes.

The input address line is A0. When this pin is high, it selects the ‘C’ port or
the command register is selected and if it is low, the ‘P’ port or the parameter register of 8275 will be selected.

These are output lines from the row buffers used for character
selection from the character generator.

The read and write operations are enabled by CS.

This is a clock input terminal that is driven by the dot/timing logic.

The IRQ output pin is used to generate an interrupt request to the
CPU.

This output signal is used to intensify the display at the particular positions
on the screen as specified by the character attribute codes or the field attributes codes.

These output signals are enabled by the
general-purpose field attribute codes.

These line attribute codes have to be decoded externally
by the dot/timing logic to generate the horizontal and vertical line combinations for the graphic displays as
specified by the character attribute codes.

This pin connected with +5 V power supply.

The ground pin of 8257 is connected to power supply ground terminal.

Figure 9.38 shows the interfacing of the 8275 CRT controller with an 8257 DMA controller. The 8275 CRT
controller operates with an 8257 DMA controller and the standard character generator ROM for dot matrix
decoding in a microprocessor based system. The dot-level timing signals are provided by an external circuit.

The 8257 is programmable to a large number of display formats. This controller provides raster timing,
display row buffering, visual attributes decoding, cursor timing and light pen detection. Initially, the 8275

picks up a row of characters to be displayed from the system memory and
load thems into an 80-character row buffer. When one of the two buffers
is filled up with characters, the other buffer is on display. In this way, the
two row buffers are used to display one by one till the complete display
is over.

The number of characters per row and the number of rows per display
frame are programmable. While one buffer is being displayed and the
other is busy in already displayed then the 8275 CRT controller sends a
request for a DMA cycle to fill the already displayed buffer. This process
will continue till the complete display frame is over.

The 8275 displays characters rows one line at a time as shown in Fig.
9.39. The 8275 controls the raster timing. This is possible by generating
horizontal retrace (HRTC) and vertical retrace (VRTC) signals. The tim-
ing of these signals is also programmable. The 8275 generates a cursor
and location of cursor is programmable.

The analog-to-digital conversion (ADC) is the reverse operation of dig-
ital-to-analog conversion (DAC). Figure 9.40 shows the block diagram
of ADC, which consists of filter, sample and hold, quantizer and digital
processor. The filter circuit is used to avoid the aliasing of high-frequency
signals and passes the baseband frequency signal of ADC. Sometimes
this filter is also called antialiasing filter. After the filter, a sample and
hold circuit is used to maintain constant the analog input voltage of ADC
during the period when the analog signal is converted into digital. This
time period is also called conversion time of ADC. The quantizer circuit is
used after sample and hold to segment the reference voltage into different

MEMORIES

SYSTEM BUS

8257

DMA

CONTROLLER

8
2
5
7

C
R
T

C
O
N
T
R
O
L
L
E
R

DACK

DRQ

VIDEO CONTROLS

CCLK

CHARACTER

GENERATOR
DOT

TIMING

AND

INTERFACE

VIDEO SIGNAL

HORIZONTAL SYNC

VERTICAL SYNC

INTENSITY

MEMR

IOR

CS

MEMW

IOW A DB
0 0–7

HRD

HACK

WR RD

CS IRQ

LC
0–3

CC
0–6

DB –DB
7 0

1st

Character

2nd

Character

3rd

Character

First Line of a Character Row

1st

Character

2nd 3rd

Second Lline of a Character Row

Third Line of a Character Row

Seventh Line of a Character Row

Character Character

1st

Character

2nd 3rd

Character Character

1st

Character

2nd 3rd

Character Character

ranges. If ‘N’ number of digital bits represents analog voltage, there are 2N possible subranges. The quan-
tizer determines the specified subranges corresponding to an analog input voltage. The digital processor
can encode the corresponding digital output. There are different types of ADCs. The classifications of ADC
architectures based on speed are slow-speed ADCs, medium high-speed ADCs and fast speed ADCs. Single-
slope and dual-slope serial ADCs are slow-speed type and their resolution is very high and accuracy is very
good. Medium-speeds ADCs are successive approximation ADCs, and parallel or flash ADCs are high speed
ADCs. Resolution is moderate for medium-speed ADCs and low for flash ADCs. Accuracy of medium-speed
ADCs is good but flash ADCs have limited accuracy.

Counting-type ADCs are of two types; single-slope serial ADC and dual-slope serial ADC. The operation of
a counting A/D converter is given below:

The principle of operation of single-slope serial ADC is to generate a ramp voltage using DAC, which is
compared with the analog input voltage. At the start of the ramp, the counter is started to count from the initial
value. When the ramp reaches the analog input voltage, the counter is stopped. The digital value in the coun-
ter is directly related to the input voltage. This converter takes longer time to convert a large voltage than a
small one and some control signals are required for the start of conversions and end of conversions. The maxi-
mum conversion time is 2NT, when 2N clock pulses are required to convert, where N is the number of bits,
T is the clock period. The disadvantage of this ADC is that it is unipolar due to single-slope ramp generator.

Figure 9.41 shows the block diagram of a single-slope analog-to-digital converter. This converter con-
sists of a ramp generator, binary counter, comparator, and AND gate. Here, the counter is used to generate a
digital output. Initially, an analog input is sampled and held and then applied to the positive terminal of the
comparator. The counter is in reset condition and the clock is applied in AND gate and counter. When the first
clock pulse is applied, the ramp generator starts to integrate a reference voltage V. When Vin is greater than
the output of the ramp generator, the comparator output is high and a clock pulse is applied to the counter
to count clock pulses. If the output of the ramp generator is equal to Vin, the comparator output is low. The

Digital
OutputFilter

Sample
&

Hold
Quantizer

Digital
Processor

Analog

Input

DAC

Compartor

–

+

Clock

Counter
Analog Input

Vin

Ramp

b
N–1

Digital output
b0

output of the counter is the desired digital output of analog voltage. Single-slope serial ADC with start of
conversion (SC) and end of conversion (EC) is illustrated in Fig. 9.42. The conversion sequence of single-
slope ADC is given below:

 (i) Start of conversion signal resets the
counter to zero, and enables the gate to
allow clock pulses to be counted in the
counter.

 (ii) The counter outputs are fed into a DAC
to generate a ramp output.

 (iii) Then the ramp output is compared with
the sampled input signal. The gate out-
put is high till the ramp voltage equals
the input signal.

 (iv) When the ramp output voltage is equal to
the input signal, the gate output becomes
low and counting stops.

 (v) The gate-disabled signal can be used to
indicate the end of conversion.

Figure 9.43 shows the timing diagram of
single slope ADC.

The major drawback of single-slope and dual-slope ramp and counter types of ADC is that the length of
conversion time is very high. The maximum conversion time is 2N clock cycles, where ‘N’ is the number of
bits. To reduce the conversion time, successive approximation type ADC is very much useful. This converter
is similar to counter-type ADC, but this converter uses a pattern generator rather than a clock to obtain digital
equivalent value. The pattern generator simply sets one bit at a time starting with the MSB. Therefore, the
approximation starts by placing logic 1 on the Most Significant Bit (MSB). Then the output of the DAC is
compared with the sampled input signal. If the output of the DAC is too high, MSB is reset to logic 0, but if

Start of conversion

SC

Analog input Vin

Ramp Output

t = 0 t = Tc

t

t

TcEnd of conversion
EC

DAC

Compartor

–

+

Clock

Counter
Analog Input

Vin

Ramp

b
N–1

Digital output

b0

SC

Reset

EC

digital control logic is to determine the value of each bit in a sequential manner based on the output of the
comparator. The conversion process starts with sampling
and holding the analog voltage when the start of conver-
sion signal is given. The digital control logic sets the
MSB and resets all other bits. This digital data is fed to
DAC, which generates analog voltage Vref/2 and applies
to the comparator to compare with the input voltage Vin.
When the comparator output is high, the digital control
logic makes the MSB 1. If the comparator output is low,
the digital control logic makes the MSB 0. After com-
pletion of this step, the next MSB is 1 and other bits are
0. Again, the sampled input is compared to the output of
the DAC with this digital data. When the comparator is
high, the second bit is proven to be 1. If the comparator
is low, the second bit is 0. In this way, the process will
continue until all bits of digital data have not checked
by successive approximation. The suc-
cessive approximation process for con-
verging to the analog output voltage of
DAC is shown in Fig. 9.45 (a) and (b).
The number of cycles for conversion for
N-bit ADC is ‘N’. The bipolar analog to
digital conversion can be achieved by
using a sign bit either + V or – V.

it is too low it is left at logic 1 and the next bit is set. This process is repeated until all bits are at the correct
logic levels in sequence. Consequently, an N-bit ADC will only need ‘N’ attempts before all the bits are cor-
rected. Therefore, conversion time is independent of the size of the analog voltage but it depends upon the
number of bits.

Figure 9.44 shows the successive-approximation-type ADC converter. This converter consists of a com-
parator, a DAC, digital control logic and Successive Approximation Register (SAR). The function of the

EC

SAR

Comparator

DAC

Control
LogicClock

SC

Analog input

–
+ Digital Output

bn–1

b0

1100

Analog input voltage

Digital output1010

1000

1011

Data
output

Data
output

EOC

SC

Figure 9.46 shows a flash ADC. In case of a three-bit flash ADC, reference voltage V is divided into eight

different voltages , , , , , , ,
14 14

3
14
5

14
7

14
9

14
11

14
13

 and V. Each voltage is applied to the non-inverting
terminal of a comparator. The outputs of comparators are fed to the encoder, and the encoder output is the
digital data of analog input. When Vi is .7V, the output of comparator C7 and C6 are 1 and other comparators
C5, C4, C3, C2, C1 are low. In this case, the digital output of encoder is 101, which is equivalent to analog
input voltage. Therefore, flash-type ADC converter converts analog voltage into digital output in one clock
pulse but in two phases. In the first phase, the analog input voltage is sampled and applied to the comparator
inputs. In the second phase, digital encoder determines the correct digital output and stores it in a register.
Flash ADC can be used as bipolar converter when weighted resistances are connected between +V and –V.
Table 9.7 shows the analog input, comparator output, and digital output of flash-type ADC.

The advantage of a flash converter is high speed but many comparators are required. For a three-bit
flash converter, 7 comparators are required and an 8-bit flash converter requires 255 comparators on a chip.
Therefore, power dissipation is very large.

Analog input voltage Comparator outputs Digital output

Vi C7 C6 C5 C4 C3 C2 C1 b2 b1 b0

0 Vi < V/14 0 0 0 0 0 0 0 0 0 0

V/14 < Vi < 3V/14 0 0 0 0 0 0 1 0 0 1

3V/14 < Vi < 5V/14 0 0 0 0 0 1 1 0 1 0

5V/14 < Vi < 7V/14 0 0 0 0 1 1 1 0 1 1

7V/14 < Vi < 9V/14 0 0 0 1 1 1 1 1 0 0

9V/14 < Vi < 11V/14 0 0 1 1 1 1 1 1 0 1

11V/14 < Vi< 13V/14 0 1 1 1 1 1 1 1 1 0

13V/14 < Vi V 1 1 1 1 1 1 1 1 1 1

Generally, manufacturers use the following specifications of analog-to-digital converter:

 Analog input-voltage range

 Input impedance

 Accuracy

 Quantization error

 Resolution

 Conversion time

 Format of digital output

 Temperature stability

It is the maximum allowable input-voltage range in which ADC
will operate properly. Actually, it is the difference between the smallest and largest analog input voltages to
use the full range of digital outputs. Typical values are 0 to 10V, 0 to 12V, ±5V, ± 10V, and ±12V.

The input impedance of ADC varies from 1 Kohm to 1 Mohm, depending on
type of ADC. Input capacitance of ADC is approximately some picofarads.

The full-scale range of analog input voltage is quantized for conversion to
a finite number of steps. The error is process of quantization is called as quantization error. Generally, the
quantization error is specified as ½ LSB .

The accuracy of an ADC depends on quantization error, digital system noise, gain error,
offset error, and deviation from linearity, etc. Accuracy is determined form sum of all types of errors. Typical
values of accuracy are ±0.001%, ±0.01%, ±0.02%, and ±0.04% of full-scale value.

The resolution is defined by the ratio of reference voltage to number of output states..
Actually it is smallest change in analog voltage for LSB.

Resolution = Reference voltage/(2N-1) where N = Number of bits of the ADC.

The conversion time of medium speed ADC is about 50 µs and high speed
ADC’s conversion time is about some ns. Therefore conversion time varies from 50 µs to few ns for slow/
medium speed to high-speed ADC.

Generally ADC always uses any standard code, namely, unipolar
binary, bipolar binary, offset binary, one’s complement and two’s complement, etc.

Accuracy of A/D converter depends on temperature variation. Typical
temperature coefficients of error are 30 ppm/°C .

The simplified configuration of an ADC IC is shown in Fig. 9.47. The IC performs analog to digital
conversion by using — Start of Conversion (SC), End of Conversion (EOC) and output enable signals.
Commonly available ADC ICs are single channel 8-bit A/D converter ADC0800, eight channels 8-bit A/D
converter ADC0808/0809, twelve channels 8-bit A/D converter ADC0816/0817, 12-bit A/D converter ADC80.

–
+

–
+

–
+

–
+

–
+

–
+

–
+

Latches
8 Line
to 3 line
encoder

MSB

LSB

Digital output

b2

b1

b0

C7

C6

C5

C4

C3

C2

C1

Reference voltage
V

Analog input voltage
V

i

R

R

R

R

R

R

9
14

R
2

R
2

V

13
14

V

11
14

V

3
14

V

7
14

V

5
14

V

14

V

The ADC0800 is an 8-bit monolithic A/D converter using P channel
ion-implanted MOS technology. It consists of a high input impedance
comparator, 256 series resistors and analog switches, control logic
and output latches as shown in Fig. 9.48. Conversion is per-
formed using a successive approximation technique where the
unknown analog voltage is compared to the voltage of R network
using analog switches. When the appropriate R network voltage
matches the unknown voltage, conversion is complete and the
digital outputs will be an 8-bit complementary binary word cor-
responding to the unknown voltage. Figure 9.49 shows the timing diagram of this converter. The features of
the ADC0800 are low cost, input ranges ±5V to ± 10V, no missing codes, ratiometric conversion, Tri-state
outputs, contains output latches, TTL compatible, supply voltages 5 VDC and b12 VDC, resolution of 8 bits,
linearity ±1 LSB, conversion speed 40 clock periods, clock range 50 to 800 kHz. Table 9.8 shows the maxi-
mum values of ADC’s performance characteristics.

R-Network
Bottom

Vin

Analog
Input

5 12 4 3 2 1 17 16 14 13

LSBMSB

Complementary
Digital Output

Digital Ground

8-Bit
Latch V

DD18

7

8

9

6

11

–V
GG

Tri-State
output
enable

®

End of
Conversion
(EOC)

Start
Conversion
(SC)

Clock

V
ss

(PMOS body)

10

P

N

-Resistor
-Body

R-Network
Top

15

256R
Network

450

300

300

150

Comparator

Analog
Switches

Selection
and
control
logic

Analog
Input

Start of
Conversion

End of
Conversion

ADC IC
Digital
Output

Clock
input

Start
conversion

EOC

Output
enable

Data

Enable
delay

(Tri State)

Disable
delay

40×(1/f)

50%

90%

10%

90%

10%

50%

+5V

0V

+5V

0V

+5V

0V

+5V

0V

+5V

0V

Parameters Maximum value

Non-Linearity ±2 LSB

Differential Non-Linearity ±½ LSB

Zero Error ±2 LSB

Zero Error Temperature Coefficient 0.01 %/ºC

Full-Scale Error ±2 LSB

Full-Scale Error Temperature Coefficient 0.01 %/ºC

Input Leakage current 1 µA

Clock Frequency 800KHz

Clock Pulse Duty Cycle 60 %

TRI-STATE Enable/Disable Time 1 µs

Start Conversion Pulse 3½ clock pulse

Power Supply Current 20 mA

The ADC80 is a 12-bit successive approximation type A/D converter. It is available in a 32 pin DIP. The
important performance characteristics of ADC80 is given in Table 9.9.

 Parameters Maximum value

 Linearity error ±0.012%

 Differential non-linearity ±½ LSB

 Full-scale error temperature coefficient 30 ppm/ºC

 Conversion time 25 µs

 Analog input voltage ±2.5 V, ±5 V, ±10 V, 0 to 5 V, 0 to10 V

 Digital output format Unipolar and bipolar

 Power loss 800 mW

Figure 9.50 shows the interfacing connections of ADC0800 with the 8085 microprocessor. Here, 8255 is used
in between ADC 0800 and 8085 microprocessors. Port A and Port C lower of 8255 are used as inputs and
Port B and Port C upper of 8255 are used as outputs. The control word of 8255 when Port A and Port C upper
are used as inputs and Port B and Port C lower are used as outputs is 98H. The address of Port A is 00H, the
address of Port B is 01H and the address of Port C is 02H. The control word address is 03H.

Analog
Input

A/D
Converter

SC

EOC

Port A

8255
I/O Port

To
Microprocessor

Port C upper

Port C lower

PC3

PC2

PC1

PC0

PC7

The Start Of Conversion (SC) of ADC is connected with PC3 of Port C lower, the End Of Conversion
(EOC) is connected with the PC7 of Port C upper. The output of ADC IC is also connected with Port A of
8255.

Initially, the start of conversion signal will be high to start the conversion process. For this, 08H is sent to
Port C by the microprocessor. The port address of Port C is 02H. The instruction OUT 02 sends the content
of the accumulator to Port C lower and the SC pin becomes high. This pin signal will be high only for clock
pulse duration as it is used to start the conversion process only. Therefore, 00H is loaded into the accumula-
tor by instruction MVI A,00H. The OUT 02 instruction makes the pin PC3 low. When the analog-to-digital
conversion has been started, some times are taken by the conversion process. At the End Of Conversion, the
ADC sends the End of Conversion Signal (EOC). So the microprocessor should check the EOC signal from
time to time. If EOC is high, ADC conversion has been completed. To check EOC signal IN 00H and RAL
instructions are used. If carry is generated, the EOC becomes high and the conversion has been completed.
When no carry is generated, it means that conversion is not completed, so it jumps to the level LOOP to
recheck the status of PC7. After completion of conversion, the microprocessor reads the output of ADC
through the instruction IN 00H. As the ADC output is available in complement form, the CMA instruction
is used to convert into the final result. Then the result, content of accumulator can be stored into a specified
memory location. Result of ADC conversion is given in Table 9.10. The program for ADC interfacing is given
below:

Memory Machine
addrress Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A, 98H Load control word (98H) of 8255 in accumulator

8002 D3, 03 OUT 03H Write control word in control word register and
 initialize ports

8004 3E, 08 MVI A, 08H Send start of conversion signal through PC3

8006 D3, 02 OUT 02H PC3 is high

8008 3E, 00 MVI A,00H As PC3 will be high for one or two clock pulse,
 make it 0

800A D3,02 OUT 02H PC3 becomes low

800C DB, 02 LOOP IN 02 Read end of conversion signal

800E 17 RAL Rotate accumulator to check either conversion is
 over or not.

800F D2, 0C, 80 JNC LOOP If conversion is not completed, jump to LOOP

8012 DB, 00 IN 00 Read digital output of A/D converter

8014 2F CMA Complement of ADC output

8015 21, 00, 81 LXI H,8100H

8018 77 MOV M, A Store accumulator content in 8000H location

8019 76 HLT Stop

Analog Input Digital output

5V FF

4V ED

3V C7

2V B9

1V 93

0V 80

It is clear from the above result that for 5 V analog input digital output is FFH and for 0 V input, the digital
output is 80H. To modify the output result, 80 is subtracted from result. Then the modified result is given in
Table 9.11. The modified program is given below.

Memory Machine
address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A, 98H Load control word of 8255 in accumulator

8002 D3, 03 OUT 03H Write control word in control word register and
 initialize ports

8004 3E, 08 MVI A,08H Send start of conversion signal through PC3

8006 D3,02 OUT 02H PC3 is high

8008 3E, 00 MVI A ,00H As PC3 will be high for one or two clock pulse,
 make it 0

(Contd.)

800A D3,02 OUT 02H PC3 becomes low

800C DB, 02 LOOP IN 02 Read end of conversion signal

800E 17 RAL Rotate accumulator to check either conversion is
 over or not.

800F D2, 0C, 80 JNC LOOP If conversion is not completed, jump to LOOP

8012 DB, 00 IN 00 Read digital output of A/D converter

8014 2F CMA Complement of ADC output

8015 D6, 80 SUI 80H Subtract 80H

8017 21, 00, 81 LXI H,8100H

801A 77 MOV M,A Store accumulator content in 8100H location

801B 76 HLT Stop

Analog Input Digital Output

5V 7F

4V 6D

3V 47

2V 39

1V 13

0V 00

An analog multiplexer is required for larger number of analog inputs. The microprocessor sends the channel
select signals to the multiplexer to get the desired analog input voltage from the selected channel. Figure 9.51

PC7

Port A

To
Microprocessor

8255-1
I/O Port

Port C upper
E/CE/C

Converter

Port C lower

S/C
PC0

PC1

PC2

PC3

C1

C2

C3

C4

C5

C6

C7

C8

S2 S1S0

Analog
Input

Analog
Input

Analog
Multiplexer

(Contd.)

shows the schematic circuit diagram, which consists of analog multiplexer, A/D converter and 8255. The
analog multiplexer has eight channels. To select any one channel, send channel select signals through the Port
C lower. The SC signal is connected with the pin PC3 and EOC signal is connected with PC7. Analog input
is applied to Channel 1 of the multiplexer. When the microprocessor sends the 00H into Port C, Channel 1
will be selected and the input voltage of Channel 1 is fed to ADC converter IC. After that, the microprocessor
sends the SC signal to ADC to start the conversion process. This SC signal will be high only for one clock
pulse duration. After that the microprocessor checks the end of conversion signal, whether the conversion
process is completed or not. When EOC is high, the conversion stands completed and the microprocessor
read the ADC output and stores it in a memory location. If the analog voltage is applied to any one of the
channels, the applied voltage will be converted into its digital equivalent value in the same way.

Memory Machine
address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255 in accumulator

8002 D3,03 OUT 03H Write control word in control word register and
 initialize ports

8004 3E,00 MVI A,00H Load 00H to select the multiplexer channel

8006 D3, 02 OUT 02H Channel 1 is selected

8008 3E, 08 MVI A,08H Send start of conversion signal through PC3

800A D3, 02 OUT 02H PC3 is high

800C 3E, 00 MVI A,00H As PC3 will be high for 1or two clock pulse, make it 0

800E D3,02 OUT 02H PC3 becomes low

8010 DB, 02 LOOP IN 02 Read end of conversion signal

8012 17 RAL Rotate accumulator to check whether conversion
 is over or not

8013 D2, 10, 80 JNC LOOP If conversion is not completed, jump to LOOP

8016 DB, 00 IN 00 Read digital output of A/D converter

8018 2F CMA Complement of ADC output

8019 D6, 80 SUI 80H Subtract 80H

801B 21, 00, 81 LXI H, 8100H

801E 77 MOV M,A Store accumulator content in 8000H location

801F 76 HLT Stop

Figure 9.52 shows the interfacing of 12-bit ADC with microprocessor through 8255. Port A, Port B and Port
C upper of 8255 are used as inputs and Port C lower of 8255 is used as output. The start of conversion (SC) of
ADC is connected with PC3 of Port C lower; the end of conversion (EOC) is connected with the PC7 of Port
C upper. The output of ADC IC is also connected with Port A and Port B of 8255. PA0–PA7 are considered as
LSBs of digital output of ADC and PB0 – PB3 are used as MSBs of digital output of ADC. The PB4–PB7 are
opened and considered as logic 1. The program for 12 bit ADC interfacing is given below:

Memory Machine
address Codes Labels Mnemonics Operands Comments

8000 3E, 9A MVI A,9AH Load control word (9AH) of 8255 in accumulator
8002 D3,03 OUT 03H Write control word in control word register and
 initialize ports
8004 3E, 08 MVI A,08H Send start of conversion signal through PC3

8006 D3,02 OUT 02H PC3 is high
8008 3E, 00 MVI A,00H As PC3 will be high for 1 or two clock pulse, make it 0
800A D3,02 OUT 02H PC3 becomes low
800C DB, 02 LOOP IN 02 Read end of conversion signal
800E 17 RAL Rotate accumulator to check whether conversion is
 over or not.
800F D2, 0C, 80 JNC LOOP If conversion is not completed, jump to LOOP
8012 DB, 00 IN 00 Read digital output of A/D converter from port A
8014 2F CMA Complement of ADC output (LSBs)
8015 21, 00, 81 LXI H, 8100H
8018 77 MOV M,A Store accumulator content (LSB of output) in 8100H
 location
8019 23 INX H
801A DB, 01 IN 01 Read digital output of A/D converter from port B
801C 2F CMA Complement of ADC output (MSBs)
801D 77 MOV M, A Store accumulator content (MSB) in 8101H location
801E 76 HLT Stop

PB –PB0 3B –B9 12

PA –PA0 7B –B1 8 Port A
PA –PA0 7

Port B
PB –PB0 3

Port B
PB –PB4 7

Port C upper

8255

Port C lower

EOC

SC

Analog
Input

To
Microprocessor

12–bit
A/D

Converter PC7

PC3

PC2

PC1

PC0

The Digital-to-Analog Converter (DAC) has the ability to convert digital signals to analog signals. The digi-
tal-to-analog conversion is a process in which digital words are applied to the input of the DAC and an ana-
log output signal is generated to represent the respective digital input. In this conversion process, an ‘N’-bit
digital data can be mapped into a single analog output voltage. Therefore, the analog output of the DAC is a
voltage that is some fraction of a reference voltage.

So, Vout = K × VRef.

where, Vout is the analog voltage output, VRef is the reference voltage and K is the fraction.

Figure 9.53 shows the block diagram of a DAC converter. When a DAC has ‘N’-bits digital inputs b0, b1,
b2, b3… bN–1) and a reference voltage, VRef, the voltage output, Vout can be expressed as

 VOut = K × VRef × Digital inputs

where, K is scaling factor

 Digital input = 2N–1bN–1 + 2N–2bN–2 + 2N–3.........b
N–3+ 22b2 + 21b1+20b0

 N = number of bits, bN–1 = most significant bit, b0 = least significant bit

The basic architecture of an ADC converter without S/H circuit is shown in Figure 9.54. It consists of
binary switches, scaling network and output amplifier. The reference voltage, binary switches and scaling
network convert digital inputs into voltage or current or charge signals. The output amplifier amplifies the
output of the scaling the network to a desired measurable value.

b
N–1

LSB

b
N–2

MSB

Digital inputs

b0

DAC

VRef

Analog output
VOut

Output
Amplifier

Scaling
network

Binary
switchesBinary

inputs
Analog
output

Weighted binary DAC and R-2R ladder are the two types of DAC. Each DAC converter input is a multi-bit
digital signal, and generates an analog output signal equivalent to digital. Each bit of the signal has a different
binary weight. The bit is multiplied by its weighting factor to give its contribution to the whole. The contribu-
tion from each bit is then summed, to give the analog equivalent.

The binary-weighted-input DAC circuit is a variation on the inverting summer op-amp circuit. The clas-
sic inverting summer circuit is an operational amplifier using negative feedback for controlled gain, with
several voltage inputs and one voltage output. The output voltage is the inverted sum of all input voltages
when all equal resistances are used in the circuit. If any of the input resistors were different, the input volt-
ages would have different degrees of effect on the output, and the output voltage would not be a true sum.
Assume the input resistor values are multiple powers of two: R, 2R, 4R and 8R, instead of R1, R2, R3 and R4
respectively

Figure 9.55 shows the circuit diagram of weighted 4-bit binary DAC The analog output voltage of a 4-bit
weighted DAC can be expressed as follows.

Four input currents I1, I2, I3, I4 and feedback current If are determined from the following expressions:

 I1 = V1/R1, I2 = V2/R2, I3 = V3/R3, I4 = V4/R4 and If = – Vout/Rf

The sum of the input currents is equal to feedback current If.

 If = I1 + I2 + I3 + I4

After substituting all current values in the above expressions,

 R
V

R
V

R
V

R
V

R
V

f 1

1

2

2

3

3

4

4out

= + + +-

or, – Vout =
R
R

V
R
R

V
R
R

V
R
R

V
f f f f

1

1

2

2

3

3

4

4+ + +

when , 8, 4, 2, ,
R
R

R
R

R
R

R
R

1
f f f f

1 2 3 4

= = = = V1 = b3, V2 = b2, V3 = b1 and V4 = b0 the output voltage can be

expressed as

 – Vout = 8b3 + 4b3 + 2b1+ b0

or, – Vout = 23b3 + 22b2 + 21b1+ 20b0

The weighting of bits b0, b1, b2 and b3 is 1, 2, 4 and 8 respectively. For this weighting, R4 must be the largest
resistor value, but the others resistances are half the value of the previous. If the 4-bit DAC has the following
input resistances R1 = 1K, R2 = 2K, R3 = 4K , R4 = 8K and the feedback resistor Rf = 8K, determine the output
voltage for 1011 binary inputs. The analog output is ()V. To reduce the resolution of DAC, number of input
bits will be increased.

 The ‘N’ bit binary weighted DAC is given in Figure 9.56. The operational amplifier feedback resistance
Rf can be selected to get the proper scale. Here, Rf = K R/2. The analog output voltage can be written as
follows:

For -bit inputs, current flowing through feed back resistance Rf is

 If = –(IN–1 + IN–2 + IN–3 +............ + I2 + I1 + I0)

After substituting all current values in the above equation, we get

 If = –VRef
R

b

R

b

R

b

R

b

R

b

R

b

2 4 2 2 2

1N N N

N N N

1 2 3

3

2

2 1

0

+ + + + + +
- - -

- - -c m

–

+

R1

R2

R3

R4

I3

I4

I2

I1

Rf
I
f

Vout

V1

V2

V3

V4LSB

MSB

Binary inputs

 If = –
R

V

2

Re

N

f

1-
(2N–1 bN–1 + 2N–2 bN–2 + 2N–3 bN–3 + + 22b2 + 21b1 + 20b0)

The output voltage Vout is

 Vout = – If Rf

 IfRf = –
R

V

2

Re

N

f

1-
(2N–1 bN–1 + 2N–2 bN–2 + 2N–3 bN–3 + + 22b2 + 21b1 + 20b0)

When a offset voltage applied in a DAC as shown in Figure 5.141. The output voltage can be expressed as

 Vout = –
R

R
V

off

f

off – If Rf

 Vout =
R

R
V

off

f

off –
R

V

2

Re

N

f

1-
(2N–1 bN–1 + 2N–2 bN–2 + 2N–3 bN–3 + + 22b2 + 21b1 + 20b0)

The resistance ratio of MSB and LSB is

Resistance of MSB/ Resistance of LSB =
R

R

2 2

1
N N1 1=
- -

When N = 8, this ratio will be 1/128. The larger component range creates problems for proper resistance
matching and the binary-weighted resistance DAC is nonmonotonic.

R–2R ladder circuit can eliminate the larger component spread in binary weighted DAC. The R–2R ladder
circuit for converting digital to analog converter uses only resistances of R and 2R as shown in Figure 9.57.
Mathematically analyzing this ladder network is a little bit difficult than doing so for a weighted resistance
DAC. In weighted resistance DAC, each bit effect on output is very easily calculated. But in an R–2R ladder net-
work, each binary input’s effect on output can be determined using Thevenin’s theorem for each binary input.

The effect of b0, b1, b2 are determined as follows:

When b0 = 1, b1 = 0, b2 = 0, the Thevenin’s equivalent resistance and voltage can be determined as given
below:

Looking from Section A–A , 2R || 2R the equivalent resistance = R and equivalent voltage is Ref .

Looking from Section B–B , R is series with R and sum of these resistance parallel with 2R the equivalent
resistance = R and equivalent voltage is Ref .

–

+

2R

R

4R

8R

16R

Rf

Vout

LSB b0

bN–1MSB

Binary inputs

2
N–1

R

–

+

V
out

R
f

V
REF

MSBLSB

R R 2R

2R 2R 2R2R

0 1 0 1 0 1

b
0

b
1

b
2

Looking from Section C–C , R is series with R and sum of these resistances is parallel with 2R. Then
equivalent resistance is equal to R and equivalent voltage is

2
3

Ref .

Similarly, the equivalent circuit for b1 is Requ = 3R and Vin = Ref and the equivalent circuit for b1 is Requ

= 3R and Vin = Ref . The complete equivalent circuit is shown in Figure 9.59.

–

+

2R 2R 2R 2R

2R

A

A´

B

B´

C

C´

RR
R

f

V
out

V
Ref

R
2R 2R

2R

A

A´

B

B´

C

C´

RR

VREF

2

(a)

R 2R

B

B´

C

C´

2RR

VREF

2
2

(b)

The R – 2R ladder circuit works on the fact that the current is reduced by a factor of 2 for each digital
input from LSB to MSB. The I0, I1, and I2 currents are as follows:

, ,I
R

V
I

R

V
I

R

V

2 3 2 3 2 3
o 3 1 2 2

Ref Ref Ref

= = =

When all bits are 1, the currents flow into the operational amplifier and produce an output voltage:

 Vout = – (I2 + I1 + I0) Rf

 = – R
V

b
R

V
b

R

V
b R

2 3 2 3 2 3
f2 2 1 3 0

Ref Ref Ref

+ +c m
 = – V

R
R

2 3

Re ff (4b2 + 2b1 + 1b0)

 = – K (4b2 + 2b1 + 1b0)

where, K = V
R

R
2 3

Re ff

In this method of DAC, the larger component spread problem is eliminated and current flowing through
the resistance cannot change due to switching and behaves as a constant voltage. This DAC is as fast as the
binary weighted resistance DAC.

Figure 9.60 shows the N-bit R–2R ladder circuit and is equivalent circuit is depicted in Fig. 9.61. The
output voltage of N bit R–2R circuit is

–

+

V
out

R
f

V
REF

MSBLSB

RR 2R

2R
2R2R 2R2R

00 11 00 11

b
N–1b

1 b
N–2

b
0

R

C

C´

2R

VREF

2
3

(c)

–

+

MSB

LSB

3R

3R

3R

Rf

VoutVREF

2
3

VREF

2

VREF

2
2

(d)

 Vout = (IN–1 + IN–2 +......... + I2 + I1 + I0) Rf

 = V
R

R

2 3N

fRef (2N–1 bN–1 + 2N–2 bN–2 + 2N–3 bN–3 + + 22b2 + 21b1 + 20b0)

The performance of a D/A converter is measured based on the following parameters: resolution, accuracy,
linearity, settling time and temperature sensitivity. The manufacturers generally specify these parameters in
data sheets.

The resolution of a D/A converter refers to the smallest change in the analog output
voltage. It is equivalent to the value of the Least Significant Bit (LSB). For an N-bit D/A converter, the
maximum number of steps is 2N–1. When the reference voltage is V, the least significant bit value is given
below:

 Resolution = V

2Number of Steps

Reference Voltage
N 1= -

 For an 8-bit D/A converter with a full scale output of 10 V, the resolution is

 39.2
2 1

10

255

10
mV

8 = =
-

The output voltage of a D/A converter is different from an ideal case. Therefore, there is
always some error. The accuracy is measured from the difference actual output voltage and voltage for ideal
case. When the accuracy of a D/A converter is ±0.25 per cent, the error of converter is 0.25 × 12/100 = mV
for full-scale voltage V = 12 V.

An input code of zero may be expected to give 0 V output. A small
offset may be present and the transfer characteristic does not pass through the origin. The offset error of a
D/A converter is depicted in Fig. 9.62.

Figure 9.62 shows the input–output characteristics of a D/A converter. Zero offset and
gain can develop the characteristic, which passes through the origin and full-scale points. But it is not sure
that intermediate points will always lie on a straight line. A very small error in the weighting factor for

–

+

MSB

b
N–1

b
0

LSB

3R

3R

3R

R
f

V
out

V
REF

2
3

V
REF

2

V
REF

2
2

V
REF

2
N

3R

a fraction LSB will cause non-linearity. Linearity can be expressed by deviation from the ideal line as a
percentage, or a fraction of LSB. It is generally specified as ±

2

1LSB or | | <
2

1 .

This is usually expressed as the time taken to settle within half LSB. Generally, the
settling time will be about 500 ns.

The D/A converters are temperature sensitive. When the digital
inputs are fixed, the analog output may be varied with temperature due to the temperature sensitivities of the
reference voltages, the operational amplifier and converter circuit resistances, etc. Generally, temperature
sensitivity of DACs is about ± 50 ppm/°C in general-purpose converters.

Most commonly DAC ICs are 8-bit DAC0800, 12-bit DAC80, 16-bit PCM54 and PCM55 etc. The DAC0800
ICs are monolithic 8-bit high-speed current output digital to analog converters with typical settling times of
100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is
possible. These ICs have high compliance complementary current outputs to allow differential output volt-
ages of 20Vp-p with simple resistance load as depicted in Fig. 9.63. The features of DAC0800 ICs are given
below:

 Fast settling output current 100 ns

 Full-scale error ±1LSB

 Non-linearity over temperature ±0.1%

Ideal output

Actual output

A
n
a
lo
g
o
u
tp
u
t
n
o
rm

a
lis
e
d
to
V

R
e
f

Offset error

Digital input

f

D

1

7/8

3/4

5/8

1/2

3/8

1/4

1/8

0

000 001 010 011 100 101 110 111

 Full-scale current drift ±100 ppm/C

 High output compliance –10V to +18V

 Complementary current outputs

 Interface ability with TTL, CMOS, PMOS, etc.

 2 quadrant wide range multiplying capability

 Power supply range ± 4.5V to ±18V

 Low power consumption 33 mW at ± 5V

 Low cost

Figure 9.64 shows the circuit diagram for interfacing between DAC0800 and microprocessor using 8255.
The output of Port A is directly interconnected with DAC. All ports of 8255 are operating in output mode
and mode of operation is Mode 0. In this configuration, the control word is 80H. The programming of DAC
is given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

9000 3E, 80 MVI A,80H Load control word of 8255 in accumulator

9002 D3,03 OUT 03H Write control word in control word register

9004 3E,FF MVI A,FFH Get FF for digital input to DAC

9006 D3, 00 OUT 00H Send to port A for input into DAC

9008 76 HLT Stop

When the digital input is FFH, the analog output voltage is 10V. If the digital input is 00H the output will
be 0V. Table 9.12 shows the analog output voltage with respect to digital input.

5 6 7 8 9 10 11 12
414

15

3 16 13 1 2

DAC0800

Digital Inputs

MSB LSB

B1 B2 B3 B4 B5 B6 B7 B8

5 K

5 K

10 V

5 K

Output
Lm311

–

+

Iout

V
+

V
– 0.01 Fµ

0.1 Fµ 0.1 Fµ

Digital input of DAC Analog output voltage

FFH 10V

80H 5V

00H 0V

The analog output voltage is Iout × RL

()

()

256

Digital Input

10

10
out ref=

The reference current = I
R

V

R

Re

Ref

ef

f

=

when Vref is 10 V applied through 5 K ohms, reference current 2I
R

V

K

V
mA

5

10
Re

Re

Re

f

f

f

= = = .

The bipolar operation of DAC is shown in Figure 9.65. The Pin 2 of DAC is connected with the non-
inverting terminal of operational amplifier. Pin number 4 is connected with the inverting terminal of opera-
tional amplifier. In this case, when FF input is applied to DAC, output is equal to 10 V. If input is 00H, output

5 6 7 8 9 10 11 12
4

14

15
2

3 16 13 1

5 K

Output
Lm311
–

+

8255

5 K

A1

PA0

B –D0 7

Iout

Reset

DAC0800

5 K

10 V

PA1 PA2 PA3 PA4 PA5 PA6 PA7

A0RD CSWR

DATA BUS
A1A0 A15

Microprocessor

Reset MEMWMEMR

V
+

V
–

0.01 µF

0.1 µF 0.1 µF

will be –10 V. The input and output relationship of bipolar DAC is given in Table 9.13.

Digital Input of DAC Analog Output Voltage

FFH 10 V

80H 0 V

00H –10 V

A microcomputer consists of a set of components such as CPU, memory, I/O device and these components
communicate with each other to perform a specified task. The collection of paths which connect the vari-
ous devices or modules is called the interconnection structure. The design of the interconnection structure
depends on the exchange of data between different devices or modules as shown in Figure 9.66. There are
different types of data transfer such as

 Memory devices to CPU

 CPU to memory devices

 I/O devices to CPU

 CPU to I/O devices

 I/O devices to or from memory

A bus is a communication pathway which can connect two or more devices (CPU, memory and I/O). Actually,
the bus is a set of circuits that runs throughout the board and connects all the expansion slots, memory, I/O

5 6 7 8 9 10 11 12
414

15

3 16 13 1 2

DAC0800

Digital Inputs

MSB LSB

B1 B2 B3 B4 B5 B6 B7 B8

5 K

5 K

10 V

5 K

Output
Lm311

–

+

Iout

V
+

V
– 0.01 Fµ

0.1 Fµ 0.1 Fµ

devices and CPU together. The characteristic of a bus is that it is a shared transmission medium. A bus con-
sists of multiple pathways or lines. Each line is capable to transmit digital signal representing a binary digit,
either 1 or 0. A sequence of bits can be trans-
mitted across a single line. Simultaneously,
several lines can be used to transmit bits in
parallel. A bus that connects major compo-
nents such as the CPU, memory, and I/O is
called system bus. The most commonly used
microcomputer interconnection structures is
shown in Fig. 9.67 and 9.68.

A system bus consists of 50–100 lines
Each line is assigned a particular function.
The bus lines are classified into 3 groups
such as data bus, address bus and control bus.

 The data bus provides a path for moving
data between the system modules or devices.
These lines are also called data lines. The
data bus typically consists of 8,16 or 32 sepa-
rate lines, actually the numbers of lines being
transferred to as the width of the data bus.
Each line is capable of carrying only 1 bit
at a time and the number of lines determines
how many bits can be transferred at a time to
increase overall system performance.

 The address bus is used to locate the source
or destination of the data on the data bus.
The width of the address bus determines the
maximum possible memory capacity of the
system. The address bus is also known as
address lines.

PCI card slots

CPU
Processor

Memory

I/O Devices

Interrupt Signals

Instructions Address

Address

Read

Read

Write

Write

Data
Data

Internal Data

External Data

Interrupt Signals

Control Signals
Data Data

Internal Data

External Data

(a) (b)

(c)

CPU Memory

Address bus

Data bus

Control bus

I/O Devices

 The control bus is used to control the
access to and the use of the data and
address lines. The most commonly used
control lines are memory read, memory
write, I/O read, I/O write, clock, reset,
bus request, bus grant, interrupt request,
interrupt acknowledge (ACK) and trans-
fer ACK.

The operation of the bus is to transfer data
from one device to other device via the buses.
In a physical bus architecture, the system bus is
a number of parallel electrical conductors. The
conductors are metal lines etched in a card or
printed circuit board. The bus extends across all
of the components to connect with the bus lines.

Generally, the motherboard of a microcom-
puter is the physical arrangement of a computer,
which consists of all the computer’s components
such as CPU/microprocessor, co-processors,
memory, BIOS, expansion slots and intercon-
necting circuitry. Some additional components
can be added to a motherboard through its expan-
sion slots. The electronic interface between the
motherboard and the smaller cards in the expan-
sion slots is also called the bus. The personal
computer consists of several types of buses on
the motherboard as shown in Fig. 9.69, and the
block diagram representation of a typical moth-
erboard is depicted in Fig. 9.70. Most commonly used buses are

 CPU bus or system bus

 Cache bus

 Memory bus

 I/O or Expansion Bus:

 ISA (Industry Standard
Architecture)

 EISA (Extended ISA)

 MCA (Micro Channel
Architecture)

 PCI Bus (Peripheral
Connection Interface)

 VL Bus (VESA Local Bus)

 External Buses which are used to
connect devices through external
cables

Northbridge

Chipset

CPU

Dual Channel
Memory Slots

PCI
Express

PCI Slots

Southbridge

USB Sound

10/100
Ethernet

AGP
AGP
slot

ATA
drives

Cache Bus

System Bus

SCSI

ISA Bus

PCI Bus

ISA Bus

Printer Sound Cad Modem

Key Board
Mouse

Level 2 Cache

Memory BusLocal Bus

Processor PCI Bridge Memory

USB ISA Bridge

 SCSI Bus

 PC Card Bus

 USB Bus

In multiple bus architecture, two or more devices are attached to the system bus, and propagation delays
affect the performance of computer system. But the aggregate data transfer of the system bus is limited, and
it is a bottleneck for data transfer as graphics and video controller. Therefore, buses are increased and they
are interconnected in a certain configuration. The multiple bus architectures are classified as traditional bus
architecture and high performance bus architecture. The traditional bus architecture has local bus between
CPU and cache, system bus between main memory and cache, and expansion bus between I/O modules and
main memory as shown in Figure 9.71. Figure 9.71(b) shows the high-performance bus architecture which
consts of local bus between CPU and cache/bridge, system bus between cache/bridge and memory, high
speed bus between high speed I/O devices and cache, and expansion bus between low speed I/O devices and
expansion interface.

Processor

Processor

Local Bus

Local Bus

Cache

CacheMain
Memory

Main
Memory

System Bus

System Bus

Printer Serial

Fire Wire

SCSI

SCSI

Serial

GraphicLAN

Modem Modem

Video

Expansion Bus Expansion Bus

High speed bus

Expansion Bus
Interface Expansion Bus

Interface

(a) (b)

The CPU bus is the highest-level bus through which the chipset uses to
send information to the processor and receive information from the processor.

In high-level bus architecture, the Pentium processors use a dedicated bus for accessing
the system cache. This is also known as backside bus. In motherboards, the cache is connected to the standard
memory through the cache bus.

The memory bus is a second-level system bus which connects the memory subsystem
to the processor. In some systems, the processor bus is used as memory bus.

This bus is a high-speed input/output bus used for connecting peripherals to the
memory, I/O devices and processor. For example, audio cards, video cards, disk storage devices, high-speed
networks interfaces generally use the local I/O bus of this sort. The most commonly used local I/O buses are
the VESA Local Bus (VLB) and the Peripheral Component Interconnect Bus (PCI).

The standard I/O buses are used for slower peripherals such as mice, modems,
regular sound cards and low-speed networking. Nowadays, in all modern PCs, this is used as the Industry
Standard Architecture (ISA) bus.

All the above buses are located on the motherboard of a computer. In the
motherboard of all personal computers, expansion slots are available to add cards or boards for more memory,
graphics capabilities, and support for special devices. The boards inserted into the expansion slots are called
expansion boards, expansion cards, and add-on-cards. On each slot, we can insert expansion boards such as
soundcards, graphics cards, TV cards, etc., to create additional facility to the personal computer. Actually,
these boards can communicate with the other hardware devices in the system. There are different ‘slots’ on
the motherboard as shown in Fig. 9.72 and the names of the slots are as follows:

ISA

slots

PCI

slots Pentium Processor SIMM

slots

DIMM

slots

 ISA — Industry Standard Architecture
 EISA — Extended ISA
 MCA — Micro-Channel Architecture
 VESA — Video Electronics Standards Association
 PCI — Personal Component Interconnect
 AGP — Accelerated Graphics Port
 SIMM — Single Inline Memory Module
 DIMM — Dual Inline Memory Module
 PCMCIA — Personal Computer Memory Card International Association

In this section, ISA, EISA, MCA, VESA, PCI, and AGP are discussed elaborately.

The ISA stands for Industry Standard Architecture and it is pronounced as ‘eye-es-ch’. This bus architecture
was developed by IBM in 1979. Actually, this bus was introduced in the IBM PC XT in 1981 as an 8 bit

expansion slot and this bus operates at 8.3 MHz with a data rate of 7.9 Mbytes/s. After that 16-bit ISA bus
introduced in the IBM PC AT machines in 1984 and runs at 15.9 MHz with data rate of 15.9 Mbytes/s. This
bus is called AT bus and presently all ISA slots are 16-bits. The ISA allows 16 bits of information at a time to
flow between the motherboard circuit and an expansion slot card and its associated devices.

EISA is a standard bus architecture that extends the ISA standard to a 32-bit interface. It was developed by
IBM competotors such as HP, AST, Compaq, and Epson, etc., in 1987 and it was used as an alternative of the
Micro Channel Architecture (MCA). EISA is hardware compatible with ISA. EISA data transfer can run at
33 Megabytes per second.

The Micro Channel Architecture was introduced by IBM in 1987 and used in PS/2 desktop computers. The
MCA can be used as an interface between computers and their expansion cards and associated devices.

The pin connections in MCA are smaller than other bus interfaces. Therefore, MCA does not support
other bus architectures.

VESA stands for video electronics standards association. This bus is also called VL-Bus or VESA Local
Bus (VLB). VESA Local Bus was developed in 1990 and supports 32-bit data flow at speeds of up to 40
MHz. VESA VL bus is a standard interface between a computer and its expansion slot. This bus provides
faster data flow between the peripheral devices (video, disk, network) controlled by the expansion cards and
microprocessor. This bus is a ‘local bus’ and it provides a physical path on which data flows at the speed of
the microprocessor. The VESA local bus architecture was very popular on 80486 based computer systems in
1993 and 1994. The advantages of VESA bus are as follows:

 Faster processing

 32-bit data-transfer capability

 Direct access to the processor bus, which is local to the CPU

 Direct access to system memory at the speed of the processor

 Faster access

 Different physical slot that prevents plugging a slower card into a fast slot

 128 MBps to 132 MBps maximum throughput

The limitations of VESA bus are

 Available only for 80486 processors

 Maximum speed of the VESA specification is 66 MHz, though it’s speed is limited to 33 MHz

 Poor implementation of bus mastering

 This bus do not support plug-and-play

 VESA bus cannot be used for the speed of the Pentium

 Limited to a maximum of three cards depending on system resources

PCI (Peripheral Component Interconnect) bus was developed by Intel in 1993, ISA has been replaced by the
PCI local bus architecture. These are the smaller and white-colored slots on the motherboard. PCI is a 64-bit

bus, but it is usually implemented as a
32-bit bus. This bus runs at clock speeds
of 33 MHz or 66 MHz. At 32 bits and 33
MHz, the data transfer rate is 133 MBps.

PCI is an interconnection system
between CPU or microprocessor and
peripheral devices in which expansion
slots are spaced closely for high-speed
operation. Using PCI, any computer can
support both new PCI cards and ISA
expansion cards. PCI 2.0 is a local bus
and is designed to be independent of the
microprocessor. Presently, PCI is installed
on all new desktop computers based on
Pentium and Power PC processors. The
PCI transmits 32 bits at a time in a 124-
pin connection and 64 bits in a 188-pin
connection in an expanded implementa-
tion. This bus uses all active paths to transmit both address and data signals, sending the address on one clock
cycle and data on the next cycle. This bus provides better system performance for high-speed I/O subsystems
such as graphic display adapters, network interface controllers, and disk controllers. Figure 9.73 shows the
PIC bus for a single processor based computer system and the PIC bus for multiprocessor based server system
is depicted in Fig. 9.74.

The Accelerated Graphics Port (AGP) was developed by Intel in 1998. Actually, AGP is based on PCI, but it
is designed specially to display 3D graphics quickly on ordinary personal computers. AGP introduces a dedi-
cated point-to-point channel, so that the graphics controller can directly access main memory. Usually, the
AGP channel is 32 bits wide and runs at 66 MHz with a bandwidth of 266 MBps. The AGP allows 3D textures
to be stored in the main memory rather than video memory. The AGP interface uses main storage (RAM) for
refreshing the monitor image and to support the texture mapping, z-buffering, and alpha blending required
for 3D image display. The Pentium pro-
cessors can work with the AGP chipset for
3-dimensional applications.

In the mid 1990’s, the Universal Serial
Bus was invented by a group of companies
such as IBM, Intel, Microsoft, Compaq,
etc., and it was introduced as a high speed
replacement of RS-232 serial port. It has
very high bandwidth and operates at 1.5
MBps, 12 MBps and 480 MBps. This
device can be used as daisy-chained as

Processor Cache

Bridge/
Memory controller

DRAM
Graphic Video

PCI Bus

LAN
SCSI Expansion Bus

Interface

Expansion Bus

Serial Modem

System Bus

Processor

Host Bridge

Expansion
Bus Bridge

SCSI
LAN

PCI BusPCI Bus

PCI to PCI
Bridge

Host Bridge

Processor Memory Controller DRAM

shown in Figure 9.75. The USB can also be used as multipoint bus and hubs provide multiple connection
points for I/O devices as depicted in Figure 9.76. It can support about 127 devices. The commonly used USB
devices are keyboard, monitors, digital cameras, mobile phones, digital video recorders, etc. The USB is
available in different standards such as USB 1.1, USB 2.0 and USB on the go (OTG). This is low cost and hot
plug-in play type. The hot plug-in play means the ability of USB to connect a device to the computer while
a computer is in operation.

There are two basic requirements for USB implementation in microcomputers. The first is the presence
of USB hubs to support USB ports on the microcomputer, and the second is the software support required
from the operating system to operate the USB properly. Presently, all motherboards have built-in support for
USB. The operating systems such as Window 98, Windows 95, OSR 2, Windows XP and other later versions
can support USB. Whenever any device is connected into USB, the operating system would recognize the
device and also configure the device simultaneously. The advantages of USB over the RS 232 are higher
operating speed, ability to daisy chain connected different devices and support for hot plug and play.

Computer

USB Port

IN

OUT
Device-1 Device-2 Device-3

USB Connection

Computer

Device-1 Device-2

HUB

OUT

OUTOUT

IN

USB Port
USB

Connection

Device-3

The parallel interface implies a Centronics-compatible printer interface. This interface was developed by
the printer-manufacturing company Centronics and introduced on IBM PC in 1981 as line printer (LPT)
port. The improved version of LPT was developed by Intel, Xircon and Xenith in 1994 and was known as
Enhanced Parallel Port(EPP).The data-flow rate through a parallel interface is about 150 kbytes/s for LPT
to 1.5 Mbytes/s for EPP. The typical parallel printer interface with a cable is shown in Figure 9.77. The pin
description of DB 25 and Centronics are given in Table 9.14.

DB25 Pins Centronics 36 Pins Direction Signal Function

1 1 Out /Strobe Low pulse (>0.5 µs) to send

2 2 Out Data 0 LSB

3 3 Out Data 1

4 4 Out Data 2

5 5 Out Data 3

6 6 Out Data 4

(Contd.)

DB25P male
connects to PC

36-pins Centronics male
connects to printer

The serial communication is the simplest
form of communication between two
devices. Serial data transmission is used
for digital communication between com-
puters and computers, computers and
peripheral devices (modems, printers,
etc.) and sensors and computers for data
acquisition. In all personal computers, serial interface is implemented using a communication port or COM
port. There are four COM ports such as COM-1, COM-2, COM-3, and COM-4. The COM ports conform to
the RS-232C interface standard. The RS-232C was developed by the Electronics Industry Association (EIA)
in the 1960s. Actually, RS-232C was intended as an electrical specification to connect computer terminals to
modems through DTE and DCE as shown in Figure 9.78. DTE means Data Terminal Equipment, and DCE

DTE DTEDCE DCE

Telephone
network

RS-232C
RS-232C

7 7 Out Data 5

8 8 Out Data 6

9 9 Out Data 7 MSB

10 10 In /ACK Low pulse acknowledge

11 11 In Busy High for busy/offline/error

12 12 In Paper End High for out of paper

13 13 In Select In High for printer selected

14 14 Out /Auto Fd Low to auto feed one line

15 32 In /Error Low for error

16 31 Out /Init Low pulse(>50s)to initialize

17 36 Out /Select Low to select printer

18-25 16,1719-30, 33 Ground

(Contd.)

stands for Data Communication Equipment. The modem is also a data set. In Figure 9.78, the data communi-
cation is the digital data exchange between a mainframe computer and a remote computer. These computers
are linked by telephone lines and modems are used at each end for signal translation.

The maximum data flow rate of RS-232C is 20 kbits/s with a maximum cable length of 15 metres. The
serial data transmission through RS-232C is possible in two different modes, namely, asynchronous and
synchronous. In the asynchronous mode, the transmitting and receiving devices are not synchronized and the
clock signal does not get transmitted along with the data. During synchronous mode, the transmitting and
receiving devices are synchronized and the clock signal is transmitted along with the data. But most of the
RS-232C operates in asynchronous mode. Data is transmitted on the Transmit Data (TD) line in packets (5
bits, 6 bits, 7 bits or 8 bits). Each packet consists of a start bit (0) at the beginning and a stop bit (1) at the end.
A parity bit is also inserted at the end of the packet, but before the stop bit. The parity bit states either even
parity or odd parity with the data bits in the packet.

The line voltages of RS-232C have two states such as ON state and OFF state. The ON state is also
known as marking state which is identified by a negative voltage. The OFF state is called the space state. The
positive voltage is used to represent space state. In RS 232C, 1 is called a mark and 0 is called a space. The
voltage limits of mark state and space state are given in Table 9.15. Figure 9.79 shows the plot of the asyn-
chronous RS-232C transmission of ASCII character ‘A’ with start bit, parity bit and two stop bits.

State Transmitter voltage level Receiver voltage level

Space state (Logical 0) +5 V to +15 V +3 V to +25 V

Mark state (Logical 1) –5 V to –15 V –3 V to – 25 V

Undefined — –3 V to +3 V

Space
(=0)

Mark
(=1)

Seven Data Bits

Start
bit

Parity
bit

Data packet corresponding to the ASCII character A

Two stop
bits

Indeterminate
Region

+15 V

+3 V

0 V

-3 V

-15 V

LSB
0 1 0 0 0 0 0 1 0 1 1

MSB

The original standard RS-232C
is a 25-pin connector, but presently
9-pin RS-232C connectors are most
commonly used. These connectors are
available in male and female sockets.
The DB25P and DB9P are RS-232C 25
pin and 9-pin male connectors respec-
tively as depicted in Figure 9.80. The
DB25S and DB9S are RS-232C 25 pin
and 9-pin female connectors respec-
tively as illustrated in Figure 9.81. The
detail description of RS-232C pins are given in Table 9.16 and Fig. 9.82. The function of signals as follows:

This signal is used to transmit
data

This signal is used to receive data

The DSR stands for data set
ready. This signal indicates whether the
DCE (modem) is powered ON.

This is a data terminal ready
signal which indicates whether DTR is
powered on and turning off DTR causes
modem to hang up the line.

The RI means Ring Indicator. This signal is activated by the modem when it detects incoming phone
call on the telephone line.

The Data Carrier Detect (DCD) is used by the modem to signal the transmitter that the communication
link is usable. This signal is ON when two modems have negotiated successfully and the carrier signal is
established on the phone line.

RST stands for Request To Send. This signal is activated when DTE wants to send data. This is used
to turn on and off the modem’s carrier signal in multi-point lines, but usually it is constantly ON in point-to-
point lines.

The CRS stands for Clear To Send. This signal is used by the receiver to inform the transmitter that
DCE is ready to receive data.

SG is Signal Ground.

DB25P DB9P Signal Signal Name Direction

1 - CD Chassis ground —

2 2 TD Transmit data DCE DTE

3 3 RD Receive data DTE DCE

4 7 RTS Request to send DCE DTE

5 8 CTS Clear to send DTE DCE

DB25 P DB9P

Pin 1Pin 1

(a) (b)

DB25S DB9S

Pin 1Pin 1

(a) (b)

(Contd.)

6 6 DSR Data set ready DTE DCE

7 5 SG Signal ground —

8 1 DCD Data carrier detect DTE DCE

20 4 DTR Data terminal ready DCE DTE

22 9 RI Ring indicator DTE DCE

Pin 3
Transmit
Data (TD)Pin 2

Receive Data
(RD)Pin 1

Data Carrier
Detect (DCD)
(not used)

Pin 4
Data Terminal
Ready (DTR)
(not used)

Pin 5
Ground

Pin 9
Ringing Indicator (RI)
(not used)

Pin 8
Clear to Send
(CTS)

Pin 7
Request to
Send (RTS)

Pin 6
Data Set
Ready (DSR)
(not used)

Secondary transmitted data

Transmit clock

Secondary received data

Receiver clock

Unassigned

Secondary request to send

Data terminal ready

Signal quality detector

Ring indicator

Data rate select

External clock

Unassigned

Protective ground

Transmitted data

Received data

Request to send

Clear to send

Data set ready

Signal ground

Data carrier detect

Reserved

Reserved

Unassigned

Secondary data carrier detect

Secondary clear to send

(a) (b)

Figure 9.83 shows the interfacing RS 232C with TTL via
special line drivers and receivers. The line driver MC 1488 can accept TTL level inputs and generates RS-
232C output levels. The MC 1488 converts logic level ‘1’ into about 9 V and logic level ‘0’ into +9 V. The
MC 1489 converts RS-232C level inputs to TTL levels. The problem of RS-232C is that drivers and receivers
are single ended. The input and output signals have a common ground.

CPU

UART
Chip

(TTL output)

DTE MC
RS 232C

RS 232 cable

RS 232C
MC

1489

MC

1488

MC

1489

TTL

DCE

MODEM

ground
ground

TTL

1488

22

33

77

To interface a computer (CPU) and a peripheral device (modem), the minimum three lines such as 2, 3
and 7 are required as shown in Fig. 9.84. In the DTE to DCE communication, transmits on pin 2 and receives
on pin 3 are as shown in Fig. 9.84(a). In DTE to DTE communication, the terminal transmits on Pin2 and
receives on Pin 3 as shown in Fig. 9.84(b).

(Contd.)

For high-speed data transmission, the standards RS-422A and RS-423A are used. Differential amplifiers
are used in these standards to reduce noise levels and can transmit data at higher speed for long-distance
cable. The RS 422A has a maximum speed of 10M baud for 40-feet distance and 10 kbaud for 1000-feet
distance.

The speed of RS-423A is limited up to 100 kbaud for 130-feet distance and 10 kbaud for 300-feet
distance.

The General Purpose Interface Bus (GPIB) is known as Hewlett-Packard interface bus(HPIB) or IEEE488
bus. This was developed by Hewlett-Packard to interface testing equipments with a computer as shown in
Fig. 9.85(a). These buses are used in a computer network as shown in Fig. 9.85(b). Usually, three types of
standard devices such as listener, talker and controller can be connected on the GPIB.

DTE DCE

Modem/
Network

Computer/
Terminal

2 2

3 3

7 7

T×D

R×D

Siq GND

DTE DTE

Modem/
Network

Computer/
Terminal

2 2

3 3

7 7

T×D T×D

R×D R×D
Siq GND

(a) (b)

(a) (b)

The listener can receive data from other instruments or from the controller. For example, printers, display
devices, programmable power supplies and programmable signal generators are used as listeners. A talker

can send data to the instruments. The examples of talkers are tape readers, digital multimeters, frequency
counters and measuring equipments. The third device, controller, determines who talks and who listens on
the bus.

The IEEE-488 bus consists of a 24-wire cable with a connector such as that shown in Fig. 9.85(a). The
IEEE-488 bus is an 8-bit parallel bus which allows up to 15 devices connected to the same computer port.
This bus can be used as daisy-chain connectors and each cable is 2 m or less in length. Extensive handshaking

controls the bus and many testing and measuring devices are equipped with GPIB. This bus can transfer data
at reasonably fast speed of about 1 Mbit/s.

The IEEE-488 bus has five bus management lines such as IFC, ATN, SQR, REN and EOI. The IFC
stands for interface clear line. When this line is asserted by the controller, it resets all devices on the bus
to a starting state. When the Attention Line (ATN) is active low, it indicates that the controller is putting a
universal command or an address command on the data bus. If the ATN line is high, the data lines contain
data or a status byte. The Service Request (SQR) can work as an interrupt. Whenever any device requires to
transfer data on the data bus, the SQR line becomes low. After that the controller can pools all the devices to
find the device which needs service. The Remote Enable Signal (REN) allows an instrument to be controlled
directly by the controller. The End Of Identify (EOI) signal is used by a talker to indicate the completion of
data transfer. This bus has three handshake lines such as Data Valid (DAV), Not Ready For Data (NRFD) and
Not Data Accepted (NDAC). These lines are used to coordinate the transfer of data bytes on the data bus. The
difference between RS-232C and IEEE-488 is given in Table 9.17.

RS-232C IEEE-488

RS-232C is a standard serial communication IEEE-488 is a standard parallel communication interface.
interface. This is used for long-distance transmission This is used for short-distance (20 m) transmission at
with lower baud rates. higher baud rates.

The maximum data transmission rate is 20,000 baud The maximum data transmission rate is 1 Mbits/second.
or 20 kbits/second

Telephone line can be used for data transfer Maximum length of interconnection between two devices
 is about 20 m.

RS-232C is connected between DTE and DCE. IEEE-488 can be connected to up to 15 devices.

RS-232C is not TTL compatible. IEEE-488 is TTL compatible.

RS-232C is a male connector to connect with DTE, At the end of cable, both male and female connectors are
and RS-232C is a female connector to connect with available so that cables may be connected in daisy chain.
DCE.

This is used for interfacing a computer to terminal This is used for interfacing a computer to measuring
communication equipment, modem. equipment/instruments.

The UART stands for Universal Asynchronous Receiver Transmitter. The UART is used in parallel-to-serial
and serial-to-parallel conversions. Actually, UART receives data bytes from the computer and converts it into
a single serial bitstream for outward transmission. During inward transmission of UART converts the serial
bitstream into the bytes to feed into the computer. UARTs are available in different channels such as 1, 2, 4
and 8 channels. The single channel is represented by UART. DUART is a dual-channel UART and four chan-
nels of UART are represented by QUART. The eight channels of UART are called as octal of UART. The first
PC UART, 8250, was manufactured by National Semiconductors. The evolution of UART ICs is given below:

8250 16450 16550 16C650A 16C850

UART UART UART UART UART

The pin diagram of 8050 is shown in Fig. 9.86(a) and its schematic pin diagram is depicted in Fig.9.86(b).
The block diagram of 8250 UART is shown in Fig. 9.87.

The 8250 UART has receive buffer register, transmitter holding register, interrupt enable register, interrupt
identification register, line control register, modem control register, line status register, modem status regis-
ter, scratch register, divisor latch register (LSB) and divisor latch register (MSB). Address signals A2, A1,
A0 select a UART register for the CPU to read or write to during data transfer. The state of the divisor latch
access bit (DLAB) is the most significant bit of the line control register as shown in Fig.9.88. Table 9.18
shows the addresses of 8250 registers.

D0

D1

D2

D3

D4

D5

D6

D7

RCLK

RD

TD

CS0

CS1

XIN

XOUT

WR

VSS

CS2

WR

BAUDOUT

VDD

MR

INTR

A0

A1

A2

DDIS

RD

RI

DCD

DSR

CTS

OUT1

DTR

RTS

OUT2

RXRDY

ADS

TXRDY

RD20 21

16550

UART

1 40

CS0

GND +5VRESET
Handshaking

lines

CS1

8250
Universal

Asynchronous
Receiver

Transmitter

CS2

DOSTR
DOSTR
DISTR
DISTR

ADS
A2
A1
A0

INT

DDIS
CSOUT

RI

RLSD

DSR

CTS

OUT1

OUT2

RTS

DTR

SOUT

SIN

XTAL1 XTAL2 RCLK BAUDOUT

Clock Signals

Serial I/O

D – D7 0

Chip select

R/W strobes

Buffer control

Address

1–8

20 35 40

12
13
14

18

19

21

22

23

24

25

26

27

28

30 16 17 9 15

39

38

37

36

34

31

32

33

11

10(a)

(b)

8-Bit CPU
Data Bus
Interface

Register
Select Logic

D7:D0

Address
IOR
IOW

T × D

RTS,
CTS,
DTR,
DSR,
DCD,
RI

RXDINT

XTAL1
XTAL2

Interrupt
Control Logic

Crystal/
Ext. Clock

TX FIFO
(THR)

RX FIFO
(RHR)

TX Shift
Register (TSR)

Modem I/O
Signals

RX Shift
Register (RSR)

TX Trigger
Levels

TX Trigger
Levels

TX and RX
Baud Rate Gen

1R Encoder

Flow Control

RS485
Control

IR Decoder

DLAB A
2
 A

1
 A

0
 Function

0 0 0 0 Receive buffer register for read, transmitter holding register for write

0 0 0 1 Interrupt enable register

x 0 1 0 Interrupt identification register read only

x 0 1 1 Line control register /data format register

x 1 0 0 Modem control register

x 1 0 1 Line status register

x 1 1 0 Modem status register

x 1 1 1 Scratch register

1 0 0 0 Divisor latch register LSB

1 0 0 1 Divisor latch register MSB

D7

DLAB Break Parity Parity Parity Stop Data Data

D6 D5 D4 D3 D2 D1 D0

0 0 0 = None
0 0 1 = Odd
0 1 1 = Even
1 0 1 = Mark
1 1 1 = Space

0 0 = 5 data bits
0 1 = 6 data bits
1 0 = 7 data bits
1 1 = 8 data bits

0 = 1 stop bit
1 = 2 stop bitsBreak control bit. When it is set to 1, the serial output

is forced to the spacing or logic 0 state.

D7

0 TEMT THRE BI FE PE OE DR

D6 D5 D4 D3 D2 D1 D0

When DR = 1, dtat ready to be
picked up. It is reset by reading
data in the receiver buffer register

If OE=1, an overrun error occurred.
It is reset when CPU reads receiver
buffer register

If PE=1, a parity error occurred.
It is reset when CPU reads line status register

If FE=1, a framing error occurred.
It is reset when CPU reads line status register

When TEMT=1, transmitter holding register
(THR) and transmitter shift register (TSR)
empty. It is reset when either TSR or THR
contains data

When THRE = 1, transmitter holding
register empty.

When BI=1, a break interrupt occurred.
It is reset when CPU reads line status register

This register provides status information to the CPU concerning the data
transfer. Figure 9.89 shows the function of bits of the line status register.

This register is to indicate modem status, receiver line status,
transmitter buffer empty and receive data available as shown in Fig. 9.90.

 To provide minimum
software overload during data
character transfers, the UART
prioritizes interrupts into four levels
such as serialization error, received
data, transmitter buffer empty and
modem status as shown in Fig. 9.91.

This
register controls the interfacing with the
modem. The function of modem control
register is depicted in Fig. 9.92.

This
register provides the current states of the
control lines from the modem to the CPU.
Figure 9.93 shows the modem status
register.

The baud rate generator
is programmed with a divisor that computes the
baud rate of the transmitter section. Table 9.19
shows the baud rate and divisors at 1.8432 MHz.

 Baud Rate Decimal Divisor Hex Divisor

 110 1047 0417 H

 300 384 0180 H

 600 192 00C0 H

 1200 96 0060 H

 2400 48 0030 H

 4800 24 0018 H

 9600 12 000C H

D7

0 0 0 0 IN Error TBE R×RDY

D6 D5 D4 D3 D2 D1 D0

Modem status

Receiver line status

Receive data available

Transmitter buffer empty

D7

0 0 0 0

D6 D5 D4 D3 D2 D1 D0

0 0 1 × None
1 1 0 0 Serialization error
1 0 0 1 Received data
0 1 0 2 Transmitter buffer empty
0 0 0 3 Modem status

Priority Interrupt

D
7

DCD RI DSR CTS
Delta

DCD

Delta

RI

Delta

DSR

Delta

CTS

D
6 D

5 D
4

D
3

D
2 D

1
D

0

D7

0 0 0 Test Out-2 Out-1 RTS DTR

D6 D5 D4 D3 D2 D1 D0

Local loopback test

Auxiliary output 2

When DTR = 1,
asserts DTR

If RTS=1, asserts RTS
Auxiliary output 1

A transmitter is used for parallel-to-serial con-
version and transmits data from CPU to the
serial port. This section has transmit(TX) FIFO
register and transmit shift register (TSR). The
transmitter operates in non-FIFO and FIFO
mode. Figure 9.94(a) shows the non-FIFO mode
of transmitter and FIFO mode of transmitter is
depicted in Figure 9.94(b).

Initially, write data is sent to Transmit
Holding Register (THR) and transmit data will
be queued in TX FIFO. Then data is transferred
to the Transmit Shift Register (TSR) and
finally data is outputted from the transmit-
ter. The TX character framing is done using
start bit, data, stop bit and parity insertion as
shown in Figure 9.95.

The receiver is used for serial-to-
parallel conversion and receives data
from serial port to CPU. This has
received (RX) FIFO and Receive
Shift Register (RSR). The receiver
can be operated in non-FIFO and
FIFO mode as shown in Figure 9.96.
The incoming data is received in the
receive shift register (RSR). Then the
received data is queued in the RX
FIFO. The error tags are associated
with data in RHR which can be read
through LSR. After that, Receive
Holding Register (RHR) will be read and data is outputted from the receiver.

RX character validation is shown
in Fig. 9.97. The high-to-low tran-
sition indicates a start bit. Start bit
is validated if RX input is still low.
During midbit sampling, the data, par-
ity and stop bits are sampled at midbit. Line status errors are error tags and overrun error. Framing error exists
if the stop bit is not detected. Parity error exists if the parity bit is incorrect. Break detected if RX input is LOW
for duration of one character time. Overrun error exists if the character is received in RSR when RX FIFO is full.

UART is most commonly used in industry, telecom sector, automation, process control, remote access server,
wireless applications, and entertainment systems as follows:

D7B

D7

D6F

D6

D5P

B F P D5

D4

D4

D3

D3

D2

D2

D1

D1

D0

D0

RHR

RHR

RHR

(a)

(b)

Error Tags

Error Tags

RX FIFO

D7:D0

Data Byte

D7:D0
Data Byte

RSR

RSR

RXD

RXD

D7

D7

D6

D6

D5

D5

D4

D4

D3

D3

D2

D2

D1

D1

D0

D0

THR

THR

TX FIFO

D7:D0
Data Byte

D7:D0
Data Byte

TSR

TSR

TXD

(a)

(b)

TXD

D7PTIdleTX S Idle = "Mark"

or "1"
D6 D5 D4 D3 D2 D1 D0

D7PTIdle S Idle = "Mark" or "1" RXD6 D5 D4 D3 D2 D1 D0

Building control, heating-ventilation-air-conditioning, security, telemetry, sensors, medical,
testing and measurement, data terminals, video conference systems, photocopiers, printers, data recorder,
and robot control, etc.

Network server management, hub, router, switch, console management, Bluetooth
devices, keyboard-video-mouse switches and home networks, banking ATM, ticketing and vending, tolls
collection systems, and car parking systems, etc.

Processing, welding, printing and packaging, etc.

Modem servers and PC-based Internet-service-providers.

Vehicle tracking, GPS, satellite, marine communication.

Set-top box, recreation and video-on-demand systems such as airplanes.

The 16550 UART (Universal Asynchronous Receiver/Transmitter) is an integrated circuit which is used for
the interfacing for serial communications. Usually, it is used to implement the serial port for personal com-
puters and it is also used to connect to an RS-232C for modems, printers, and other peripheral devices. The
16550 UART was manufactured by National Semiconductors as shown in Fig. 9.98 and it has the following
features:

 The UART performs serial-to-parallel conversion on data
received from modem and parallel-to-serial conversion on
data received from the CPU using shift registers.

 The UART has Modem control capability. The Modem con-
trol functions are CTS, RTS, DSR, DTR, RI, and DCD.

 The UART can be operated in CHARAC TER mode and
FIFO mode. In FIFO mode, 16-bytes data to be stored in
both receive and transmit modes.

 It has fully programmable serial-interface characteristics
such as

 5-bit, 6-bit, 7-bit, and 8-bit characters

 Even, odd, or no-parity bit generation and detection

 1-bit . 1½ -bit and 2-stop bit generation

 Baud generation up to 1.5 M baud

 A programmable baud generator divides the input clock by
1 to (216 — 1) and generates a 16 × clock.

 False start bit detection, line break generation and detection

 Independently controlled transmit, receive, line status, and data set interrupts.

 The UART has complete status reporting capability.

 Internal diagnostic capabilities such as loopback controls for communications link fault isolation and
break, parity, overrun and framing error simulation.

 UART has a processor interrupt system. Interrupts can be programmed as per programmer
requirements.

In the FIFO mode, transmitter and receiver are buffered with 16-byte FIFO’s to reduce the number of
interrupts. In 16550 UART, asynchronous serial data are transmitted and received without any clock signal.

D0

D1

D2

D3

D4

D5

D6

D7

RCLK

RD

TD

CS0

CS1

XIN

XOUT

WR

VSS

CS2

WR

BAUDOUT

VDD

MR

INTR

A0

A1

A2

DDIS

RD

RI

DCD

DSR

CTS

OUT1

DTR

RTS

OUT2

RXRDY

ADS

TXRDY

RD20 21

16550

UART

1 40

There are two separate sections of transmitters and receive for data communications. The transmitter and
the receiver can work independently and the 16550 operates in simplex, half-duplex and full-duplex modes.

The 16550 UART provides different registers such as Transmit Holding Register (THR), Receive Holding
Register (RHR), Interrupt Enable Register (IER), Interrupt Status Register (ISR), FIFO Control Register
(FCR), Line Control Register (LCR), Modem Status Register (MSM) and Scratch Pad Register (SPR):

The THR (Transmit Holding Register) is a write-only type register and its function is that loads
data to be transmitted into TX FIFO.

The RHR (Receive Holding Register) is a read-only type register and its function is that reads out
received data from the RX FIFO.

The IER (Interrupt Enable Register) is a read/write type register and it is used to enable or disable
interrupts.

The ISR (Interrupt Status Register) is a read-only type register and it can be used for highest priority
pending interrupt.

The FCR (FIFO Control Register) is a write-only type register. The FIFO control register is used to
enable the transmitter and receiver FIFOs. It clears the transmitter and receiver FIFOs and generates control
for the 16550 interrupts. The transmitter and receiver are independently controlled. Set the RCVR FIFO
trigger level and select the type of DMA signal. Figure 9.99 shows the FIFO control register.

D7

DL SB ST P PE S LT L0

D6 D5 D4 D3 D2 D1 D0

Data length

0 0 = 5 data bits
0 1 = 6 data bits
1 0 = 7 data bits
1 1 = 8 data bits

0 = 1 stop bit
1 = 2 stop bits

Parity type
0 = Odd parity
1 = Even parity

Parity type
0 = No parity
1 = Parity
enable

Enable divisor latch
0 = 1 divisor latch off
1 = enable divisor latch

Send Break, 0 = no break sent
1 = send break on SOUT

Stick bit
0 = stick parity bit OFF
1 = stick parity bit ON

Stop bit

D7

RT1 RT0 0 0 DMA
XMIT
RST

REVC
RST

EN

D6 D5 D4 D3 D2 D1 D0

FIFO enable
0 = disable, 1 = enable

Receiver reset
0 = no effect, 1 = receiver FIFO

Transmitter reset
0 = no effect
1 = FIFO mode

Receiver trigger level
00 = 1 byte in FIFO
01 = 4 byte in FIFO
10 = 8 byte in FIFO
11 = 14 byte in FIFO

DMA mode control
0 = operate as 16450 UART
1 = FIFO mode

The LCR (Line Control Register)) is a read/write type register. This register holds the number
of data bits (word length), stop bit length, parity selection and break. Figure 9.100 shows the line control
register, and the function of Stick Bit (ST) and parity bits is illustrated in Table 9.20.

 ST P PE Function

 0 0 0 No parity

 0 0 1 Odd parity

 0 1 0 No parity

 0 1 1 Even parity

 1 0 0 Undefined

 1 0 1 Send/receive 1

 1 1 0 Undefined

 1 1 1 Send/receive 0

The MSR(Modem Status Register) is a read-only type register . This is used to store the state of
modem inputs CD, RI, DSR, CTS and state changes since last read.

The SPR(Scratch Pad Register) is a read/write type register. This is used as a general-purpose read/
write register.

These are read/write type registers and used as 16-bit divisors for the internal baud rate
generator where DLL is LSB and DLM is MSB.

This register provides status information to the CPU related with the data
transfer. Figure 9.101 shows the line status register.

D7

ER TE TH BI FE PE OE DR

Data Ready
0 = no data ready
1 = data in FIFO

Over run error
0 = no overrun error
1 = overrun error

Parity error
0 = no parity error
1 = parity error

Framing error
0 = no framing error
1 = framing error

Break indicator
0 = no break

1 = break received

Break indicator
0 = no break

1 = break received

Transmitter holding register
0 = wait for transmitter

1 = transmitter ready for data

Transmitter empty
0 = not empty
1 = empty

Error, 0 = error
1 = one error in

FIFO

D6 D5 D4 D3 D2 D1 D0

The UART consists of a programmable baud rate
generator. The baud rate is the number of bits transferred per second including the start, data, parity and
stop bits. The baud rate generator is programmed with a divisor and computes the baud rate. The input clock
frequency is dc to 24 MHz which can be divided by any divisor from 2 to 216 – 1. The output frequency of the
baud generator is 16 × baud. The 8-bit latches are used to store the divisor in a 16-bit binary format.

In a microprocessor-based system, there are many peripheral devices which are interconnected with the main
processor as shown in Fig. 9.102(a). To perform any operation related to peripheral devices, the CPU must

initiate the specified operation and also track their operations. After completion of the input/output operation,
CPU must be maintaining the post-operation status and records. Therefore, the CPU consumes some time for
these operations and there will be always some delay in communication. To reduce the delay of operations
related with peripheral devices, the I/O processor is used to control all input/output operations as depicted in
Fig. 9.102(b). When operation is initiated by the main processor, the I/O processor receives a request from the
system peripherals. I/O processors communicate with the main processor using its interrupt services.

CPU

Data Control Status

Memory

Peripheral
device-3

Peripheral
device-3

Peripheral
device-1

Peripheral
device-2

Peripheral
device-2

I/O
ProcessorCPU

Peripheral
device-1

Data

Control

Status

Memory

Peripheral
device-3

(a)

(b)

The 8089 is an I/O processor in microprocessor input/output processing and is packaged in a 40-pin
DIP package. The 8089 is a high-performance processor implemented in N-channel HMOS technology. The
8089s instruction sets are optimized for high speed, flexible and efficient I/O handling. It can work with
16-bit 8086 and 8-bit 8088 microprocessors with 8-bit and 16-bit peripherals. The communication with main
processors is done using a memory table which states the details of the task to be executed. The memory table
is prepared by the host processor to allot the specified task to the I/O processor. The host processor interrupts
the I/O processor after sending a task to it. Then the I/O processor reads the memory table to get details of
the allotted task. The memory table provides an address of the program written in the 8089 I/O processor
instructions and it is called channel program. Then the 8089 I/O processor executes the channel program.
Subsequently, the 8089 I/O processor can fetch and execute its own instructions. The features of 8089 I/O
processors are as follows:

 High-speed DMA operations between Flexible, intelligent DMA functions such as
 I/O to memory, memory to I/O, memory to translation, search, and word
 CPU, CPU to memory, and I/O to I/O Assembly/Disassembly

 Memory-based communication with CPU Multi-bus compatible system interface

 Can support local or remote I/O processing 1 Mbyte addressability

 Compatible with 8086/8088 processors Interface with 8-bit and 16-bit peripherals

Figure 9.103 shows the pin diagram of 8089 and function of each pin is explained below:

These lines are used as multiplexed address and data bus. A15–
A8 are stable on transfers to a physical 8-bit data bus and are multiplexed with data on transfers to a 16-bit
physical bus.

These are multiplexed most significant address lines and status
information as given below:

 S6 S5 S4 S3 Function

 1 1 0 0 DMA cycle on Channel-1

 1 1 0 1 DMA cycle on Channel-2

 1 1 1 0 Non-DMA cycle on Channel-1

 1 1 1 1 Non-DMA cycle on Channel-2

The Bus High Enable BHE is used to enable data operations on the most significant
half of the data bus D15 – D8. when this signal is active low, a byte is to be transferred on the upper half of
the data bus.

These are the status pins which state the
different activities of I/O processor as given below:

 S2 S1 S0 Function

 0 0 0 Instruction fetch and I/O space

 0 0 1 Data fetch and I/O space

 0 1 0 Data store and I/O space

 0 1 1 Not used

 1 0 0 Instruction fetch and system memory

 1 0 1 Data fetch; system memory

 1 1 0 Data store; system memory

 1 1 1 Passive

This signal is received from the
addressed device which indicates that the device is ready for data
transfer.

The lock output signal indicates to the bus
controller that the bus requires more than one contiguous cycle.

When the I/O processor receives the reset signal, the I/O processor has suspended
its activities and enters an idle state until a channel attention is received.

The signal must be active for at least four clock cycles.

Clock signal is required for internal I/O processor.

This is used as the channel attention signal of the I/O processor.

The first CA received after reset informs the I/O processor through the SEL line,
whether it is a master or slave and starts the initialization sequence.

These are the DMA request input signals of the I/O processor. These signals
indicate that a peripheral is ready to transfer/receive data using either Channel-1 or Channel-2.

Vss

A14/D14

A13/D13

A12/D12

A11/D11

A10/D10

A9/D9

A8/D8

A7/D7

A6/D6

A5/D5

A4/D4

A3/D3

A2/D2

A1/D1

A0/D0

SIMTR-1

SIMTR-2

CLK

Vss

Vcc

A15/D15

A16/S3

A17/S4

A18/S5

A19/S6

AHE

EXT 1

EXT 2

DRD 1

DRD 2

LOCK

S2

S1

S0

RQ/G

SEL

CA

READY

RESET

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

........

The request grant signal is used to implement the communication
dialogue required to arbitrate the use of the system bus between IOP and CPU, LOCAL mode or I/O bus
when two l/O processors share the same bus. The RQ / GT is active low signal.

These are the interrupt output signals from Channel-1 and Channel-2
respectively.

These are external terminate input signals for Channel-1 and Channel-2
respectively. The EXT signal is used to terminate the current DMA transfer operation if the channel is so
programmed by the channel control register.

The 8089 I/O processor has been designed to remove I/O processing, control and high-speed transfers from
the CPU. This processor can support I/O peripheral devices and also support versatile DMA data transfer. The
DMA function can boast flexible termination conditions such as external terminate, mask compare, single
transfer and byte count. The DMA function of the 8089 I/O processor uses a two-cycle approach where the
information actually flows through the 8089 I/O processor. This method of DMA data transfer vastly simpli-
fies the bus timings and enhances compatibility with memory and peripherals.

Figure 9.104 shows the block diagram of 8089 architecture. The 8089 I/O processor has two internal
I/O channels. These two channels can be programmed independently to handle two separate I/O tasks for the
host CPU. The ALU and main control unit are shared by both the channels. The main control unit generates
the control signals for the operation of the I/O processor channels. The bus control unit handles all the bus
activities. The Channel Control Pointer (CCP) is used by the programmers and gets loaded with the 20-bit
address of a memory table for the channel. Actually, this table is prepared by the host CPU to allot a task to
the I/O processor. The address of the memory table for Channel 2 is computed by adding 8 to the memory
table address of channel 1 or the contents of CCP.

The communication between the CPU and I/O processor is performed through a look-up table in shared
memory. The CPU sends a hardware Channel Attention (CA) signal to the I/O processor so that 8089 exe-
cutes a program by placing it in the 8089’s memory space. The SEL pin indicates to the I/O processor about

Main
Control

Bus control
and

Arbitration

CPU

Status

Channel
Control

Channel
Control

I/O channel-1

I/O channel-2

DMA REQ1

DMA
Terminate1

DMA REQ2

DMA
Terminate2

Register
file

Register
fileInstruction

fetch unit

I/O Bus

Address/
Data Bus

Assembly
Disassembly

ALU

the select channel. The communication from the I/O processor to the host processor can be performed in a
similar way through system interrupt signals SINTR2 and SINTR1 when the CPU enables interrupts. The
8089 is able to store messages in the memory regarding its status and the status of any peripherals. Usually,
this communication mechanism is supported by a hierarchical data structure as depicted in Figure 9.105.

After the first CA from RESET, if the I/O processor is initialized as the BUS MASTER, 5 bytes of infor-
mation are read into the 8089 starting at location FFFF6. Then information about the type of system bus and
pointers to the system configuration block are obtained. This is the only fixed location to be accesses by the
8089. The remaining addresses are obtained through the data structure hierarchy.

The 8089 computes addresses in the same way as 8086. The 20-bit address is generated by 4-bits left
shifting of the 16-bit relocation pointer and added to the16-bit address offset. Once 20-bit addresses are
formed, they are stored in the 20-bit address registers of 8089. After the system configuration, pointer address
is formed and the 8089 can access the System Configuration Block (SCB).

The SCB is used only during startup, points to the Control Block (CB) and provides I/O processor system
configuration data via the SOC byte. The SOC byte initializes the I/O processor I/O bus width to 8 bits or 16
bits, and states one of two RQ / GT operating modes. During RQ / GT mode 0 operation, the I/O processor is
initialized as SLAVE, and its RQ / GT is line attached to a Master CPU. In this mode, the CPU has control of
the bus, grants control to the IOP. For mode 1, the I/O processor is useful only in remote mode between two
I/O processors (MASTER and SLAVE).

ADDRESS

INCREASE

SYSTEM

CONFIGURATION

BLOCK

CONTROL

BLOCK

PARAMETER

BLOCK

TB ADDRESS

TB RELOCATION

USER DEFINED

TASK BLOCK

IDP TASK

PROGRAM

BUSY

BUSY

CCW

CCW

PB ADDRESS

PB RELOCATION

CB ADDRESS

CB RELOCATION

SCB ADDRESS

SCB RELOCATION

SOC

SYS BUS

7 00 0

PB ADDRESS

PB RELOCATION

LOCATION

FFFF6

CHANNEL

1

CHANNEL

2

}
}

}

The control block performs the bus control initialization for the I/O processor operation and provides
pointers to the parameter block or data memory for channels 1 and 2. The Channel Control Word (CCW) is
retrieved and analyzed. The CCW byte is decoded to determine channel operation.

The parameter block contains the address of the task block and acts as a message center between the I/O
processor and CPU. Parameters information is passed from the CPU to I/O processor in this block to adapt
the software interface to the peripheral device. It is also used for transferring data and status information
between the I/O processor and CPU.

The task block holds the instructions for the respective channel. This block can reside on the local bus of
the I/O processor and the I/O processor can operate concurrently with the CPU. The advantage of the com-
munication between the processor, I/O processor and peripherals is that it allows for a very clear method for
the operating system to handle I/O routines.

The 8089 has separate registers for its two different I/O channels as shown in Figure 9.106. Each chan-
nel has two sets of registers such as pointers and registers. The pointers are 20-bit registers usually used to
address memory, but the registers are 16-bit general-purpose data registers. Each of the pointers excluding
PP register has a tag bit. This bit is used to indicate that either the 20-bit register content is to be used or the
lower 16-bit register content is to be used as the pointer.

The PP register is a 20-bit pointer. The registers GA, GB, GC, IX, BC and MC can be used as general-
purpose registers, when they are not used as pointers. The memory operands can be accessed using one of the
base pointers GA, GB, GC, and PP.

The basic DMA pointer registers (GA and GB) can point to the system bus or local bus, DMA source
or destination, and can be automatically incremented. The register set GC can be used to allow translation
during the DMA process through a look-up table. The channel control register can be accessed by MOV and
MOVI instructions and the mode of the channel operation will be selected. Registers are also provided for a
masked compare during the data transfer and can be set up to act as one of the termination conditions. Other
registers can be used as general-purpose registers during program execution, while the I/O processor is not
performing DMA cycles.

CHANNEL CONTROL POINTER (CP)

PARAMETER POINTER (PP)

INDEX (IN)

BYTE COUNT (BC)

MASK COMPARE (MC)

CHANNEL CONTROL (CC)

G.P. ADDRESS A (GA)

G.P. ADDRESS B (GB)

G.P. ADDRESS C (GC)

TASK POINTER (TP)

USER PROGRAMMABLE

TAG 19

NON USER PROGRAMMABLE
(ALWAYS POINTS TO SYSTEM MEMORY)

19

15

0

0

1. BIT POINTER TO EITHER DO OR SYSTEM MEMORY SPACE

9.1 8279 displays can operate in
 (a) 8 8-bit character display, left entry only
 (b) 16 16-bit character display, left entry only
 (c) 8 8-bit character display-right entry only
 (d) 8 8-bit character display-left and right

entry and 16 16-bit character display, left and
right entry

9.2 How many bytes of memory are available for
the seven segment display?

 (a) 16 × 8 Display RAM
 (b) 16 × 4 Display RAM
 (c) 16 × 1 Display RAM
 (d) None of these

9.3 How many bytes of memory are available for
key pressed in 8279?

 (a) 8 × 8 RAM (b) 8 × 4 RAM
(c) 8 × 1 RAM (d) None of these

9.4 How many seven-segment displays can be con-
nected with 8279?

 (a) 16 (b) 12
 (c) 10 (d) 8

9.5 How many character keyboards can be con-
nected with 8279 in mode?

 (a) 8 (b) 16
 (c) 20 (d) 4

The 8089 I/O processor can be used in different applications such as file management in hard disk or
floppy disk, soft error recovery routines and scan control, CRT control (cursor control and auto scrolling),
keyboard control, communication control and general I/O applications.

 General-purpose peripheral devices have been designed to provide services for different purposes in
I/O communication and data transfer. Each device has a control word register and operation instruc-
tions. Therefore, each device must be initialized by a writing control word in the control word register
for appropriate operation. Interfacing of these devices with a microprocessor has been incorporated in
this chapter.

 In this chapter, the architecture, functional block diagram, pin diagram and operation of programmable
devices such as Programmable communication interface 8251, Direct Memory Access (DMA) con-
troller 8257, Programmable keyboard display controller 8279A, and 8275 CRT controller have been
discussed.

 The implementation of direct memory access high-speed data transfers by using 8257 DMA controller
are discussed. The 8251 is a programmable serial I/O IC known as USART and this device can perform
synchronous and asynchronous serial data transmission. The functional details and operation of 8251
have also been explained in this chapter.

 In any microprocessor-based system, it is necessary to convert analog signal to digital signal and digital
signal to analog form. The A/D converter converts analog signal to digital form, and a digital signal is
converted into analog form by using D/A converter. In this chapter, the basic concept, operation and
specification of A/D converter (ADC) and D/A converter (DAC) and the interfacing of data converter
(ADC and DAC) ICs with 8085 microprocessor have been discussed.

 Bus interface devices such as ISA bus, VESA bus, USB, parallel printer interface, PCI bus, RS-232C,
IEEE-488; 8250 UART, 16550 UART and 8089 I/O processors are also incorporated in this chapter.

9.6 The 8279 is a
 (a) DMA controller

(b) programmable keyboard display interface
 (c) counter

(d) interrupt controller

9.7 The 8257 is a
 (a) DMA controller

(b) programmable keyboard display interface
 (c) counter

(d) interrupt controller

9.8 The maximum number of data that can be
transferred through 8257 is

 (a) 64K (b) 46K
(c) 16K (d) 14K

9.9 DMA has
 (a) one channel (b) two channels
 (c) three channels (d) four channels

9.10 The signals are used for DMA operation are
 (a) HRQ (b) HLDA

(c) HRQ and HLDA (d) None of these

9.11 At what speed is data transferred in 8251?
 (a) 300 (b) 256
 (c) 150 (d) 9600

9.12 The 8251 is a
 (a) USART IC (b) counter
 (c) interrupt controller
 (d) Programmable peripheral interface

9.13 The number of bits in case of asynchronous
data transfer is

 (a) 2 bits (b) 3 bits
 (c) 4 bits (d) 5 bits

9.14 The 8251 operates in
 (a) synchronous mode
 (b) asynchronous mode
 (c) synchronous and asynchronous modes
 (d) none of these

9.15 When serial data can be transferred in either
direction but in one direction at a time, the
data transfer is known as

 (a) simplex (b) half duplex
(c) full duplex (d) none of these

9.16 The UART performs
 (a) a serial-to-parallel conversion
 (b) a parallel-to-serial conversion
 (c) control and monitoring functions
 (d) all

9.17 The USART consists of
 (a) data bus buffer
 (b) control and logic function
 (c) transmit and receive buffer
 (d) all of these

9.18 The modems are used in serial data
communication

 (a) as telephone circuits connected in some
 places of the circuit
 (b) as the switched telephone network

 connected in the circuit to reach anyone
 in the system
 (c) all of the above

9.19 The analog voltage corresponding to the LSB
of 12-bit A/D converter is

 (a) V/(212 –1) (b) V/(212 + 1)
 (c) V/212 (d) None of these

9.20 The resolution of any 8 bit D/A converter with
a full scale output of 10 V is

 (a)
2 1

10
8

-
 (b)

2 1

10
8

+

 (c)
2

10
8
 (d) None of these

9.21 A digital instrument is used to measure analog
voltage and display it in 7-segment display
devices. The instrument has

 (a) an ADC at the input and a DAC at the
 output
 (b) an ADC at the input
 (c) a DAC at the input
 (d) an ADC at the output

9.22 Resolution of an ‘N’ DAC is
 (a) full-scale value/2N

 (b) full-scale value/(2N–1)
 (c) full-scale value/(2N–1)
 (d) none of these

9.23 The minimum number of resistances
required for any 8 bit weighted-resistor type
DAC are

 (a) 8 (b) 9
(c) 15 (d) 16

9.24 The resolution of a D/A converter is 0.4 per-
cent of full-scale range. It is a

 (a) 8-bit converter (b) 10-bit converter
 (c) 12-bit converter (d) 16-bit converter

9.25 The input resistance of an R–2R ladder D/A
converter is

 (a) R for each digital input
 (b) 2R for each digital input
 (c) 3R for each digital input
 (d) none of these

9.26 A D/A converter’s full scale output voltage is
10V and it’s accuracy is +0.4%. The maximum
error of DAC will be

 (a) 20 mV (b) 30 mV
(c) 40 mV (d) none of these

9.27 The speed of conversion is maximum in

 (a) successive approximation ADC
(b) flash ADC

 (c) single slope serial ADC
(d) Dual slope ADC

9.28 In an N-bit flash converter, the number of com-
parators needed is

 (a) 2N–1 (b) 2N
(c) 2N+1 (d) none of these

9.29 The N-bit successive approximation ADC
requires

 (a) 2N–1 clock pulses
 (b) 2N clock pulses
 (c) N clock pulses

(d) none of these

9.30 A 12-bit A/D converter has the input voltage
signal from 0 V to +10 V. The voltage equiva-
lent to 1 LSB will be

 (a) 0 (b) 1.2 mV
(c) 2.4 mV (d) 0.833 V

9.1 What is serial data transfer?

9.2 What is the difference between synchronous and asynchronous data transfer?

9.3 Define simplex, half-duplex and full-duplex data transfer.

9.4 What are the advantages of DMA controlled data transfer over interrupt-driven data transfer?

9.5 What are the building blocks of 8257?

9.6 What is the maximum value of kB of data that 8257 can transfer?

 9.7 What are the different functions of 8279?

9.8 Define ADC. What are the types of ADC?

9.10 Write some applications of ADCs.

9.11 Define resolution. What is the resolution of 12-bit successive approximation ADC?

9.12 What is DAC? Write some applications of DACs.

9.13 What are the registers available in 8257? How is the 8257 is initialized?

9.14 What are the various input modes in which 8279 operates?

9.15 What is the difference between RS-232C and IEEE-488?

9.1 Draw the block diagram of the 8251 chip and explain its working principles.

9.2 Write the functions of the following pins of 8251.
 (i) T × D (ii) T × E (iii) R × D (iv) T × RDY

 (v) DSR (vi) DTR (vii) C / D (viii) RTS

9.3 Draw the functional block diagram of 8251and explain the operation of each block.

9.4 Describe the Read/Write control logic and registers.

9.5 Explain the operation of the transmitter section of 8251. How does the CPU know the transmitter
buffer is empty?

9.6 Explain the operation of the receiving section of 8251. Why are modems used in case of digital
transmission of data?

9.7 Explain the function of SYNDET/BD pin of 8251.

9.8 What are the modem control pins associated with 8251? Describe the functioning of these pins.

9.9 Discuss the mode instruction format for asynchronous transmission/reception.

9.10 Explain synchronous mode instruction format and command instruction format.

9.11 Draw the general transmission /receive format for synchronous communication.

9.12 Draw the status word format and explain the same.

9.13 Discuss the mode instruction format for synchronous transmission/reception case.

9.14 Show the command instruction format and explain briefly.

9.15 Explain how data can be transferred using 8251 USART at different baud rates. Write the features
of 8251.

9.16 Explain the DMA operation with a suitable diagram. Why is DMA controlled data transfers faster?

9.17 Draw the functional block diagram of 8257 DMA and explain its operating principle.

9.18 Describe the features of 8257. How many I/O devices can access 8257?

9.19 Draw the architecture of 8257 and explain briefly.

9.20 Describe the flowchart of DMA mode of data transfer. What do you mean by DMA cycle?

9.21 Explain how the address registers and terminal count registers for each of CH0-CH3 are selected as
also the mode set register and status word register.

9.22 Describe the status word register of 8257. Draw a timing diagram for DMA operation.

9.23 Explain the function of the following pins of 8257:
 (i) HRQ (ii) HLDA (iii) TC (iv) READY
 (v) DACK (vi) DRQ (vii) AEN (viii) ADSTB
 (ix) MARK

9.24 Draw the functional block diagram of 8279 and explain the operation of each block.

9.25 Write the different features of programmable keyboard and display controller.

9.26 Write the functions of the following signals
 (i) SL0–SL3 (ii) RL0–RL3 (iii) CNTL/STB (iv) OUTA0–OUTA3

 (v) OUTA0–OUTA3 (vi) IRQ (vii) SHIFT (viii) BD

9.27 What are the different modes of 8279 programmable keyboards and display controller? Explain each
mode with an example.

9.28 Discuss the left-entry mode of display format.

9.29 Discuss the right-entry mode of display format.

9.30 Explain the seven-segment display interfacing with 8279. How are sixteen-digit displays interfaced
with 8279?

9.31 Draw a circuit diagram to interface 8279 with a microprocessor and explain. Discuss the keyboard
interface of 8279.

9.32 Write short notes on the following:
 (i) Right entry (ii) Left entry (iii) N key Roller (iv) Display RAM
 (v) 2 key Roller (vi) FIFO (vii) Command word format of 8279

9.33 Explain counting-type ADC with a suitable diagram. What are the limitations of this converter? How
you can improve the performance of ADC?

9.34 Explain successive approximation type ADC. Compare dual-slope ADC and successive approximation
ADC.

9.35 Draw an N-bit binary weight DAC and explain its operation. What are the disadvantages of binary
weight DAC? What is the difference between binary weight DAC and R-2R ladder DAC.

9.36 Draw R-2R ladder circuit for 3 bits and explain with equivalent circuits.

9.37 Justify the following statements:
 (i) N-bit successive approximation ADC requires only N clock pulses for complete conversion.
 (ii) Successive approximation ADC is faster than counting type ADC
 (iii) Quantization error is ±½ LSB.
 (iv) N-bit flash comparator requires 2N–1 comparators.

9.38 Interface an A/D converter to 8085 and write a program to convert the analog input to digital.

9.39 Interface a D/A converter to 8085 and write a program to convert the digital input to analog output.

9.40 Draw the internal architecture of 8275 CRT controller and discuss briefly.

9.41 Discuss the general functions of 8275 CRT controller.

9.42 What is system bus? Explain the bus structure of a micro computer.

9.43 What is Expansion bus? What are the different slots on the mother board?

9.44 Write short notes on the following:

 (i) ISA (ii) EISA (iii) VESA (iv) PCI

 (v) AGP (vi) USB (vii) Parallel printer interface

9.45 What is RS-232C? Explain the function of different pins RS-232C.

9.46 How RS-232C is interfaced with TTL?

9.47 What is IEEE 488 Bus? Write the difference between RS 232C and IEEE 488.

9.48 Draw the block diagram of 8250 UART and explain in detail. Write the applications of UART.

9.49 What are the different features of 16550 UART? Explain the function of registers of 16550 UART.

9.50 What is 8089 I/O processor? Write different features of 8089 I/O processor.

9.51 Draw the functional block diagram of 8089 I/O processor and discuss briefly.

 9.1 (d) 9.2 (a) 9.3 (a) 9.4 (a) 9.5 (c) 9.6 (b) 9.7 (a) 9.8 (c) 9.9 (d)

 9.10 (c) 9.11 (d) 9.12 (a) 9.13 (b) 9.14 (c) 9.15 (b) 9.16 (b) 9.17 (c) 9.18 (c)

 9.19 (a) 9.20 (a) 9.21 (d) 9.22 (b) 9.23 (b) 9.24 (a) 9.25 (b) 9.26 (c) 9.27 (b)

 9.28 (a) 9.29 (c) 9.30 (c)

Initially, standard logic gates, digital and analog ICs were used to measure any physical and electrical quan-

tity in all electronics products. A product using standard logic gates can be replaced by interconnections

of standard hardware with the logic stored in a ROM. When the logic is concentrated in only a few com-

ponents, a high degree of design flexibility is possible. This type of system has limitations on size, weight,

power consumption and price. The microprocessor makes it possible to improve old products in all directions

and develop more sophisticated new industrial products incorporating new features. Microprocessor tech-

nology has been used to replace hardware designs, which were formally implemented with logic devices.

Actually, microprocessor applications are limited only by the technology rather than by the imagination of

the designers.

The microprocessor is a VLSI IC in which large numbers of transistors are placed. As microprocessors

are relatively new devices, these devices should be used to implement various functions such as measurement

of electrical and physical quantities, monitoring, controlling and protection of any process control system,

motion control, servo control system and power system, etc. These devices are programmable and can substi-

tute program logic for hardwired logic. Initially, microprocessor cost was too high, but due to rapid decrease

in the microprocessor-based system cost, enormous logic power can be added with some additional integrated

circuits in a microcomputer. The advantages of microprocessor-based design of a system are given below:

 The manufacturing costs of the electronic products are generally lower, but the typical microproces-

sor-based designs cost 60 to 20 per cent of their TTL implementation costs.

 The time and cost for the original development can be substantially lowered. Due to applications of

microprocessors, the design time can be reduced by about two thirds. Presently, numbers of software

are available to design a prototype system before implementation of the final product. Therefore, the

design cycle will continue to decrease.

 Consequently, microprocessor-based products can be brought to the market very early as per con-

sumer requirement.

 Microprocessor-based products have many complex functional capabilities and these products can

be provided at reasonable cost. Therefore, the realization of better products for the same or lower

prices are possible.

 The smaller number of components in a microprocessor system increase the reliability of the final

product.

 Sometimes microprocessor-based products fail. The computational capability of a microprocessor

can be used to perform self-diagnosing of the product to find error and help to remove faults. These

devices also provide substantial reductions in service charges.

In industry, there are a variety of microprocessor applications such as instrumentation, industrial control,

and aerospace, etc. Some of the actual applications come across industrial boundaries and these are more

informative to about the type of function to be performed. Microprocessors are used in data-collection ter-

minals, office equipment, business machines, calculators, point-of-sale terminals, and various kinds of data-

communication equipments. As the incremental cost for additional functions is very small in a microprocessor-

based system, always there is an increasing tendency to add greater functional capability. This tendency is most

noticeable in the area of instrumentation, where increasingly sophisticated products are finding their way to

the market in growing numbers. Presently, modern instruments have the additional features such as remote

control, programmability, improved readout, and peripheral interfaces.

Generally, microprocessors are also used to control traffic lights, appliances, motion control, position

control, servo control, elevators, automation, electric car, and control of AC/DC machines, etc. In this chapter,

measurement and display of electrical and physical quantities such as voltage, current, frequency, phase angle,

power factor, power, energy, force, displacement, speed, acceleration, temperature, pressure, stress, strain,

deflection, water level, traffic-light control, overvoltage and overcurrent protection, speed control of dc and

induction motors are discussed. Before discussion of measurement and control of some electrical and physical

quantities, the seven-segment display will be discussed as it is used to display any quantity after measurement.

Seven-segment display is widely used in calculators, digital watches, and measuring instruments, etc.

Generally, Light Emitting Diode (LED), Liquid Crystal Display (LCD) segments provide the display output

of numerical numbers and characters. To display any number and character, seven-segment display is most

commonly used. Figure 10.1(a) shows the segment identification, and display of decimal numbers from 0 to 9

is given in Fig. 10.1(b). The light emitting diodes emit

light when the anode is positive with respect to the

cathode. There are two possible connections, namely,

common anode and common cathode. In common-

anode connection, seven anodes connected to a com-

mon voltage and cathode will be controlled individu-

ally to get the proper display. But in common cathode

connection, anodes can be controlled individually for

display when all cathodes are connected to a common

ground of supply voltage as depicted in Fig. 10.2.

Figure. 10.3 shows the block diagram of a 7-seg-

ment display. The decimal number 0 to 9 can be dis-

played by the binary coded decimal input. For exam-

ple, the segments a, b, c, d, e, and f will be bright for

decimal number 0. Table 10.1 shows the different seg-

ments, which will be bright for decimal numbers 0 to

9. IC 7447 can be used as a decoder circuit for con-

verting binary coded decimal inputs into seven-seg-

ment display. Figure. 10.4 shows the pin configuration

of IC 7447 and the pin description is given below:

a

b

c

d

e

f

g

a b c d e f g

(a)

(b)

0 1 2 3 4 5 6 7 8 9

A0–A3 BCD inputs, RB1 Ripple blanking, LT Lamp test input

BI / BRO Blanking input/Ripple blanking output, a – g Segment outputs

The IC 7447 decodes the input data given in the truth table 10.1. IC 7447 is BCD to 7-segment decoder

with open-collector outputs. The 74LS47 has four input lines of BCD (8421) data, and it generates their

complements internally. Then the decoder decodes the data and decoder outputs can be used to drive indica-

tor segments directly. Each segment output sinks about 24 mA in the ON/LOW state and can withstand 15

V in the OFF/HIGH state. Some auxiliary inputs, namely, ripple blanking, lamp test and cascadable zero-

suppression functions are also provided in IC 7447. Zero suppression logic is very useful in multi-seven-

segment decoder.

Decimal

Number Inputs Outputs

 A B C D a b c d e f g

 0 0 0 0 0 1 1 1 1 1 1 0

 1 0 0 0 1 0 1 1 0 0 0 0

 2 0 0 1 0 1 1 0 1 1 0 1

 3 0 0 1 1 1 1 1 1 0 0 1

 4 0 1 0 0 0 1 1 0 0 1 1

 5 0 1 0 1 1 0 1 1 0 1 1

 6 0 1 1 0 0 0 1 1 1 1 1

 7 0 1 1 1 1 1 1 0 0 0 0

 8 1 0 0 0 1 1 1 1 1 1 1

 9 1 0 0 1 1 1 1 0 0 1 1

7- Segment
Display

BCD to

7-Segment Display

A B C D

a b c d e f g

a

b

c

d

e

f

g g

f

e

d

c

b

a

+ 5v

(a) (b)

The seven-segment displays are not directly connected with the I/O ports of 8255. Actually they are con-

nected through either buffers or drivers or decoders. Figure 10.5 shows the interfacing of a decoder and a

seven-segment display with microprocessor. Assume all I/O ports of 8255 operate as output port. Then con-

trol word of 8255 will be 80H. The pins PA0–PA3 of Port A are connected to the decoder 74LS47. Therefore,

binary inputs corresponding to the decimal number 0 to 9 are applied to 74LS47 and the decimal number 0

to 9 will be displayed in the seven-segment display. The program for displaying the decimal number is given

below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255

 in accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 09 MVI A,09H Load 09 in accumulator

8006 D3, 00 OUT 00 Send 09 to Port A for display

8008 76 HLT Stop

Initially control word of 8255, 80H is loaded in accumulator and writes the control word in control word

register to initialise all ports as output ports. After that, 09H is loaded in the accumulator and microprocessor

outputs 09H in Port A. The binary logic for 9 is output on the pins PA0–PA3, which are connected with seven-

segment display for display. The pins PA4–PA7 are the MSD of the decimal number 09. Hence the logic for 0

is output on the pins PA4–PA7. These pins are not connected anywhere and consequently ‘0’ is not displayed.

In two-digit display, two decoder drivers and two seven-segment displays are used as shown in Fig. 10.6.

The LSB will be displayed in one and MSD will be displayed in another seven-segment display. Thus, two

8085
MP

8055

PA – PA0 3

Decoder
74LS47

Seven-Segment
Display

a
b
c
d
e
f
g

a
b
c
d
e
f
g

A1

A2

BI/RB0

LT

RBI

A3

A0

GND

VCC

a

g

b

f

c

d

e

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

display units will display two-digit decimal numbers. To display 99H, the program is illustrated. After execu-

tion of this program, PA0–PA3 will be 9H and PA4–PA7 will be 9H. As Port A outputs are connected to two

seven-segment display units though decoder IC 74LS47, 99H will be displayed in the seven-segment display.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255

 in accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 99 MVI A, 99H Load 99 in accumulator

8006 D3, 00 OUT 00 Send 99 to Port A for display

8008 76 HLT Stop

8085
MP

8255

PA – PA4 7

PA – PA0 3

Decoder
74LS47

MSD

LSD

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Decoder
74LS47

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Figure 10.7 shows the four-digit display, which consists of four decoder drivers and four seven-segment

display units. Port A and Port B are used for driving the decoder. The program for four-digit display is as

follows:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 12 MVI A, 12H Load 12 in accumulator

8006 D3, 00 OUT 00 Send 12 to Port A for display

8008 3E, 34 MVI A, 34H Load 34 in accumulator

800A D3, 01 OUT 01 Send 34 to Port B for display

800C 76 HLT Stop

Here, Port A is used to display most significant digits and Port B displays the least significant digits.

After execution of the above program, 1234 will be displayed in the seven-segment display section.

To display more than four digits, more I/O ports and large number interfacing devices are required. To

reduce the number of I/O ports and interfacing components, multiplexing technique is used to display large

number of digits or letters or characters. Figure 10.8 shows the block diagram of a multi-digit display system.

In this system, only one digit will display at a time. PA0–PA3 of Port A is connected to the decoder, and the

decoder outputs are connected to seven-segment display. PB0–PB3 of Port B are fed to the multiplexer for

selecting any one of the several seven-segment display units. Each seven-segment display unit will be turned

ON and OFF in a sequence and this process will be repeated continuously. In this scheme, sixteen digits can

be displayed simultaneously as the multiplexer has four inputs. Firstly, one of the sixteen seven-segment dis-

play units will be selected through the multiplexer and afterward the desired segments of the seven segments

of the LED are to be turned ON to display any number. The same process may be repeated for the second,

third and other seven-segment LEDs. The process can be repeated in cyclic order with a minimum time delay.

8085

MP

8255

PA –PA
4 7

PA –PA
0 3

PB –PB
4 7

PB –PB
0 3

Decoder

74LS47

Decoder

74LS47

Decoder

74LS47

Decoder

74LS47

MSD

LSD

8085
MP

Seven-
Segment
Display

Seven-
Segment
Display

Seven-
Segment
Display

Seven-
Segment
Display

8255

PA –PA0 3

PB –PB0 3

Decoder

MUX

Figure 10.9 shows the schematic block diagram of dc voltage measurement. Firstly, the dc voltage is applied

to the peak detector circuit to detect the peak value of dc voltage when the dc voltage varies instantaneously.

Usually, the average and rms values of input voltage are directly proportional to peak of dc voltage. The

peak detector circuit is depicted in Fig. 10.10. When input voltage is positive, output of the operational

amplifier drives the diode D, and the capacitor C will be charged to the positive peak value of dc input volt-

age. In this circuit, when the diode D

is forward bias, operational ampli-

fier operates as a voltage follower. If

input voltage becomes negative, the

diode D is reverse biased and voltage

across the capacitor C will be retained

as the capacitor discharges through

resistance RL only. For satisfactory

operation of peak detector circuit, the

charging and discharging time con-

stant must follow the given condition.

CRD CRL

where, CRD —charging time constant,

CRL —discharging time constant

RD—resistance of forward bias diode,

RL —load resistance

The output of the peak detector

circuit is fed to the A/D converter.

Subsequently, analog dc voltage is

applied to the analog input terminal of

the A/D converter. The output of the

A/D converter is digital equivalent to

the analog input voltage. The outputs

of the A/D converter are connected to

the I/O ports of 8255 and the micro-

processor can read this digital output

of ADC through 8255 and transfer the

digital data to the accumulator. ADC

interfacing with 8255 and the micro-

processor is illustrated in Fig. 10.11. In this section, the program for dc voltage measurement in the range

of 0 to 5 V has been incorporated and displayed in the mV range. Therefore, 0000 will be displayed for 0 V

and similarly 5000 will be displayed at 5 V dc inpuy voltage. While writing the program, the given steps are

followed for dc voltage measurement:

 1. Convert analog input voltage into digital form and store in memory location

 2. Find the memory location of the look-up table where the calibrated data of digital equivalent

voltage is stored. The address is calculated from the following expressions. Actual address = Hex

code of analog input voltage × 2 + Initial address

VDC
A/D

Converter
Input
Voltage

Peak
Detector

8255 – 1
8085
MP

8255 – 2

Input
voltage

10 K 10 K

100 K

10 K

D

R
L

100 Fm
C

Output
Voltage

Lm311

+

–

PC3

P 2C

P 1C

P 0C

P 7C

EOC
A/D

Converter

SC

Analog
Input

Port C upper

Port C lower

To
Microprocessor

Port A

8255

I / O Port

 3. Call data stored in the two consecutive memory locations and display in the address field of the

microprocessor kit or in the seven-segment display.

To measure 0 to 5 V dc, the A/D converter IC operates in unipolar mode and the digital equivalent value

of 0–5 V will be 00H to 80H. 00H is equivalent to 0 V and 80 is equivalent to 5 V. When an analog input volt-

age is converted to a digital equivalent by the A/D converter then the microprocessor reads a digital equivalent

voltage. The look-up table or multiplication factor will be used for calibration of digital equivalent voltage to

display. The resolution of 8-bit 0–5 V ADC is 20 mV. Then relationship between analog input voltage and

hex output is

 V =
1000

20

50
X V=

where, X is the decimal equivalent of a hex number.

Two I/O ports, 8255-1 and 8255-2, are used for measurement of dc voltage. Port A and Port C of 8255-1

are used for ADC interfacing, and Port A and Port B of 8255-2 are used for display interface. Assume Port

A, and Port C upper of 8255-1 operate as input ports, and Port B and Port C lower as output ports. It is also

assumed that all ports of 8255-2 operate as output ports. The control word of 8255-1 is 98H and the control

word of 8255-2 is 80H. Assume the following port addresses of 8255-1 and 8255-2 as shown in Table 10.2.

The program for dc voltage measurement with the help of a look-up table is given below.

 8255-1 8255-2

Port Port Address Port Port Address

Control word register 03H Control word register 0BH

Port C 02H Port C 0AH

Port B 01H Port B 09H

Port A 00H Port A 08H

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255-1

 in accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 08 START MVI A, 08H Send start of conversion signal

 through PC3

8006 D3, 02 OUT 02H PC3 is high

8008 3E, 00 MVI A, 00H As PC3 will be high for one or two

 clock pulse, make it 0

800A D3, 0A OUT 02H PC3 becomes low

800C DB, 02 LOOP IN 02 Read end of conversion signal

800E 17 RAL Rotate accumulator to check either

 conversion is over or not.

800F D2, 0C, 80 JNC LOOP If conversion is not completed, jump

 to LOOP
(Contd.)

8012 DB, 00 IN 00 Read digital output of A/D converter

8014 2F CMA Complement of ADC output

8015 D6, 80 SUI 80H Subtract 80H

8017 21, 50, 80 LXI H, 8050H Load 8050H in HL-register pair

801A 77 MOV M, A Store accumulator content in 8050H

 location

 CALL 8100 Call calibration subroutine

 CALL 8150 Call display subroutine

8000 76 JMP START Jump to start

Subroutine to find initial address of memory location of look-up table for calibration and stored cali-

brated data in two consecutive memory location 8200 and 8201H

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 50, 80 LXI H, 8050H Load 8050H in HL-register pair

8103 3E, 00 MVI A, 00H Store 00H in accumulator and

 C register

8105 0E, 00 MVI C, 00H

8107 86 ADD M Add content of memory (digital

 equivalent of analog input voltage)

 with accumulator

8108 86 ADD M Add content of memory with

 accumulator

8109 D2, 0E, 81 JNC LEVEL-1 If no carry, jump to Level-1

810C 0E, 01 MVI C,01 Load 01H in C register

810E 6F LEVEL-1 MOV L, A Move accumulator content into

 L register

810F 26, 90 MVI H, 90H Load 90H in H register

8111 79 MOV A, C Content of C register with H register

8112 84 ADD H

8113 7E MOV A, M Move content of memory location

 specified by HL register pair into

 accumulator

8114 32, 00, 82 STA 8200 Store two least significant digits of

 display voltage stored in 8200H

8117 24 INX H Increment the HL register pair

8118 32, 01, 82 STA 8201 Store two most significant digits of

 display voltage stored in 8201H

811B C9 RET

(Contd.)

Vac

A/D
Converter

Input
Voltage

Peak
Detector

8255 8085
MP

Rectifier

a milivolt signal cannot be able to forward bias the conventional diode. The switching speed of a conventional

diode is also low. If a diode is used in the forward path of an operational amplifier, cut-in-voltage of diode

will be divided by the open-loop gain, which is very large in an operational amplifier. Then the diode can

operate in ideal mode with zero cut-in voltage. If a conventional diode is used in feedback path of operational

amplifier, high-frequency milivolt can be rectified. This rectifier is known as precision rectifier. There are

two types of precision rectifiers such as half-wave rectifier and full-wave rectifier. Figure 10.13 shows the

half-wave and full-wave precision rectifiers.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8150 3E, 80 MVI A, 80H Load control word of 8255-2 in

 accumulator

8152 D3, 0B OUT 0BH Write control word in control word

 register and initialize ports

8154 3A, 00, 82 LDA 8200H Load data in accumulator from 8200H

8157 D3, 09 OUT 09 Send data to Port B for display LSD

8159 3A, 01, 82 LDA 8201H Load data in accumulator from 8201H

815C D3, 08 OUT 08 Send data to Port A for display MSD

815E C9 RET

Memory Hex code of Voltage in Memory Hex code of Voltage in

Address Voltage Display (mV) Address Voltage Display (mV)

9000 00 0000 9080 40 2500

9002 01 0039 9082 41 2539

9004 02 0078 9084 42 2578

9006 03 0117 9086 43 2617

9008 04 0166 9088 44 2666

… …. … …. … ….

907E 3F 2461 9100 80 4999

The schematic block diagram of ac voltage measurement (peak value) is illustrated in Fig. 10.12. A recti-

fier is used to convert ac voltage into dc voltage. Therefore, rectifier output is a dc voltage source, which can

be represented as constant voltage source in series with a resistance. In a microprocessor-based system, it is

necessary to rectify millivolt high-frequency signal. When conventional diodes are used in a rectifier circuit,

there is always some voltage drop across forward bias diode 0.2 V for Ge diode and 0.7 V for Si diode, so that

The magnitude of ac voltage changes with time. So a sample hold circuit is required to maintain analog

voltage during the A/D conversion process. A bi-directional A/D converter must be used to measure positive

as well as negative voltage to display the instantaneous value of analog ac voltage. To measure the average

as well as rms value of ac voltage, a precision rectifier is used to convert ac voltage to dc. Then measure the

dc voltage with the help of an A/D converter, 8255 and microprocessor and after proper calibration it will be

displayed in the address field of the microprocessor or in the seven-segment display.

A similar process will be followed for writing program to measure the ac voltage. To measure high volt-

age, a Potential Transformer (PT) is required. The primary of PT is connected to high-voltage supply and the

output from PT secondary winding is fed to precision rectifier.

In current measurement, firstly the current must be converted into voltage using I to V converter and then

voltage is measured by the microprocessor with the help of an A/D converter and 8255 programmable periph-

eral interface IC. Figure 10.14 shows the dc current-to-voltage converter circuit. Current flow through the

RS resistance is zero as operational amplifier is virtually grounded. Therefore, I2 current flows through resis-

tance R2 and output voltage is equal to V0 = –I2R2. The ac current-to-voltage converter circuit using Current

Transformer (CT) and operational amplifier is depicted in Fig. 10.15. If output voltage at secondary of CT is

V1, output voltage will be equal to V
R

R
V0

1

2

1=- .

Figure 10.16 shows the current measurement of a dc motor. For the measurement of current, the current

signal is converted to voltage signal. A very low resistance of approximately 0.1 ohms may be connected in

series with the load. Then voltage across the resistance should be equal to 0.1 times of load current (I). After

amplifying by ten times, the amplifier output voltage must be equal to the current. Then output analog voltage

is applied to the input of the peak detector circuit so that it can deliver 5 volts when 5 A current flows though

the circuit. Thereafter, by measuring voltage, we can measure analog input current in digital form. The pro-

gram for voltage measurement may be used in current measurement also. But there will be some changes in

the look-up table. In the look-up table for each digital input signal due to corresponding input, current cali-

brated data must be stored in two successive memory locations as given in Table 10.4.

Input
Voltage

Lm311

Output
Voltage

–

+

D

V
s

10 K

Input
voltage
V
i

Output
Voltage
V0

Lm311

–

+

Lm311
–

+

Lm311

+

–

D
R
R

R

2 R

2 R

10 K

R

R
D

In ac current measurement, a Current Transformer (CT) may replace the sensor resistance. The current

transformer (CT) or a core-balanced transformer should be connected with a burden as depicted in Fig. 10.17.

The output signal in the voltage drop across the secondary of CT or burden resistance is applied to an A/D

converter through precision rectifier and peak detector circuit. Then the microprocessor measures analog

voltage and displays it in seven-segment display units.

For dc current measurement, assume R = 0.1 and maximum current I = 5 A. Then IR drop = 0.5 V. If

an amplifier is used to increase voltage with a gain = 10, output voltage will be 5 V. Subsequently, the look-up

table for voltage measurement can be used and current displayed in mill-amperes.

In ac current measurement assume CT ratio = 10 : 1, and primary current IP = 10 A. Then current flow

through secondary IS = 1 A, and voltage across resistance VR = 0.1 V. Two amplifiers circuits will be used to

produce 5 V output. Gain of the first-stage amplifier is 10 and the second-stage amplifier gain is 5. Here full-

scale analog voltage is 5 V for 10 A current and its digital equivalent output is 80H. The program for voltage

can be used in this case but the look-up table must be modified. The modified look-up table is given below:

AC Supply
AC Load

Output
Voltage

V0

I

CT

R
L R1

R2

10 K
+

–

Lm311
Output
Voltage

V0

R
s

I2

R2 I2

Lm311

–

+

Peak
Detector

VDC

Input
Voltage

Amplifier

A/D
Converter

8255 8085
MP

+

V

–
R I

+

V
f

–

I
f

Memory Hex code of Current Memory Hex code of Current
Address Current (mV) Address Current (mV)

9000 00 0000 9080 40 5000

9002 01 0078 9082 41 5078

9004 02 0156 9084 42 5156

9006 03 0234 9086 43 5234

9008 04 0312 9088 44 5312

… …. … …. … ….

907E 3F 4921 9100 80 9999

To measure the frequency of an ac signal, firstly the ac signal is converted into dc square waveform using

Zero Crossing Detectors (ZCD) as shown in Fig. 10.18. Then the time period of half cycle of square wave is

measured, which is directly related with frequency. The relation between frequency (f) and time period (T)

is f
T
1

= .

Usually, the Zero Crossing Detector (ZCD) is an open-loop or saturation-mode operation of the opera-

tional amplifier and it is basically a comparator with zero reference voltage. Zero crossing detectors are of

two types—inverting and non-inverting type as shown in Fig. 10.18 (a) and (b) respectively. Whenever the

input voltage crosses the zero axis, the output voltage changes abruptly. In an inverting zero crossing detec-

tor, input voltage is applied to the inverting terminal, and the output voltage signal is out of phase (180 phase

shift from the input voltage). In case of non-inverting zero crossing detector, the input voltage is applied to

the non-inverting terminal. Therefore, the output voltage is in phase with the input signal.

As depicted in Fig. 10.18(b), ZCD converts the positive half-cycle of ac input voltage to a rectangular

waveform. Output is low in the negative half-cycle and high in the positive half-cycle. The amplitude of a

square wave will be either +VCC or –VCC. When the operational amplifier operates in +12 V and –12 V, the

output voltage will vary in between +12 V and –12 V. But microprocessors can operate at 5 V only. Therefore,

the output square wave must be converted into +5 V and 0 V using some additional arrangement in ZCD as

depicted in Fig. 10.19.

Peak
Detector

Amplifier

A/D
Converter

8255
8085
MP

Rectifier

AC Supply

R
L

CT

I

AC
Load

A sinusoidal signal is converted to square wave using a voltage comparator LM 311 or operational amplifier

LM 747 or LM 324 as shown in Fig. 10.19. A diode is used to rectify the output signal. A potential divider is used

to reduce the magnitude to 5 volts. The microprocessor receives the output signal of ZCD through I/O ports of

8255 to detect the rising edge and falling edge of square waveform using an assembly-language program. The

program for zero crossing detectors to detect rising edge and falling edge of a square waveform is given below.

Input
Voltage

Output
Voltage

V0

Lm311

–

+V
s

(a)

Input
Voltage

Output
Voltage

V0

Lm311

–

+

V
s

(b)

V
S

V
M

V0

+V
CC

–V
CC

t

t

V
S

V
M

V0

+V
CC

–V
CC

t

t

(c) (d)

Input
Voltage

Output

Output

12V

–12V
D

R1 R2

R3

V0

5V
0V

–

+

Lm311

Input
Voltage Output

Output

12V

–12V
D

R1 R2

R3

V0

5V
0V

–

+

Lm311

10 K

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 90 MVI A, 90H Load control word of 8255 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 01, 00, 00 LXI B, 0000H

8007 11, 00, 00 LXI D, 0000H

800A DB, 00 Level-1 IN 00 Input through Port A

800C E6, 01 ANI 01H Logical AND 01H with accumulator

800E C2, 0A, 80 JNZ Level_1

8011 DB, 00 Level_2 IN 00 Input through Port A

8013 E6, 01 ANI 01H Logical AND 01H with accumulator

8015 CA, 11, 80 JZ Level_2

8018 03 INX B Increment B-C register pair as

 positive edge zero crossing is detected

8019 DB, 00 Level_3 IN 00 Input through Port A

801B E6, 01 ANI 01H Logical AND 01H with accumulator

801D C2, 19, 80 JNZ Level_3

8020 13 INX D Increment DE register pair as negative

 edge zero crossing is detected

8021 C3, 11, 80 JMP Level_2

8024 76 HLT Stop

The above program has been written to detect the rising and falling edges of a square waveform. Increment

BC register pair, after detecting rising edge and increment DE register pair after detecting falling edge.

Initially, assume Port A as input and Port B and Port C as output ports. Find the control word of 8255 and

load it into control word register. The ZCD output is connected to the PA0 of 8255. The PA0 pin will be either

low or high. If it is high, it waits till the signal becomes low. As soon as it receives the low signal, the counter

DE register pair will be incremented. When the signal is low, it waits till the signal becomes high. After that,

the counter BC register pair will be incremented.

Figure 10.20 shows the schematic block diagram of frequency measurement, which consists of a step-

down transformer, a Zero Crossing Detector (ZCD), 8255 PPI and 8085 microprocessor. The step-down

transformer changes the supply voltage to 5 V signal and fed to a ZCD. The output of ZCD is a 5 V square

wave, which is connected with the PA0 of 8255 PPI.

Sinusoidal
input

Sine wave
to

Square
wave

Converter

I / O
Port
8255-1

8085
MP

PA0

Port A

The microprocessor checks the status of PA0 pin of 8255. At point P1, the PA0 = 0. PA0 = 1 at point P2. As

soon as P2 becomes 1 and PA0 status has been changed from 0 to 1, the counter

starts counting but the microprocessor checks the status of PA0 continuously

as the counter should count until PA0 changes from 1 to 0. At point P4, PA0

becomes 0 from 1 and the processor terminates the counting process. In this

way, half-cycle time is measured in terms of count value, which is stored in the

BC register pair. A look-up table will be stored into a microprocessor for conver-

sion from the count value of time period to frequency. Actually, the hexadecimal

count value is compared with a look-up table and frequency will be measured and displayed in data field or

address field of microprocessor or in the seven-segment display units. The program for frequency measure-

ment is given below.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 90 MVI A, 90H Load control word of 8255 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 01, 00, 00 Start LXI B, 0000H

8007 DB, 00 Level-1 IN 00 Input through Port A

8009 E6, 01 ANI 01H Logical AND 01H with accumulator

800B C2, 07, 80 JNZ Level_1

800E DB, 00 Level_2 IN 00 Input through Port A

8010 E6, 01 ANI 01H Logical AND 01H with accumulator

8012 CA, 0E, 80 JZ Level_2

8015 03 Level_3 INX B Increment B-C register pair as

 positive edge zero crossing is detected

8016 DB, 00 IN 00 Input through Port A

8018 E6, 01 ANI 01H Logical AND 01H with accumulator

801A C2, 15, 80 JNZ Level_3

801D 79 MOV A, C Store the content of B-C register pair

 in 8050H and 8051H memory location

801E 32, 50, 80 STA 8050H

8021 78 MOV A, B

8022 32, 51, 80 STA 8051H

8025 CD, 00,81 CALL 8100 Call look-up table subroutine

8028 CD, 50, 81 CALL 8150 Call display subroutine

802B C3, 04, 80 JMP Start

P
1

P
2

P
3

P
4

P
5

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 50, 80 LXI H, 8050H Load 8050H in HL-register pair

8103 5E MOV E, M Store LSB of count value in E register;

8104 23 INX H increment HL register pair to locate

 next memory location

8105 56 MOV D, M Store MSB of count value in D register

8106 2E, 00 MVI L,00 Starting memory location of look-up

 table 9000H is loaded in HL register

 pair

8108 26, 00 MVI H,90

810A 19 DAD D Add content of DE and HL register

 pair as well store the result in HL

 register pair

810B 19 DAD D Add content of DE and HL register

 pair as well store the result in HL

 register pair

810C 7E MOV A,M Move LSDs of frequency to

 accumulator from lookup table

810D 32, 00, 82 STA 8200 Store two least significant digits

 (LSDs) of display frequency in 8200H

8110 23 INX H Increment HL register pair

8111 7E MOV A,M Move MSDs of frequency to

 accumulator from lookup table

8112 32, 01, 82 STA 8201 Store two most significant digits of

 display frequency in 8201H

8115 C9 RET

Memory Machine

address Codes Labels Mnemonics Operands Comments

8150 3E, 80 MVI A, 80H Load control word of 8255-2 in

 accumulator

8152 D3, 0B OUT 0BH Write control word in control word

 register and initialize ports

8154 3A, 00, 82 LDA 8200H Load data in accumulator from 8200H

8157 D3, 09 OUT 09 Send data to Port B for display

8159 3A, 01, 82 LDA 8201H Load data in accumulator from 8201H

815C D3, 08 OUT 08 Send data to Port A for display

815E C9 RET

Memory Hex code of Frequency Memory Hex code of Frequency

Address Count value Display (Hz) Address Count value Display (Hz)

9000 0000 0000 9300 0180 5020

9002 0001 9999 9302 0181 5007

9004 0002 9986 9304 0182 4994

9006 0003 9973 9306 0183 4981

… …. …. …. …. ….

92FE 017F 5033 95FE 02FF 0050

In the above program, instructions from memory location 8007H to 800CH can be used to check whether the

level of ZCD output is 0 or 1. If it is in level high or ‘1’, again execute instructions from memory location 8007

H to 800C H. Otherwise, start execution from 800E H memory

location. Instructions are written in between 800E H and 8013

H to detect the rising edge of ZCD output (square wave signal).

As soon as the rising edge is detected, the counter starts count-

ing and again reads PA0 to check the status of ZCD output.

Here, the BC register pair is used as a counter and it counts

continuously until falling edge of ZCD output square wave

is detected. Parts of the main program from memory location

8015H to 801BH are used for this purpose. In this way, the time

period for half cycle is measured in terms of count value. The

count value is inversely proportional to the frequency. When

the count value is low, the frequency will be high and vice

versa. The count value can be converted into frequency by

computation or by using a look-up table. The flowchart for

frequency measurement is depicted in Fig. 10.22.

This frequency measurement program can be used to

measure frequency up to 10 kHz. The look-up table between

count value and frequency is given above. Here, we assume

maximum count value is about 02FF and minimum count

value 0000H while the program is executed. When the count

value is 0001, the frequency output is 9999 Hz, which will be

displayed in seven-segment display units. If the count value

is 02FF, frequency output is 0050 Hz and display is in seven-

segment display units.

The schematic block diagram of phase-angle measurement is shown in Fig. 10.23. Assume the voltage and

current waveform has a phase angle difference of as depicted in Fig. 10.24. The voltage waveform con-

verted into square waveform using ZCD. Initially, the current signal is converted into voltage signal and then

voltage signal is converted into square waveform using another ZCD. The ZCD output corresponding to volt-

age signal is connected with PA0 of 8255 and the ZCD output due to current signal is also fed to PB7 of 8255.

A program for phase-angle measurement should be loaded in the microprocessor. When the program is

executed, the microprocessor firstly detects the instant of positive zero crossing of input voltage. Then the

START

Initialise all I/O Ports and BC Counter Register pair

Detect
rising edge of ZCD

output signal

Increment BC Register Pair

Compare the count value of BC Register pair
with look up table and Determine the frequency

Display frequency in seven segment display

Stop

Detect
falling edge of ZCD

output signal

No

Yes

Yes

No

counter starts counting at the instant of positive zero

crossing point of square wave corresponding to volt-

age. After that, the microprocessor checks the status of

PB7 to detect the positive zero crossing point of cur-

rent signal and the counter terminates counting as soon

as zero crossing of the current waveform is detected.

The count value of the counter is directly proportional

to phase-angle difference. A look-up table, i.e., the

relationship between count value and phase angle is

already stored in the microprocessor. Therefore, using

the said look-up table, the digital count value can be

calibrated into phase angle and finally displayed in

seven-segment display. The program for phase-angle

measurement is given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 90 MVI A, 90H Load control word of 8255 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 01, 00, 00 Start LXI B, 0000H

8007 DB, 00 Level-1 IN 00 Input through Port A

8009 E6, 01 ANI 01H Logical AND 01H with accumulator

800B C2, 07, 80 JNZ Level_1 Detect the zero level of square wave of

800E DB, 00 Level_2 IN 00 Input through Port A

8010 E6, 01 ANI 01H Logical AND 01H with accumulator

8012 CA, 0E, 80 JZ Level_2 If positive zero crossing of V is not

 detected, jump to Level_2

8015 03 Level_3 INX B Increment B-C register pair

8016 DB, 01 IN 01 Input through Port B

8018 E6, 80 ANI 80H Logical AND 80H with accumulator

801A C2, 15, 80 JNZ Level_3 Detect the zero level of square wave of I

801D 03 Level_4 INX B Increment B-C register pair

Filter
I Vto

Converter

ZCD

ZCD
PB7

PA0

Part A

8255-1

Part B

8085
Micro-

processor
Display

V

I

Filter

5V

0V

V

I

5V

0V

V, I

fI

V
i

t

t

t

(Contd.)

801E DB, 01 IN 01 Input through Port B

8020 E6, 80 ANI 80H Logical AND 01H with accumulator

8022 CA, 1D, 80 JZ Level_4 If positive zero crossing of I is not

 detected, jump to Level_4

8025 79 MOV A, C Store the content of B-C register pair

 in 8050H and 8051H memory location

8026 32, 50, 81 STA 8050H

8029 78 MOV A, B

802A 32, 51, 81 STA 8051H

802D CD, 00, 81 CALL 8100 Call look-up table subroutine

8030 CD, 50, 81 CALL 8150 Call display subroutine

8033 C3, 04, 80 JMP Start

 Phase Angle Phase Angle

Memory Hex code of Display in Memory Hex code of Display in

Address Phase Angle degrees Address Phase Angle degrees

9000 0000 00 00 9180 00C0 45 00

9002 0001 00 24 9182 00C1 45 24

9004 0002 00 47 9184 00C2 45 47

9006 0003 00 71 9186 00C3 45 71

… …. … …. … ….

917E 00BF 44 70 9180 0180 90 00

The above program for frequency measurement is written by using the following steps:

Step 1 Initialization of I/O ports of 8255-1 and load 0000H in BC register to initialize counter.

Step 2 Detect the instant of rising edge of square wave corresponding to input voltage.

Step 3 After detecting the positive zero crossing of voltage signal, start counting. Counting will be continu-

ing until positive zero crossing of current signal is detected.

Step 4 Detect the rising-edge zero crossing of current wave and terminate counting. Count value will be

stored in BC register pair and stored in 8100 and 8101 memory locations.

Step 5 Call subroutine for calibration. The count value can be converted into phase angle. After that, phase

can be displayed by display subroutine.

In this method, phase angle 0 to 90 degree lagging can be measured. To measure the leading phase angle,

the program will be modified. Counting will be started at rising edge of a square wave corresponding to cur-

rent signal and terminate counting at rising edge zero crossing of input voltage. Here, only the basic concept

of phase-angle measurement has been incorporated for better understanding and program simplification.

The current waveform is either lag or lead from the voltage waveform by a phase angle (z). The power

factor is a cosine of phase angle i.e., cos z. Therefore, the power factor will be either lagging or leading.

Figure 10.25 shows the schematic block diagram interface for frequency measurement.

To measure the power factor, first of all phase angle is measured as explained in Section 10.3.4. After

measuring phase angle, the power factor can be measured. Generally, the phase angle is well-known in terms

(Contd.)

Zero Crossing
Detector

Zero Crossing
Detector

AC Supply

Port B

Port A

8255-1

PA0

PT

CT

I

8085
MP

PB7

AC Load

of count value. Therefore digital value of the counter can be converted into power factor with the help of a

look-up table and displayed in seven-segment display. Actually, the look-up table is the relationship between

the count value and power factor and it is used for better accuracy and simplification of program. The pro-

gram for phase-angle measurement can also be used in lagging power factor measurement after incorporating

the new look-up table as given below. To measure the leading power factor, the same program can be used with

some modification in the main program as well as the look-up table.

Memory Hex code of Power factor Memory Hex code of Power factor

Address Phase Angle Display Address Phase Angle Display

9000 0000 1000 9180 00C0 0707

9002 0001 0999 9182 00C1 0704

9004 0002 0999 9184 00C2 0701

9006 0003 0999 9186 00C3 .0698

… …. … …. … ….

9080 0040 0964 9200 0100 0478

90E0 0070 0891 9260 0130 0293

9120 0090 0823 92C0 0160 0096

… …. … …. … ….

917E 00BF 0710 9180 0180 0000

Impedance of a circuit (Z) is defined as the ratio of V and I. It can be expressed by Z
I

V . To measure

impedance, firstly we measure rms voltage and current using a multiplexer-based A/D converter. After mea-

suring Vrms and Irms, the ratio Vrms/Irms can be determined by using a division subroutine. Figure 10.26 shows

the schematic block diagram of impedance measurement.

Precision
Rectifier

I Vto
Converter

Precision
Rectifier

Peak
Detector

Peak
Detector

Multi-
plexer

F
ilt
e
r

F
ilt
e
r

V

I I2

I1

AM
3705

ADC
0800

E/C PC7

S/C PC3

Channel Select Signals

S2

S1

S0
PC0

PC1

PC2

Port C lower

I / O Port
8255-1

Port C upper

Port A 8085
Micropro
cessor

8255 – 2

Seven-
Segment
Display

PC0, PC1 and PC2 of Port C are connected to channel select terminals of multiplexer. Input 1 of the

multiplexer is connected with voltage signal and Input 2 of the multiplexer is connected with the current

signal. When PC0, PC1 and PC2 are 000, Channel 1 will be selected and analog input voltage is applied to A/D

converter. Start Of Conversion (SC) pin and End Of Conversion (EOC) pin of A/D converter are connected

with PC3 and PC7 respectively. When the microprocessor sends SC signal to A/D converter through 8255,

A/D converter starts to convert analog voltage into digital form. After that, the microprocessor reads EOC

signal to detect the end of A/D conversion process. After proper A/D conversion, the microprocessor reads

the digital equivalent of analog input voltage and stores the digital data in a memory location. Subsequently,

the microprocessor sends PC0 = 1, PC1 = 0, and PC2 = 0 signals to select Channel 2 and analog voltage

corresponding to current is fed to A/D converter. The A/D converter converts analog voltage into its digital

equivalent value and stores it in the memory location. Then the microprocessor program calls a division

subroutine to find the V/I ratio and displays it in the seven-segment display.

Assume dividend, i.e., digital equivalent voltage is stored in the memory location 8050H and divisor i.e.

digital equivalent of current is also stored in the memory location 8051. After division, Quotient is written

in 8200H and remainder in 8201H locations. In the display subroutine, the quotient will be loaded into the

accumulator from 8200H and displayed as most significant digits MSDs. Similarly, the remainder can be

read from memory location 8201H and loaded into the accumulator. Then remainder is displayed as least

significant digits LSDs. The program for impedance measurement is given below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255-1 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E,00 MVI A, 00H Send PC0 = 0, PC1 = 0, PC2 = 0 to

 select Channel 1

8006 D3, 02 OUT 02H PC0 = 0, PC1 = 0, PC2 = 0

8008 3E, 08 MVI A, 08H Send start of conversion signal

 through PC3

800A D3, 02 OUT 02H PC3 is high

800C 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock

 pulse, make it 0

800E D3, 02 OUT 02H PC3 becomes low

8010 DB, 02 LOOP IN 02 Read end of conversion signal

8012 17 RAL Rotate accumulator to check either

 conversion is over or not

8013 D2,10, 80 JNC LOOP If conversion is not completed, jump

 to LOOP

8016 DB, 00 IN 00 Read digital output of A/D converter

 corresponding to voltage

8018 2F CMA Complement of ADC output

8019 D6, 80 SUI 80H Subtract 80H

801B 21, 50, 81 LXI H, 8050H Load 8050H in HL-register pair

801E 77 MOV M, A Store accumulator content, i.e., digital

 equivalent of voltage in 8050H

 location

801F 3E, 01 MVI A, 01H Send PC0 = 1, PC1 = 0, PC2 = 0 to

 select Channel 2

8021 D3, 02 OUT 02H PC0 = 1, PC1 = 0, PC2 = 0

8023 3E, 08 MVI A, 08H Send start of conversion signal

 through PC3

8025 D3, 02 OUT 02H PC3 is high

8027 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock

 pulse, make it 0

8029 D3, 02 OUT 02H PC3 becomes low

802C DB, 02 LOOP IN 02 Read end of conversion signal

802D 17 RAL Rotate accumulator to check either

 conversion is over or not
(Contd.)

802E D2, 2C , 80 JNC LOOP If conversion is not completed, jump

 to LOOP

8031 DB, 00 IN 00 Read digital output of A/D converter

 corresponding to current

8033 2F CMA Complement of ADC output

8034 D6, 80 SUI 80H Subtract 80H

8036 21, 51, 81 LXI H, 8051H Load 8051H in HL-register pair

8039 77 MOV M, A Store accumulator content, i.e., digital

 equivalent of current in 8051H

 location

803A CD, 00, 81 CALL 8100 Call for division subroutine

803D CD, 50, 81 CALL 8150 Call display subroutine

8040 86 HLT Stop

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 50, 80 LXI H, 8050H Address of Dividend in H-L pair.

8103 0E, 00 MVI C, 00H Load 00H in C register for initial

 value of quotient

8105 7E LOOP MOV A,M Load Dividend in accumulator from

 memory

8106 7A MOV D,A Copy Dividend in D register

8107 23 INX H Increment HL register pair

8108 96 SUB M Subtract divisor from dividend

8109 DA, 13, 81 JC LEVEL_1 If there is carry, jump to LEVEL_1

810C CA, 18, 81 JZ LEVEL_2 If there is zero, jump to LEVEL_2

810F 2B DCX H Decrement HL register pair

8110 77 MOV M,A Store Modified Dividend in memory

 location from accumulator

8111 0C INR C Increment C register

8112 C3 JMP LOOP

8113 37 LEVEL_1 STC Clear the carry flag using set carry

 status and then complement the carry

 status

8114 3F CMC

8115 C3, 19, 81 JMP LEVEL_3 Jump to LEVEL_3

8118 0C LEVEL_2 INR C

8119 21, 00, 82 LEVEL_3 LXI H, 8200H

811C 71 MOV M,C Store Quotient in 8200H from

 C register

(Contd.)

(Contd.)

811D 23 INX H Increment HL register pair

811E 72 MOV M,D Store Remainder in 8201H from

 D register

811F C9 RET

Memory Machine

address Codes Labels Mnemonics Operands Comments

8150 3E, 80 MVI A, 80H Load control word of 8255-2 in

 accumulator

8152 D3, 0B OUT 0BH Write control word in control word

 register and initialize ports

8154 3A, 00, 82 LDA 8200H Load data in accumulator from 8200H

8157 D3, 09 OUT 09 Send Quotient to Port B for display as

 MSDs

8159 3A, 01, 82 LDA 8201H Load data in accumulator from 8201H

815C D3, 08 OUT 08 Send Remainder to Port A for display

 as LSDs

815E C9 RET

The above program for impedance measurement is written by using the following steps:

Step 1 Initialize I/O ports of 8255.

Step 2 Select Channel 1 and analog voltage is applied to A/D converter to convert analog voltage into digi-

tal value. Stores digital value of voltage in 8050H memory location. The part program of the above

program from memory locations 8004H to 801EH is used for this purpose.

Step 3 Select Channel 2 for current input. Convert analog equivalent voltage of current into digital value by

A/D converter and store in 8051H memory location. The part program of the above program from

memory locations 801FH to 8039H is used for this function.

Step 4 Call division subroutine to determine the V/I ratio. Store the quotient in 8200H memory location and

the remainder in 8201H memory locations. The division subroutine is given in the memory locations

8100H to 811FH.

Step 5 Call display subroutine to display in seven-segment display.

Figure. 10.27 shows the schematic block diagram of VA measurement. The VA can be expressed as

 S = VI VA

 S = VI

1000
kVA

To measure VA, voltage V and current I are measured separately. Then the product of V and I can be com-

puted by using a multiplication subroutine.

Precision rectifiers are used to convert ac voltage signals into dc voltages. The I to V converter is used to

generate a voltage signal which is directly proportional to current. The output of rectifiers is fed to the peak

detector circuit whose outputs are applied to a multiplexer as depicted in Fig. 10.27. Channel 1 and Channel

(Contd.)

2 inputs of a multiplexer are V and voltage corresponding to I respectively. Then voltage and current both are

converted into digital form using A/D converter and stored in memory location. Afterwards, a multiplication

subroutine is called to determine the product VI. Then it is displayed in seven-segment display.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255-1 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E,00 MVI A, 00H Send PC0 = 0, PC1 = 0, PC2 = 0 to

 select Channel 1

8006 DB, 02 OUT 02H PC0 = 0, PC1 = 0, PC2 = 0

8008 3E, 08 MVI A, 08H Send start of conversion signal

 through PC3

800A D3, 02 OUT 02H PC3 is high

800C 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock

 pulse, make it 0

800E D3, 02 OUT 02H PC3 becomes low

8010 DB, 02 LOOP IN 02 Read end of conversion signal

8012 17 RAL Rotate accumulator to check either

 conversion is over or not.

8013 D2, 10, 80 JNC LOOP If conversion is not completed, jump

 to LOOP

8016 DB, 00 IN 00 Read digital output of A/D converter

Precision
Rectifier

I Vto
Converter

Precision
Rectifier

Peak
Detector

Peak
Detector

Multi-
plexer

F
ilt
e
r

F
ilt
e
r

V

I I2

I1

AM
3705

ADC
0800

E/C PC7

S/C

PC3

Channel Select Signals

S2

S1

S0
PC0

PC1

PC2

Port C lower

I / O Port
8255-1

Port C upper

Port A 8085
Micropro
cessor

8255 – 2

Seven-
Segment
Display

(Contd.)

8018 2F CMA Complement of ADC output

8019 D6, 80 SUI 80H Subtract 80H

801B 21, 50, 81 LXI H, 8050H Load 8050H in HL-register pair

801E 77 MOV M, A Store accumulator content in 8050H

 location

801F 3E,01 MVI A, 01H Send PC1 = 0, PC1 = 0, PC2 = 0 to

 select channel 2

8021 D3, 02 OUT 02H PC1 = 0, PC1 = 0, PC2 = 0

8023 3E, 08 MVI A, 08H Send start of conversion signal

 through PC3

8025 D3, 02 OUT 02H PC3 is high

8027 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock

 pulse, make it 0

8029 D3, 02 OUT 02H PC3 becomes low

802B DB, 02 LOOP-1 IN 02 Read end of conversion signal

802D 17 RAL Rotate accumulator to check either

 conversion is over or not.

802E D2, 2Bn, 80 JNC LOOP-1 If conversion is not completed, jump

 to LOOP

8031 D2, 00 IN 00 Read digital output of A/D converter

8033 2F CMA Complement of ADC output

8034 D6, 80 SUI 80H Subtract 80H

8036 21, 51, 80 LXI H, 8051H Load 8050H in HL-register pair

8039 77 MOV M, A Store accumulator content in 8050H

 location

803A CD, 00, 81 CALL 8100 Call for multiplication

803D CD, 50, 81 CALL 8150

8040 76 HLT Stop

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 21, 50, 80 LXI H, 8050H Address of multiplicand in H-L pair

8103 5E MOV E, M Store multiplicand in E register from

 memory

8104 23 INX H Address of multiplicand in H-L pair

8105 56 MOV D, M Multiplicand in D register

8106 0E, 08 MVI C, 08H Load 08H in C register

8108 3A, 51, 80 LDA 8051H Load multiplier in accumulator

810B 21, 00, 00 LXI H, 0000H Initial value of product = 00 in

 H-L pair (Contd.)

(Contd.)

810E 0F LOOP RRC Rotate accumulation left

810F D2, 13, 81 JNC LEVEL If there is no carry, jump to level

8112 19 DAD D Add content of DE with content of H

8113 EB LEVEL XCHG The content of DE register pair and

 HL register pair exchanged, result in

 DE register

8114 19 DAD H Multiplicand shifted one bit right

8115 EB XCHG The content of DE register pair and

 HL register pair exchanged; result in

 DE register

8116 37 STC Clear the carry flag using set carry

 status and then complement the carry

 status

8117 3F CMC

8118 0D DCR C Decrement C register

8119 C2, 0E, 81 JNZ LOOP If content of C register is not zero,

 jump to LOOP

811C 22, 00, 90 SHLD 9000H Store the content of HL register pair in

 9000H and 9001 memory location

811F C9 RET

To find the power consumption in a circuit, the power is calculated from the expression

P = VI cos z when the voltage and current waveforms are sinusoidal.

Usually, the instantaneous value of the voltage is V cos z when current reaches the peak. To get a pulse

at the moment of peak current, a phase shifter and zero-cross detector are generally used. Firstly, the current

signal is fed to the phase shifter to obtain a 90° phase shift. After that the output of the phase shifter is applied

to the zero-cross detector. The instant where rising edge of square wave occurs, is the peak instant of current.

The microprocessor reads the status of ZCD to detect the rising edge. As soon as the microprocessor detects

the rising edge of ZCD square wave output, the microprocessor generates a sample and hold signal so that V

cos z voltage is applied to A/D converter. At this instant, the microprocessor sends a command to the multi-

plexer to select Channel 1, and the instantaneous value of the voltage V cos z is fed to an A/D digital converter.

Then the A/D converter converts V cos z into its digital equivalent value and stores in memory location.

Afterwards, find the average value of the current using the same A/D converter and store in a memory loca-

tion. Subsequently, call multiplication subroutine to determine the VI cos z and display the power value in a

seven-segment display.

Reactive power can be expressed as

 VI sin z = () ()cosVI VI
2 2z-

(Contd.)

To measure the reactive power, initially V sin z and I are measured by microprocessor and then VI sin z is

determined. At the instant of zero current, the instantaneous value of the voltage is V sin z. To detect the instant

of zero current, current signal is fed to ZCD and converted into square wave. The microprocessor reads and

examines the ZCD output to detect the rising edge of square wave. When the microprocessor detects the ris-

ing edge of ZCD square wave, the microprocessor generates a sample and hold signal so that V sin z voltage

is applied to an A/D converter. At this instant the microprocessor also sends a command to the multiplexer

to select Channel 2 and the instantaneous value of the voltage, V sin z is fed to an A/D digital converter. A/D

converter converts V sin z into digital equivalent value. Afterwards, the current is also converted into digital

form using the same A/D converter. Subsequently, call the multiplication subroutine to determine the VI

sin z ratio and display the reactance value in seven-segment display.

The electrical energy consumed by a circuit is expressed as

 E = cosVI dt

t

0

z

Energy consumed by an electrical circuit = E = VIt where V is voltage, I is current and t is time.

If V and I are constants, E will be a constant. The method of energy measurement is given below:

Step 1 Determine the digital equivalent of analog voltage by an A/D converter.

Step 2 Determine digital value of analog voltage proportional to current using an A/D converter.

Step 3 Multiply the digital values of voltage and current and stored in memory location after summation of

product value with previous value.

Step 4 Call delay for 1minute.

Step 5 Increment counter.

Step 6 Repeat steps 1 to 5 until count value is equal to (60)D..

Step 7 If count value is (60)D, the sum value will be energy consumed in watt hours. If we want to represent

in kWh, the result must be divided by (1000)D.

Assume voltage and current waveform is sinusoidal. Voltage and current are fixed for every one minute.

After summation, decimal adjustment is required for display.

The block diagram of the microprocessor-based energy measurement is shown in Fig. 10.28. In any mea-

surement system, it is necessary to interact the system with the microprocessor through a proper sensor gen-

erating voltage signal, depending upon the system performance and compatibility with the microprocessor.

The voltage across 0.01 resistances has been taken as the reference signal, which after isolation has been

conveyed to the microprocessor through ADC and I/O ports. The voltage signal is also fed to the micropro-

cessor through ADC and I/O ports.

Software development is the most interesting feature of the device since the monitoring system is solely

dependent on software. The microprocessor initially assigns I/O ports as input ports and a clearing counter

m for storing units of the energy consumed, receives electrical signals in succession from the respective sen-

sors and keeps them in specified memory locations. Then allowing a very small pre-calculated time-delay, it

continues to receive current signals, adds them to the previous ones, preserves the results in the same memory

location and continues the cycle operations for sixteen complete cycles.

Nowadays, physical quantities such as force, displacement, acceleration, velocity, speed, temperature, pressure,

flow and level, etc., are measured and displayed using microprocessors and interfacing devices in industry. For

the measurement of any physical quantity, transducers are used to convert energy from motion, displacement,

acceleration, velocity, flow, pressure, level, heat, light, sound and any other physical quantities into electrical

energy. A transducer consists of sensor and signal conditioning circuit. Most commonly used transducers are

potentiometers, capacitive and inductive transducers, level transducers, strain gauge, accelerometer, Linear

Variable Differential Transformer (LVDT), piezoelectric crystals and diaphragm, etc. Electrical output of a

transducer is very small and it is not in measurable condition; therefore it should be amplified by using ampli-

fiers. Figure 10.29 shows the schematic block diagram of a physical quantity measurement.

The output electrical signal from transducer is fed to an A/D converter, which converts analog signal to

digital form and then applies to the 8085 microprocessor through 8255 PPI. The 8085 microprocessor reads

this digital data and displays it in seven-segment display. When it is required to measure and display more than

one physical quantity, a multiplexer should be incorporated in between transducers and the A/D converter. In

Precision
Rectifier

I Vto
Converter

Precision
Rectifier

Peak
Detector

Multi-
plexer

F
ilt
e
r

F
ilt
e
r

V

I I2

I1

AM
3705

ADC
0800

E/C PC7

S/C PC3

Channel Select Signals

S2

S1

S0

PC0

PC1

PC2
Port C lower

I / O Port
8255-1

Port C upper

Port A

8085
Micropro-
cessor

Seven-
Segment
Display

Port BZero-Cross
Detector

Sample
and Hold
Lf 398

Logic
Input

Port C lower

8255 -2

PB0

PC0

Input Physical
Quantity

Transducer

ADC0800
E/C

S/C

PC7

PC3

Port A

I / O Port
8255 – 1

8085
Microprocessor

Display

this section, the working principle of measuring displacement, strain, pressure, force, torque, speed and tem-

perature are discussed in detail.

In a displacement-measurement potentiometer, capacitive

transducers, and Linear Variable Differential Transformers

(LVDT) are generally used. In a potentiometer, the object

moves the tap on a variable resistance and output voltage is

directly proportional to displacement. Pots are used as poten-

tiometers, shown in Fig. 10.30. In a pot, an electrically con-

ductive wiper slides against a fixed resistor element. To mea-

sure displacement, the potentiometer is typically wired in a

voltage divider configuration as depicted in Fig. 10.31. The

output voltage is a function of the wiper’s position and it is an

analog voltage. The output voltage V0 can be expressed as V0

= Vr x

x

p
 where Vr

= the reference

voltage, V0 = output voltage, xp = the maximum wiper posi-

tion, and x = displacement. This type of resistive displacement

sensor has some advantages such as ease of use, low cost, high-amplitude voltage signal and passivity. But

its disadvantages are limited bandwidth, frictional loading, inertial loading and wear. The potentiometer is

commonly used in positioning of robotics like artificial limbs and servo systems.

In capacitive displacement transducer, one plate of the capacitor is mounted to a fixed surface and the

other plate mounted to the object. With the position of object, capacitance value changes. The capacitive

displacement sensor generates an output signal due to change in capacitance. The capacitance is a function

of distance (d) between the electrodes, the surface area (A) of the electrodes, and the permittivity f as given

below:

C = f
d

A

d

A
r0f f= where f0 is permittivity of air, and fr is the relative permittivity. The change in

capacitance due to change in distance is C = f0 fr d

A

d d

A

+D
-c m

Capacitor sensors are variable-distance displacement sensors, variable-area displacement sensors, and

variable-dielectric displacement sensors as depicted in Fig. 10.32 (a), (b) and (c) respectively.

Dead-zone

Resistive
element

Shaft

Housing

Shaft seal
and bearingWiper

End terminal

Wiper

R
L

R
P

+

–

V0

V
r

Displacement (%)

M
a
x
.
d
is
p
la
c
e
m
e
n
t

Full-scale output

O
u
tp
u
t
(%

)

0 100

100

x x/
p

V0 / r
V

(a) (b)

(a)

Fixed Plate

M
ov
ab
le
P
la
te

A

d

Moving Plate

Fixed Plate
d

x

(b)

Variable Length
l

Dielectric e

(c)

area –A AD

Capacitor value in variable-area displacement sensors is C = f0fr
d

A wx where w width, wx the

reduction in the area due to movement of the plate. In variable dielectric displacement capacitive sensors,

C = f0 w[f0l – (f2 – f1)x] where f2 is the permittivity of the displac-

ing material, and f1 is the relative permittivity of the dielectric material.

Generally, a capacitive transducer can be placed in a bridge circuit and ac

voltage is connected across the bridge. Then the bridge output voltage is

amplified, rectified and measured.

A Linear Variable Differential Transformer (LVDT) is a three-coil

inductive transducer and object moves core of three winding. A three-

winding transformer (one primary and two secondary) with a movable

core is shown in Fig. 10.33. It is a passive inductive transducer. The two

secondaries are having equal sizes, shapes and number of turns. Primary

winding of transformer is supplied by 1–10 V, 50 Hz –25 kHz ac signal.

Each secondary winding covers one half of transformer, secondaries connected to oppose each other and the

object is connected to the core.

The mutual inductance between the primary and secondary windings is changed with the change in posi-

tion of a high permeability rod. The induced voltages at secondaries are Vs1(t) = K1Vp(t), Vs2(t) = K2Vp (t). As

secondary windings are connected in series opposition, the output voltage

V0(t) = Vs1(t) –Vs2(t). As the rod moves from the centre, K1 increases while K2 decreases.

When the core is centered, voltages at two secondaries are equal and the output voltage is zero. While

core is off center, voltage at one secondary is higher than other one. Thus output voltage is linearly related to

core position as depicted in Fig. 10.34.

Primary
Winding

V tp()

Secondary
Windings

Care

V
s1

V t V V0 1 2() = –
s s

V
s2

The model function of LVDT is V0(x, t) = KVp(t)

where K is a constant, t is time, Vp(t) is the primary volt-

age, x is displacement and it will be either positive or nega-

tive. If x is negative, phase of output voltage is reversed.

The schematic block diagram of the displacement or

deflection measurement is shown in Fig. 10.35. LVDT is

used to sense the deflection of a beam as the movable core

of the linear variable differential transformer is connected

to the beam. When the core is in centered position, the volt-

ages induced in two secondaries of the LVDT are equal.

Hence output voltage will be zero. While the core is moved

in upward or downward directions, the voltage induced in two secondaries will not be equal and output volt-

age is equal to the difference between secondary induced voltages as expressed by V0 = VS1–VS2. This output

voltage V0 is directly proportional to the displacement of core. The output voltage of LVDT is low and in the

range of 100–500 mV. Therefore, an amplifier should be used to amplify LVDT output and fed to a preci-

sion rectifier for rectification. Then precision rectifier output voltage is applied to A/D converter for analog to

digital conversion. The digital output of the A/D converter is fed to Port A of 8255-1 as depicted in Fig. 10.35 (a).

Displace-
ment LVDT Amplifier

Precision
Rectifier

ADC0800

E/C

S/C

PC7

P 3C

Port A

I/O Port
8255 – 1

8085
Micropro-
cessor

I/O Port
8255 – 2

Display

A look-up table between the digital output of the A/D converter and displacement/deflection is stored in

the memory of the microprocessor. By using a look-up table, the microprocessor measures deflection for a

particular A/D converter digital output and displays the same on seven-segment display though 8255-2 PPI IC.

The desirable characteristics are low wear, less repeatability error, high speed and ability to measure small

displacements of approximately 0.04 mm. This method can also be used for vibration measurement. The

undesirable characteristics are complex conditioning circuit and expense. The program flow chart to measure

displacement is illustrated in Fig. 10.35(b).

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255-1 in

 accumulator

Voltage out

Displacement

x
Core position

+0

Phase

–– 180

–
A

+

B

(Contd.)

8002 D3, 03 OUT 03H Write control word in control word
 register and initialize ports

8004 3E, 08 MVI A, 08H Send start of conversion signal
 through PC3

8006 D3, 02 OUT 02H PC3 is high

8008 3E, 00 MVI A, 00H As PC3 will be high for one or two
 clock pulse, make it 0

800A D3, 0A OUT 02H PC3 becomes low

800C DB, 02 LOOP IN 02 Read end of conversion signal

800E 17 RAL Rotate accumulator to check either
 conversion is over or not

800F D2, 0C, 80 JNC LOOP If conversion is not completed, jump
 to LOOP

8012 DB, 00 IN 00 Read digital output of A/D converter

8014 2F CMA Complement of ADC output

8015 D6, 80 SUI 80H Subtract 80H

8017 21, 00, 81 LXI H, 8050H Load 8050H in HL-register pair

801A 77 MOV M, A Store accumulator content in 8050H
 location

(Contd.)

(Contd.)

START

Initialize Port A and Port C upper of 8255-1 as input port, Port B
and Port C lower of 8255-1 as output port; Analog signal

which is equivalent of displacement fed to ADC0800

Send start of conversion signal to ADC through PC for

one or two clock pulse duration
3

Read end of conversion signal of ADC through PC7

Conversion is
complete?

No

Yes

Read digital output of A/D converter which is
equivalent of displacement and stored in memory

Read digital output of A/D converter which is
equivalent of displacement and stored in memory

Call lookup table to find displacement
according to A/d converter output

Call display subroutine to display
displacement through 8255-2

801B CD, 00, 81 CALL 8100 Call lookup table to determine
 displacement

801E CD, 50, 81 CALL 8150 Call display subroutine for display

8021 76 HLT Stop

Memory Machine
address Codes Labels Mnemonics Operands Comments

8100 21, 50, 80 LXI H, 8050H Load 8050H in HL-register pair

8103 3E, 00 MVI A, 00H Store 00H in accumulator and
 C register

8105 0E, 00 MVI C, 00H

8107 86 ADD M Add content of memory (digital
 equivalent of analog input voltage)
 with accumulator

8108 86 ADD M Add content of memory with
 accumulator

8109 D2,0E, 81 JNC LEVEL-1 If no carry, jump to Level-1

810C 0E, 01 MVI C,01 Load 01H in C register

810E 6F LEVEL-1 MOV L,A Move accumulator content into
 L register

810F 26, 90 MVI H, 90H Load 90H in H register

8111 79 MOV A, C Content of C register with H register

8112 84 ADD H

8113 7E MOV A, M Move content of memory location
 specified by HL register pair into
 accumulator

8114 32, 00, 82 STA 8200 Store two least significant digits of
 displacement in 8200H

8117 24 INX H Increment the HL register pair

8118 32, 00, 82 STA 8201 Store two most significant digits of
 displacement in 8201H

811B C9 RET

Memory Machine

address Codes Labels Mnemonics Operands Comments

8150 3E, 80 MVI A, 80H Load control word of 8255-2 in

 accumulator

8152 D3, 0B OUT 0BH Write control word in control word

 register and initialize ports

8154 3A, 00, 82 LDA 8200H Load data in accumulator from 8200H

8157 D3, 09 OUT 09 Send LSDs of displacement to Port B

 for display

(Contd.)

(Contd.)

8159 3A, 01, 82 LDA 8201H Load data in accumulator from 8201H

815C D3, 08 OUT 08 Send MSDs of displacement to Port A

 for display

815E C9 RET

Memory Hex code of Displacement Memory Hex code of Displacement

Address Displacement Display (mm) Address Displacement Display (mm)

9000 00 00 00 9080 40 02. 56

9002 01 00.04 9082 41 02. 60

9004 02 00.08 9084 42 02. 64

… …. … …. … ….

9032 19 01.00 90B2 59 03.56

… …. … …. … ….

9064 32 02.00 90E4 72 04.56

… …. … …. … ….

907E 3F 02.52 9100 80 05. 00

Strain is the change in shape of an object due to some force. Assume an object in two conditions: with and

without a force applied. When an external force is applied along a dimension, there will be some deformation

in the object.

Let L1 be the length of the object along the dimension when no force is applied and L2 be the length when

the force is applied. Then the object’s strain is
1

2 1

1

=
- where DL = L2 – L1 change in length.

A stain transducer is used for strain measurement. Strain gauge is a stain transducer and is used to mea-

sure strains and stresses in any structures. A strain gauge is a flexible card with strip of some copper–nickel

alloy conductor wires arranged in special pattern as shown in Fig. 10.36. The grids of fine wires forming a

strain gauge are cemented to a thin paper membrane. The strain gauge is mounted on the object being mea-

sured. A strain-gauge conductor is usually made of metal or semiconductor. The pattern is chosen in such a

way that the conductor maintains an almost constant volume with strain. That is, the conductor is not com-

pressible. The resistance of a conductor is R =
A

L
t , where L is its length, A is its area, and t is its resistivity.

Insulating Layer
and Bounding Cement

Foil Grid
Pattern

Terminal
Wire

Fixed

Movable

(Contd.)

Assume force causes length of the conductor to decrease. Since volume does not change much, area must

increase. Thus, resistance decreases. The model function of resistance is equal to R1 = R0 (1 + Gff) where Gf

is a constant and known as the gauge factor which is the ratio
L L

R R and may be considered as the sensitivity

of the sensor, R0 is resistance without strain, R1 is resistance due to strain, and f is strain.

For metal-wire strain gauges (constantan), Gf = 2 while semiconductor strain gauges have much higher

Gf of about 200. Bonded strain gauges have folded wires bonded to a semiflexible backing material, with

unbonded gauges having flexible wires connected between fixed and movable frames as shown in Fig. 10.36.

The sensitivity of a strain gauge is very low which is approximately

1% over full operating range. But it is very important that the above

change must be accurately detected.

To increase the sensitivity, two and more active sensor elements can

be used in a bridge circuit. In strain measurement, a Wheatstone bridge

is used a device, which can read a difference voltage directly. The output

voltage of the Wheatstone bridge as shown in Fig. 10.37 is expressed as

 V0 =
R R

R

R R

R
VB

2 4

4

1 3

3

++
-c m

The sensor bridge usually consists of four identical sensor elements. Assume that only one of these is

sensitive to the strain, which can be measured, and other sensors are ‘dummy’ sensors. For example, for a

maximum of 1% change in resistance, the output voltage is about 0.0025VB. This is approximately 2.5 mV

for a 10 V supply. Therefore, the range of V0 in this case is 0–2.5 mV.

()

V
R R

R R

R

R
V

R R

R
V

R

R
V

2 2 2 2 4
B B B0 =

+
+

=
+

-` j
Increased measurement accuracy and possibility for increased sensitivity are shown in Fig. 10.39 and

Fig. 10.40 respectively. Elimination of ‘noise’ effects on a sensor output; i.e. if a sensor is sensitive to changes

in both temperature and strain, if 4 identical elements are used:

V
R R

R R R
V

R

R
V

2 2
B B0 =

+

+ -` j
with only one of them subjected to the strain, the temperature effect is cancelled. The output voltage can be

expressed

 for two Strain gauges in Wheatstone bridge, and

 for four Strain gauges in Wheatstone bridge

V
R

R R

R

R R
V

R

R
V

2 2
B B0 =

+
-

-
=` j

V
B

–

R
R R+ h

R

+

–

+

V
0

R

V
B

–

R
R R+h

R

+

–

+

V
0

R R+h

V
B

–

R R+h

+

–

+

V
0

R R+h

R R–h

R R–h

V
B

R
1

–

R
3

R
4

R
2

+

–

+

V
0

Physically, a strain gauge is not much different from

an RTD and so, a strain gauge is affected by temperature.

Hence, temperature compensation is required. The model

function including temperature.

R1 = R0(T)(1 + Gf f), where R0(T) is a function of tem-

perature. Conditioning circuit can remove R0(T). A bridge

circuit does this very well.

For a complimentary pair, R1 = R0(T)(1 ± Gf f)

Four strain gauges are placed in the bridge form as shown

in Fig. 10.42. The temperature terms will be canceled and the

output voltage V0 = AVE Gf f, where A= gain of amplifier,

VE = input voltage, Gf = gauge factor, and f = strain.

Figure 10.43 shows the block diagram for strain measurement when two gauges are mounted to a can-

tilever beam. Due to change in resistance, bridge output voltage changes and its magnitude is directly pro-

portional to strain. Then output of the bridge is fed to a instrumentation amplifier and amplified to a certain

voltage in the range of 0–5 V so that it can be processed by the microprocessor. Output is 0 V for no strain and 5 V

for the maximum strain. When four strain gauges are mounted in a cantilever beam, the output voltage increases

two times. A look-up table between the hex code of digital voltage and strain is stored in memory. After con-

verting the analog voltage into digital form through an A/D converter, find the strain from the look-up table

and display it in seven-segment display unit. The program for displacement measurement may also be used in

strain measurement with the modification in look-up table only.

A

B D

C

V
E

V
+

V
o

V
–

+

–

Staingauge
Load
Cells

Wheatstone
Bridge
Circuit

Instru.
Ampli.

A/D.
Converter

mP
System

Display

In some cases, the strain in two places on the object will be of equal magnitude but of opposite sign.

For example, a cantilever beam is as shown in Fig. 10.41. The upper part of the beam is stretched (positive

strain) and the lower part of the beam is compressed (negative strain). The two strain gauges, therefore, form

complementary pairs.

Strain Gauges

Force

(a)
D

Force

Strain Gauges
A

B C

x

(b)

Assume the dimension of cantilever beam Length L = 22 cm, Breadth B = 2.8 cm and thickness T = 0.3

cm and Young’s modulus Y of stainless steel = 2.1 × 106. The strain is calculated by the following expression:

BT Y

WL6
2

f= where = the weight applied at the end of the cantilever beam

If W = 1kg, the strain is about 248. When load variation is 100 g to 1 kg, the output voltage of strain

gauge in mV is given in Table 10.5.

 Weight in gm Output voltage in mV Amplified Voltage in Volts Digital Equivalent of Voltage

 100 25 0.50 0C

 200 50 1.00 19

 300 74 1.48 25

 400 100 2.00 33

 500 123 2.46 3E

 600 149 2.98 4C

 700 175 3.50 59

 800 201 4.02 66

 900 222 4.44 71

 1000 248 4.96 7E

Memory Hex code of Strain Memory Hex code of Strain

Address strain Display Address strain Display

9018 0C 0025 9098 4C 0149

… …. …. … … …

9032 19 0050 90B2 59 0175

… …. …. …. …. ….

904A 25 0074 90CC 66 0201

…. …. …. …. …. ….

9066 33 0100 90E2 71 0222

… … … … … …

907C 3E 0123 90FC 7E 0249

There are many types of sensors which can be used to measure force. Resistance-type force sensors, such

as gauges and load cells, are very commonly used in force measurement. The force can be measured by the

following ways:

Elastic sensing F = E.x

Strain sensing F = v.A

Pressure sensing F = P.A

Acceleration sensing F = m.a

Force can move a part of the transducer. This movement can be measured using displacement sensors.

Piezoelectric crystals are also used in force measurement A piezoelectric crystal consists of a crystal of a

material with piezoelectric properties, i.e., a piezoelectric material emits charge when compressed. The mate-

rial may be quartz, or special ceramics. Contacts are always placed along two faces of the crystal.

When force or pressure is applied to the crystal, a charge appears on the surface of the crystal and the

amount of charge directly proportional to the force. Therefore, the output of the transducer is charge. The out-

put of the crystal is converted to voltage using a capacitor. The voltage generated from piezoelectric crystals

is V, which can be expressed as

 V
C

Q

The capacitor should be chosen in such a way, so as to get the desired voltage range. The capacitor

voltage is fed to very high input impedance amplifier for

amplification, and amplifier output is applied to A/D con-

verter for analog-to-digital conversion.

When an unchanging force is applied, the voltage will

decrease over time. Therefore, piezoelectric crystals are

best used for measuring changes in force and vibration.

A load cell is most commonly used to measure

mechanical force. Strain gauges are called load cells and

normally used for force measurement. The force bends, compresses, or stretches a part of the transducer and

change in shape is usually measured using strain gauges. Two common load-cell configurations are illustrated

in Fig. 10.45. Usually, load cells are sold including a bridge circuit.

Resistance of a strain gauge increases if it is stretched. Strain gauges are cemented over the mechanical

structure whose deformation under the influence of stress is to be measured. Figure 10.46 shows a cantilever

beam with four strain gauges. The force is applied at a predetermined point. Strain gauges are placed at

locations chosen so that their output is linearly related to force. The choice of location for the strain gauges

and the derivation of the resulting load-cell model function are beyond the scope of this book. Load cells

are usually packaged with strain gauges connected in bridge configuration. Strain gauges 1 and 2 are

mounted so that after applying load, they come under tension. Similarly, strain gauges 3 and 4 will be under

compression under loaded condition. Strain gauges are normally used in a full bridge to give the bridge

output proportional to the applied force. To maximise the bridge sensitivity, the strain gauge is connected

in a bridge. Under loaded conditions, resistance of strain gauges 1 and 2 increases and 3 and 4 decreases.

Therefore, the potential at Point A of the bridge will be elevated much as compared to B. As all four gauges

are at the same temperature, this system also provides temperature compensation. Strain gauges are bonded in

such a way that can provide the maximum output deformation ratio. The strain gauges are wired in full-bridge

configuration for temperature compensation and for better accuracy of measurement. The complete assembly

must be housed within a protective case and properly sealed so that the external environment cannot affect

strain gauges though strain gauges are capable to deform after application of the force.

+e

x
l

–e

F

w

R
1

R
3

R
2

R
4

t

When strain gauges are used in cantilever type load cells, the strain can be expressed as
()

e
wt E

l x
F

6
2=
-

where F = force, l = length, w = width, t = thickness, and E Young’s modulus.

The output voltage of the bridge will be
()

V
R R

V R R

R

R

R

R

R

R

R

Rs

0

2 3
2

2 3

3

3

1

1

2

2

4

4
+=

+
- -; E

Instrumentation
Amplifier

C
Analog
Output
Voltage

The block diagram for force measurement is shown in

 Fig. 10.48. The program for displacement measurement can be used

in force measurement, but there will be some modification in the

look-up table. A look-up table between the hex code of digital voltage

corresponding to force is stored in memory. The 8085 microprocessor

reads the digital output of A/D converter for a force input and deter-

mines the force from the look-up table and display it in seven-segment

display unit.

Force
Strain
Gauges

Instrumentation
Amplifier

ADC0800

E/C

S/C

PC7

P 3C

Port A

I/O Port
8255 – 1

8085
Micropro-
cessor

I/O Port
8255 – 2

Display

–

R
1

V
S

V
0

R
2

R
3

R
4

–

Memory Hex code of Force Display Memory Hex code of Force Display

Address Force in g Address Force in g

9018 0C 0100 9098 4C 0600

… …. …. … … …

9032 19 0200 90B2 59 0700

… …. …. …. …. ….

904A 25 0300 90CC 66 0800

…. …. …. …. …. ….

9066 33 0500 90E2 71 0900

… … … … … …

907C 3E 0500 90FC 7E 1000

Generally, torque is transmitted through a rotating shaft between a power source and a power sink. Strain

gauges are commonly used in torque cells. Figures 10.49 (a) and (b) show the torque measurement using

45° 45°

2, (4)1, (3)
+ +

1, 2 3, 4

+ +

45° 45°

3, (1)4, (2)

Alternate Cross Section

V

3

4 1

2

Vo

1, 2 3, 4

Torgue

Strain
Gauges
as Torgue
Sensor

Instrumentation
Amplifier

ADC0800

E/C

S/C

P 7C

P 3C

Port A

I/O Port
8255 – 1

8085
Micropro-
cessor

I/O Port
8255 – 2

Display

strain gauges. Here, four strain gauges are mounted on the shaft. Strain gauges 1 and 3 are compressed, but

strain gauges 2 and 4 are under tension due a torque in the shaft. The strain of the strain gauge 1 is

approximately

. .
e

G r

T
1 3r
=

where T = torque,
()

G
E

2 1 y
=

+
 = shear modulus, r = radius of shaft.

The relationship between strains of all four gauges is e2 = e4 = –e1 = –e3. When all four gauges are

connected in bridge form as shown in Fig. 10.50, the output voltage can be expressed as .
. .

.

V
V

G e
G r

G T
f

f0

1 3r
= =

The output of bridge circuit fed to a differential amplifier using an operational amplifier as shown in

Fig. 10.50, and output voltage becomes measurable. The microprocessor can be used to measure this voltage

and display it in seven-segment display after proper calibration based on a look-up table.

 R1 = R2

 R3 = RF

Gain: RF = R1

Pressure is the force per unit area. Pressure is usually

specified as a difference between the process variable

measured and some reference pressure. This can be visu-

alized as the pressure on a diaphragm, with the pressure

being measured on one side and the reference pressure

on the other. That reference pressure defines the type of

pressure measured:

Absolute: Reference pressure is zero.

Gauge: Reference pressure is the environment air

pressure. Automobile tire pressure is gauge pressure.

Differential: The reference pressure is a second pro-

cess variable being measured.

Types of pressure transducers are large-displacement

transducers and small-displacement transducers. Large-

displacement transducer consists of a variety of flexible

containers that change size with pressure. Small-displacement

transducers usually consist of a diaphragm and a strain gauge.

Small-displacement pressure transducers consist of a

diaphragm, one side exposed to pressure being measured and

the other side exposed to reference pressure. Displacement

of a diaphragm measured by a capacitive or inductive displacement transducer or strain of diaphragm

measured using strain gauges. The placements of strain gauges are shown in Fig. 10.51. Center of the

diaphragm is convex, and a part near the edge is convex. Strain gauges can be placed so that there are

complementary pairs.

Nowadays integrated pressure sensors are available in the market and are used as a small-displacement

pressure transducer. The entire sensor is fabricated on one silicon chip and the diaphragm is etched into silicon.

Strain gauges are fabricated on silicon and signal conditioning circuit is present on the same chip. The sche-

matic block diagram for pressure measurement is shown in Fig. 10.52. The programming of pressure measure-

ment will be same as force measurement, but the look-up table must be modified as per required calibration.

Temperature is widely measured and controlled in industrial process control system. For temperature measure-

ment, one of the following devices are used:

 Device Name Temperature range

 Resistance thermometers –100°C to + 300°C

 Platinum Resistance thermometers –0°C to 700°C

 Thermocouples –250 °C to + 2000°C

 Thermistors –100°C to + 100°C)

 Pyrometers + 100°C to + 5000°C

R
1

V
1

R
2

V
2

R
3

R
F

V
out

–
A

B
+

Disphragm, Top View Disphragm, Side View

Platinum wires are frequently used in resistance thermometers for industrial application because of their

greater resolution, and mechanical and electrical stability as compared to copper or nickel wires. A change in

temperature causes a change in resistance. The resistance thermometer is placed in an arm of a Wheatstone

bridge to get a voltage proportional to temperature. A thermistor is a semiconductor device fabricated from

a sintered mixture of metal alloys, having a large negative temperature coefficient. A thermistor is used in a

Wheatstone bridge to get a voltage proportional to temperature. The thermistor is a thermally sensitive vari-

able resistor made of semiconductor material. The substance used may be oxides of nickel, copper, manga-

nese, iron, cobalt, etc., usually a high negative temperature coefficient. It can be used in the range of –100 to

+100° C for greater accuracy as compared to a platinum resistance thermometer. Positive thermistors are also

used but in the low range of 50°C to + 100°C.

(a) (b) (c) (d)

Pressure
Pressure
Sensor

Instrumentation
Amplifier

ADC0800

E/C

S/C

P 7C

P 3C

Port A

I/O Port
8255 – 1

8085
Micropro-
cessor

I/O Port
8255 – 2

Display

In industry, the most widely used temperature transducer is the thermocouple. This temperature trans-

ducer works on the principle that contact potential between two dissimilar metals changes with temperature.

When two dissimilar metals are joined and the junctions are placed at two different temperatures, an emf is

induced which will be used for temperature measurement. Thermocouple materials for different ranges of

temperature are given below:

 Material Temperature Range

 Copper–Constantan –200°C to + 350°C

 Iron–Constantan –200°C to + 100°C

 Iron–Nickel +300°C to + 600°C

 Nickel Chrome +600°C to +1000°C

 Platinum–Platinum Rhodium +1000°C to +1750°C

 Tungesten–Rhenium 0°C to + 2000°C

Thermocuple Amplifier

A
D

C
0
8
0
0

E/C

S/C

P 7C

P 3C

Port A

I/O Port
8255 – 1

8085
Micropro-
cessor

Display

T
e
m

p
e
ra

tu
re

V
1

R
1
= 5K

V
2

V
0

10 K

10 K

+

–

Lm311

+

–

Lm311

+

–

Lm311

R R

R

R RR=100K

The microprocessor-based temperature measurement of an electrical furnace is shown in Fig. 10.54.

Here, a thermocouple is used as a sensor for temperature measurement. The output of a thermocouple is

directly proportional to the furnace temperature, which is in millivolt range. As output voltage is not in a mea-

surable condition, it must be amplified using an instrumentation amplifier. The amplified voltage is applied

to an A/D converter. The microprocessor sends a start of conversion signal to the A/D converter through the

port of 8255 PPI. When an A/D converter completes conversion, it sends an end-of-conversional signal to

the microprocessor. Having received an end-of-conversion signal from the A/D converter, the microprocessor

reads the output of the A/D converter, which is a digital quantity proportional to the temperature to be mea-

sured. Then the microprocessor displays the measured temperature. The flowchart for temperature measure-

ment is illustrated in Fig. 10.56. The program for temperature measurement is as follows:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255-1 in
 accumulator

8002 D3, 03 OUT 03H Write control word in control word
 register and initialize ports

8004 3E, 08 MVI A, 08H Send start of conversion signal
 through PC3

8006 D3, 02 OUT 02H PC3 is high

8008 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock
 pulse, make it 0

800A D3, 0A OUT 02H PC3 becomes low

800C DB, 02 LOOP IN 02 Read end of conversion signal

800E 17 RAL Rotate accumulator to check either
 conversion is over or not.

800F D2, 0B, 80 JNC LOOP If conversion is not completed, jump
 to LOOP

START

Store look up table i.e., Digital data corresponding
to temperature in memory

Initialise I/O Ports of 8255-1 and 8255-2

Convert analog voltage output from temperature sensor
and amplifier into digital form using A/D converter

Store A/D convertor output in memory

Call a subroutine to find the temperature data
corresponding to A/D output using look up table

Call a display subroutine to display the
temperature in seven-segment display

Stop

(Contd.)

8012 DB, 00 IN 00 Read digital output of A/D converter

8014 2F CMA Complement of ADC output

8015 D6, 80 SUI 80H Subtract 80H

8017 21, 50, 80 LXI H, 8050H Load 8050H in HL-register pair

801A 77 MOV M, A Store accumulator content in 8050H

 location

801B CD, 00, 81 CALL 8100 Get temperature from look-up table

801E CD, 50, 81 CALL 8150 Call the display subroutine routine,

8021 76 HLT Stop

 Temperature Output voltage Amplified Voltage Digital equivalent

 in °C in mV in Volts of Voltage

 100 4 0.27 06

 200 8 0.55 0E

 400 16 1.10 1C

 600 24 1.65 2A

 800 32 2.2 38

 1000 40 2.76 46

 1200 48 3.31 54

 1400 56 3.86 62

 1600 64 4.41 70

 1800 72 4.95 7E

Memory Hex code of Temperature Memory Hex code of Temperature

Address Temperature Display °C Address Temperature Display °C

9018 06 0100 9098 46 1000

… …. …. … … …

9032 0E 0200 90B2 54 1200

… …. …. …. …. ….

904A 1C 0400 90CC 62 1400

…. …. …. …. …. ….

9066 2A 0600 90E2 70 1600

… … … … … …

907C 38 0800 90FC 7E 1800

A water-level indicator works by converting water levels into electrical signals and measures them by electrical

or electronics circuits. The most simplest type water level indicator is the resistive method. This is also known as

(Contd.)

contact point type. A number of resistances of suitable values have their one end inserted in the column. Resistance

may be a function of level.

The microprocessor-based water level indicator is shown in Fig. 10.57. The contact-type level sensors are

connected to + 5 V through series resistors and other terminals are grounded and assume water tank is also at

ground potential. When the level sensor is immersed in water, it will be at ground potential and its output will

be logic 0. If the level sensor is not immersed in water, its output is + 5 V or logic 1. As shown in Fig.10.57, there

are eight level sensors, which are used to indicate eight different levels of the tank. The output of level sensors are

connected to a buffer and buffer outputs are applied to Port A of 8255. The microprocessor reads the buffer output

through Port A of 8255 and determines the water level based on look-up table, which is stored in the memory.

After finding out the level, it will be displayed in a seven-segment display. The program for water-level measure-

ment is given below.

Level Sensor
5 V+

R

Buffer
8255
Port A

8085
µP

8255
Port B

Seven-
Segment
Display

C

C

C

C

C

C

C

C

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255-1 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 08 MVI H,90

8006 DB, 00 START IN 00H

8008 3E, 00 MOV L,A

800A 7E MOV A,M

800B D3, 01 OUT 01

800D 17, 06, 80 JMP START

Memory Hex code of Level Display Memory Hex code of Level

Address Buffer Output (cm) Address Buffer output Display (cm)

9000 00 90 90F8 F8 40

9080 80 80 90FC FC 30

90C0 C0 70 90FE FE 20

90E0 E0 60 90FF FF 10

90F0 F0 50

Figure 10.58 shows the microprocessor-based speed measurement. A tacho-generator is coupled at the shaft of

the motor and generates a voltage proportional to the speed. The output of the tachogenerator (TG) used in this

measurement scheme is 0 to 5 volts dc for speed variation of 0 to 1500 RPM. The output voltage is connected to

ADC 0808 for analog-to-digital conversion. The output of the A/D converter is applied to Port A of 8255-1. Seven-

segment display units are connected to Port A and Port B of 8255-2. The control word for both 8255-1 is 98H and

8255-2 is 80H. The look-up table consists of the hex code of techo-generator voltage and its corresponding speed

in rpm. The microprocessor reads the digital output of the A/D converter for different speeds of the motor. After

that, the microprocessor measures the speed using a look-up table and displays the speed of the motor in a

seven-segment display.

For better accuracy of measurement, the search-table properly calibrated. For this, each digital input volt-

age, and corresponding speed is measured accurately and stored in the memory location. For one digital input

voltage, two memory locations are located in the search table where decimal data corresponding to the speed

are stored. After getting a digital input corresponding to a speed, the speed will be searched from memory and

displayed in the displayed screen. If we want to measure speed accurately, a train of pulses can be generated

using a photoelectric switch sensor. Opto-switches consist of a light source and a light sensor within a single

unit as shown in Fig. 10.59. This scheme of speed measurement has a light source, a semiconductor device

sensitive to light and an attachment disc on the shaft containing a hole to pass light. The microprocessor will

count the number of pulses per second, which is directly proportional to the speed.

8255–2

+

V

–
R

I
a

+

–

8085

MP
8255–1A/D Converter

Port A

PC
0

PC
7

D D
0 7
–

SC

EOC

V
f A

TG

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255-1 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 08 MVI A, 08H Send start of conversion signal

 through PC3

8006 D3, 02 OUT 02H PC3 is high

8008 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock

 pulse, make it 0

800A D3, 0A OUT 02H PC3 becomes low

800C DB, 02 LOOP IN 02 Read end of conversion signal

800E 17 RAL Rotate accumulator to check either

 conversion is over or not

800F D2, 0C, 80 JNC LOOP If conversion is not completed, jump

 to LOOP

8012 DB, 00 IN 00 Read digital output of A/D converter

8014 2F CMA Complement of ADC output

8015 D6, 80 SUI 80H Subtract 80H

8017 21, 50, 80 LXI H, 8050H Load 8050H in HL-register pair

801A 77 MOV M, A Store accumulator content in 8050H

 ocation

801B CD, 00, 81 CALL 8100 Get temperature from look-up table

801E CD, 50,81 CALL 8150 Call the display subroutine routine

8021 76 HLT Stop

Source

Sensor

Slotted
opto-switch

(a)

(b)

(c)

Memory Hex code of Speed Display Memory Hex code Speed Display

Address of Speed in RPM Address of Speed in RPM

9000 00 0000 9080 40 0768

9002 01 0012 9082 41 0780

9004 02 0024 9084 42 0792

… …. … …. … ….

9032 19 0300 90B2 59 1068

… …. … …. … ….

9064 32 0600 90E4 72 1368

… …. … …. … ….

907E 3F 0756 9100 80 1536

Reliable and accurate protection schemes are required for any system. Microprocessors can fulfill these

requirements without fail. In addition to the system protection, microprocessors can perform all control

operations, analysis as well as measurement. The cost of a protective scheme should be about 1% of the cost

of the equipment to be protected. When the microprocessor is used to control the system in addition to system

protection, it will be very economical. Presently, microprocessor-based protective schemes are developed.

Therefore, microprocessor applications will result in availability of faster, more accurate and reliable relays

than conventional relays. These relays are known as static relays. A microprocessor increases the flexibility

of static relays due to its programmable approach. A number of desired characteristics such as overvoltage,

undervoltage, overcurrent, directional, impedance, reactance, and mho can be used in microprocessor-based

relays. In this section, microprocessor-based overvoltage protection has been discussed.

Electrical appliances or any electrical and electronics instruments always require protection against over and

undervoltage. The conventional relays are already used for the under and overvoltage, and the maximum and

minimum level of voltages are not changeable. Though a micro-processor-based system is of high cost, but

the advantage of this system is that the same system may provide protection against maximum and minimum

allowable current and voltage with a scope to adjust maximum and minimum limits.

The schematic block diagram of the system overvoltage protection is shown in Fig. 10.60. It is depicted

in Fig. 10.60 that a single-phase ac supply is connected to a load (electrical appliance) through an electromag-

netic relay. This electrical appliance must be protected from overvoltage as well as undervoltage. For this, a

Potential Transformer (PT) has been used to collect the voltage signal. The output of PT is fed to the input of

a peak detector circuit to detect the peak value of the voltage. The output of a peak detector circuit is applied

to the A/D converter for analog-to-digital conversion. For protection against over and undervoltage, an opto-

coupler circuit, MCT2E is used to connect to the pin PB0 of the I/O port. A 5 V dc supply has been connected

to the opto-coupler circuit and the output has been connected to the energizing coil of an electromagnetic

relay through a diode IN 4007.

In microprocessor-based protection, initially the upper and lower limiting values of voltage are stored

in memory. Initialize Port A and Port C upper as input ports and Port B and Port C lower as output ports.

The microprocessor receives the output of the A/D converter and compares the same with the upper and

lower limiting values of voltage (VUL and VLL). Within the safe limit, the microprocessor sends signals 0

through PB0 and relay is OFF and supply current flows through load. If voltage value is either less than VLL

or greater than VUL , the microprocessor sends ‘1’ signal through PB0 and the relay coil is energized. As the

relay becomes ON, supply voltage is disconnected from the system and the system will be protected. The

flowchart of the program is given in Fig. 10.61 and the assembly-language programming for voltage protec-

tion is given below.

AC Supply

NO

Rectifier

PT

NC

AC Load

I

Peak
Detector

A/D
Converter

EOC
SC

D – D0 7

PC7

PC0

Port A
8255

8085
MP

D
1.5 K

1.5 K
4

SL 100

+
(10V)
Vcc

5

2

1 100 �

PB0

START

Store digital value of and in memoryV V
LL UL

Initialise I/O Ports of 8255 Port A input,
Port B output Port input, Port — input

—
—C C
L U

Convert analog voltage into digital
equivalent value using A/D converter

Store A/D convertor output in register or memory

Check
> >V V V

UL LL

No

Yes

Send trip signal through PB0

Stop

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 21, 00, 81 LXI H, 8100H Initialize memory location 8100H

8003 3E, 50 MVI A, 50H Store digital equivalent of VLL in

 8100H location

8005 77 MOV M, A

8006 23 INX H Increment HL register pair

8007 3E,70 MVI A, 70H Store digital equivalent of VUL in

 8100H location

8009 77 MOV M, A

800A 3E, 98 MVI A, 98H Load control word of 8255-1 in

 accumulator

800C D3, 03 OUT 03H Write control word in control word

 register and initialize ports

800E 3E, 08 START MVI A, 08H Send start of conversion signal

 through PC3

8010 D3, 02 OUT 02H PC3 is high

8012 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock

 pulse, make it 0

8014 D3, 02 OUT 02H PC3 becomes low

8016 DB, 02 LOOP IN 02 Read end of conversion signal

8018 17 RAL Rotate accumulator to check either

 conversion is over or not

8019 D2,16, 80 JNC LOOP If conversion is not completed, jump

 to LOOP

801C DB, 00 IN 00 Read digital output of A/D converter

 corresponding to voltage

801E 2F CMA Complement of ADC output

801F D6, 80 SUI 80H Subtract 80H

8021 4F MOV C, A Store digital equivalent of voltage in

 C register

8022 21, 00, 81 LXI H, 8100H Load 8100H in HL-register pair

8025 7E MOV A, M Move digital equivalent of VLL voltage

 into accumulator from 8100H location

8026 B9 CMP C Compare C with VLL

8027 DA, 33, 80 JC TRIP If carry flag is set, jump to trip

(Contd.)

802A 79 MOV A, C Move content of C register to

 accumulator

802B 23 INX H Increment HL register pair

802C BE CMP M Compare the content of memory VUL

 with accumulator

802D DA, 33, 80 JC TRIP If carry flag is set, jump to trip

8030 C3, 0E, 80 JMP START Jump to start

8033 3E, 01 TRIP MVI A, 01H

8035 D3, 01 OUT 01H Send PB0 =1 and trip the circuit

8037 76 HLT Stop

Nowadays microprocessors are used to implement the traffic control system. Figure 10.62 shows the simple

model of microprocessor-based traffic control system. The various control signals such as red, green, orange,

forward arrow, right arrow and left arrow are used in this scheme. The forward, right and left arrows are used

to indicate forward, right and left movement respectively. The red (R) signal is used to stop the traffic in

PA
6

W

S

E

N

PA
7
PC

0

RYG

PB
2

PB
3

PB
4

R
Y

G

PA
2

P
A

5

PA
1

P
A

4

PA
0

P
A

3

GYR

PC
6

PB
1

PC
7

R
Y

PB
0

PC
5

PC
4

G

PB
5

PB
7

PB
6

P
C

1
P
C

2
P
C

3

(Contd.)

the required lane and the yellow (Y) signal is used as standby, which indicates that the traffic must wait for

the next signal. The green (G) light for a particular lane remains ON for DELAY-1 seconds followed by the

standby signal for DELAY-2 seconds. However, at a time for 3 out of the four roads, the left signal or the left

arrow remains on even though that lane may have a red signal. The traffic light control is implemented using

the 8085 microprocessor kit having 8255 on board and the interfacing circuit is illustrated in Fig. 10.63. Each

220�

D – D0 7 D – D0 7

A0 A0

A1 A1

IOW WR

CS CS

8255

PA
.
.
.

P

7

0A

+ 5 V

220�

PB
.
.
.

PB

7

0

+ 5 V

220�

PC
.
.
.

PC

7

0

+ 5 V

Inverted
Buffer

LED

To 8085
Microprocessor

signal is controlled by a separate pin of I/O ports. The total number of logic signals required for this arrange-

ment is twenty-four. The programmable peripheral interface device 8255 is used to interface these 24 logic

signals with the lamps. The logic ‘0’ and ‘1’ represent the state of the lamp. Logic ‘1’ represents ON and ‘0’

represents OFF. All ports of 8255 are used as output ports. The control word to make all ports as output ports

for Mode 0 operation is 80H. The traffic light control program can be written by the flowing steps:

Step 1 Initialize all ports of the 8255 as output ports.

Step 2 Determine the required status of Port A, Port B and Port C of 8255 for north to south traffic move-

ment. Load data into accumulator and send to Port A, Port B and Port C for north to south traffic movement.

Step 3 Call delay subroutine –1.

Step 4 Before starting east to west traffic movement, north to south traffic movement will be ready to

stop, and east to west traffic must be ready for movement. Therefore, determine the required status of Port

A, Port B and Port C for this operation. Then load data into accumulator and send to Port A, Port B and Port

C for north to south traffic movement which will be ready to stop and east to west traffic must be ready for

movement.

Step 5 Call delay subroutine-2.

Step 6 For east to west traffic movement, determine the required status of Port A, Port B and Port C of

8255. Load data into accumulator and send to Port A, Port B and Port C for east to west traffic movement.

Step 7 Call delay subroutine-1.

Step 8 Prior to starting south to north traffic movement, east to west traffic will be ready to stop, and south

to north traffic must be ready for movement. For this operation, determine the status of Port A, Port B and

Port C of 8255. Load required data into accumulator and send to Port A, Port B and Port C for east to west

traffic will be ready to stop and south to north traffic must be ready for movement.

Step 9 Call delay subroutine-2.

Step 10 Determine the status of Port A, Port B and Port C for south to north traffic movement. Load

required data into accumulator and send to Port A, Port B and Port C for south to north movement.

Step 11 Call delay subroutine-1.

Step 12 Before starting west to east traffic movement, south to north traffic movement will be ready to stop

and west to east traffic must be ready for movement. Find out the status of Port A, Port B and Port C for this

operation. Load required data into accumulator and send to Port A, Port B and Port C for south to north traffic

movement which will be ready to stop and west to east traffic must be ready for movement.

Step 13 Call delay subroutine-2.

Step 14 For west to east traffic movement, determine the status of Port A, Port B and Port C of 8255. Load

necessary data into accumulator and send to Port A, Port B and Port C for west to east traffic movement.

Step 15 Call delay subroutine-1.

Step 16 Subsequently, west to east traffic movement will be ready to stop and north to south traffic must be

ready for movement. Determine the status of Port A, Port B and Port C for this operation. Load needed data

into accumulator and send to Port A, Port B and Port C west to east traffic movement will be ready to stop

and north to south traffic must be ready for movement.

Step 17 Call delay subroutine-2.

Step 18 Jump to step-2.

The chart shows the bit assignment of ports. Putting 0s and 1s in the required position, the data byte for

each port can be derived. For example, during north to south traffic movement, the statuses of Port A, Port B

and port C are as follows:

 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

 0 0 1 0 0 0 0 1

 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

 0 0 0 0 0 1 0 0

 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

 1 1 1 1 1 0 0 1

When north to south traffic movement will be ready to stop and east to west traffic must be ready for

movement, the statuses of Port A, Port B and Port C are as follows:

 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

 0 0 0 1 0 0 1 0

 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

 0 0 0 0 0 1 0 0

 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

 0 0 0 0 1 0 0 1

The calculated necessary data bytes of Port A, Port B and Port C for all types of traffic movement are

illustrated in Table 10.7 as given below.

Traffic Movement Status of Port A Status of Port B Status of Port C

North to south traffic movement 21H 04H F9H

North to south traffic movement be ready to stop, and 12H 04H 09H

east to west traffic be ready for start

East to west traffic movement 0CH 27H 89H

East to west traffic movement to be ready to stop, and 94H 20H 08H

south to north traffic be ready for start

South to north traffic movement 64H 3CH 18H

South to north traffic movement to be ready to stop, and A4H 00H 14H

west to east traffic be ready for start

West to east traffic movement 24H D0H 93H

West to east traffic movement to be ready to stop, and 22H 00H 85H

north to south traffic ready for start

The program for traffic light control as follows:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A,80H Load control word of 8255 in

 accumulator

8002 D3,0B OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 21 START MVI A, 21H Send 21H in Port A, F9H in Port C

 and 04H in Port B for north to south

 traffic movement

8006 D3, 00 OUT 00H

8008 3E, F9 MVI A, F9H

800A D3, 02 OUT 02H

800C 3E, 04 MVI A, 04H

800E D3, 01 OUT 01H

8010 CD, 00, 81 CALL DELAY_1 Delay-1 memory location is 8100

8013 3E, 12 MVI A, 12H Send 12H in Port A, 09H in Port C and

 04H in Port B for north to south traffic

 movement will be ready to stop and

 east to west traffic movement is ready

 to start

8015 D3, 00 OUT 00H

8017 3E, 09 MVI A, 09H

8019 D3, 02 OUT 02H

801B 3E, 04 MVI A, 04H (Contd.)

801D D3, 01 OUT 01H

801F CD, 00, 82 CALL DELAY_2 Delay-2 memory location is 8200

8022 3E, 0C MVI A, 0CH Send 0CH in Port A, 89H in Port C

 and 27H in Port B for east to west

 traffic movement

8024 D3, 00 OUT 00H

8026 3E, 89 MVI A, 89H

8028 D3, 02 OUT 02H

802A 3E, 27 MVI A, 27H

802C D3, 01 OUT 01H

802E CD, 00, 81 CALL DELAY_1

8031 3E, 94 MVI A, 94H Send 94H in Port A, 08H in Port C and

 20H in Port B for east to west traffic

 movement will be ready to stop and

 south to north traffic movement is

 ready to start

8033 D3, 00 OUT 00H

8035 3E, 08 MVI A, 08H

8037 D3, 02 OUT 02H

8039 3E, 20 MVI A, 20H

803B D3, 01 OUT 01H

803D CD, 00, 82 CALL DELAY_2

8040 3E, 64 MVI A, 64H Send 64H in Port A, 18H in Port C and

 3CH in Port B for south to north

 traffic movement

8042 D3, 00 OUT 00H

8044 3E, 18 MVI A, 18H

8046 D3, 02 OUT 02H

8048 3E, 3C MVI A, 3CH

804A D3, 01 OUT 01H

804C CD, 00, 81 CALL DELAY_1

804F 3E, A4 MVI A, A4H Send A4H in Port A, 14H in Port C

 and 00H in Port B for south to north

 traffic movement is ready to stop and

 west to east traffic movement will be

 ready to start

8051 D3, 00 OUT 00H

8053 3E, 14 MVI A, 14H

8055 D3, 02 OUT 02H

8057 3E, 00 MVI A, 00H

8059 D3, 01 OUT 01H

805B CD, 00, 82 CALL DELAY_2

805E 3E, 24 MVI A, 24H Send 24H in Port A, 93H in Port C and

 D0H in Port B for west to east traffic

 movement

(Contd.)

(Contd.)

8060 D3, 00 OUT 00H

8062 3E, 93 MVI A, 93H

8064 D3, 02 OUT 02H

8066 3E, D0 MVI A, D0H

8068 D3, 01 OUT 01H

806A CD, 00, 81 CALL DELAY_1

806D 3E, 22 MVI A, 22H Send 22H in Port A, 85H in Port C and

 00H in Port B for west to east traffic

 movement is ready to stop and north

 to south traffic movement will be

 ready to start

806F D3, 00 OUT 00H

8071 3E, 85 MVI A, 85H

8073 D3, 02 OUT 02H

8075 3E, 00 MVI A, 00H

8077 D3, 01 OUT 01H

8079 CD, 00, 82 CALL DELAY_2

807C C3, 04, 80 JMP START

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 11, 00, 80 LXI D, 8000 Load suitable delay value in DE

 register pair

8103 1B Level_1 DCX D Decrement the DE register pair by 1

8104 7A MOV A, D Move the content of D into A

8105 B3 ORA E OR operation between A and D

8106 C2, 03, 81 JNZ Level_1 If DE is not equal to zero, jump to

 Level-1

8109 C9 RET

Memory Machine

address Codes Labels Mnemonics Operands Comments

8200 16, FF MVI D, FF Load suitable delay value FF in

 D register

8202 15 Level-2 DCR D Decrement the D register by 1

8203 C2, 02, 82 JNZ Level-2 If D is not equal to zero, jump to

 Level-2

8206 C9 RET

(Contd.)

Figure 10.64 shows the circuit diagram for triggering a thyristor using a microprocessor. In a microprocessor-

based firing circuit, it is necessary to synchronize the microprocessor software with the ac input voltage. For

this purpose, a zero crossing detector is necessary. A potential transformer is used to reduce the ac supply

voltage into 5 V ac and is also used to isolate the power circuit and control circuit. The output voltage of PT

is applied to ZCD. Figure 10.65 shows the ZCD circuit, which generates a pulse on positive zero crossing

as well as negative zero crossing of supply voltage. The microprocessor reads the output of ZCD through an

input port and detects the zero crossing at the rising edge of the ac voltage waveform. After that, the micro-

processor executes a time delay loop and subsequently, it generates the trigger or firing pulse holding it for

Isolation
Circuit

PT

Zero Crossing
Detector PA0

I/O Ports of
8255

8085
MP

PB0

LoadAC Supply

AC Supply

VAC

+5 V

10 K

2 K

2N2222
Output

ZCD
Output

VAC

small time interval. As the output trigger or firing pulse has low power

capacity, it cannot be used to trigger the thyristor directly. For that

reason, an opto-isolator circuit using MCT2E has been connected to

the microprocessor output port and the output of MCT2E is applied

to gate–cathode terminals of the thyristor. As the thyristor is forward

biased and gate pulse is applied, the thyristor becomes ON and cur-

rent flows through the load. The ac input voltage, ZCD output, firing

pulse and output voltage waveform for a delay angle a are shown

in Fig 10.66(a). Again, the microprocessor examines the ZCD output

and detects the next rising edge at zero crossing of the ac waveform.

After following the time delay, the microprocessor generates the next

trigger pulse. Consequently, the above operation will be repeated in

cyclic order. The program flow chart for generating firing pulse to turn

on a thyristor is depicted in Fig. 10.66(b).

VAC

ZCD
Output

Firing
Pulse

Output
Voltage

Delay Angle

�

START

Initialize Port A of 8255 as input port, Port B and Port C of 8255 as output part

Call ZCD subroutine to detect the zero crossing of input voltage

Call delay subroutine to generate time delay from ZCD point

Generate the firing pulse for thyristor by sending 01H to Port B

Call a delay subroutine to maintain the firing pulse for small time duration

The following steps are used to develop the assembly-language program for firing circuit of a thyristor.

Step 1 Initialize all ports A, B and C.

Step 2 Call ZCD subroutine to find the positive zero crossing of ac input voltage.

Step 3 Load HL register pair or any register with 16-bit or 8-bit data respectively and call delay subroutine

for creating delay.

Step 4 After delay generation, one pin PB0 will be high. This high output should be maintained for a certain

duration. For this, another delay loop will be called.

Step 5 Load any register with 8-bit data and the delay subroutine will be executed for creating delay.

Step 6 After completion of delay, send logic ‘0’ signal at PB0 and then PB0 will be low.

Step 7 Jump to Step 2 to find the next ZCD point and repeat the above process continuously.

This firing circuit can be used for a half-wave rectifier, full-wave rectifier, and ac voltage controller. The

program for firing or triggering a thyristor is as follows:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 31, 00, 90 LXI SP, 9000 Initialize stack pointer

8003 3E, 90 MVI A,90 Assign Port A as input port and Port B

 and C as output ports

8005 D3, 03 OUT 03 Select I/O chip no.1

8007 CD, 00, 81 START CALL ZCD Call subroutine ZCD to detect the zero

 crossing of input voltage for synchro

 nization; ZCD address is 8100

800A CD, 50, 81 CALL DELAY_1 Call delay loop-1 to generate time

 delay from ZCD. Address of DELAY-1

 is 8150

800D 3E, 01 MVI A,01 Send 01 to Port B and PB0 becomes 1

800F D3, 01 OUT 01

8011 CD, 00, 82 CALL DELAY_2 Call delay loop-2, as PB0 will be high

 for specified duration; Address of

 DELAY-1 is 8200

8014 3E, 00 MVI A,00 Send 00 to Port B and PB0 becomes 0

8016 D3, 01 OUT 01

8018 C3, 07, 80 JMP START Jump to start

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 DB, 00 Level-1 IN 00 Input through Port A

8102 E6, 01 ANI 01H Logical AND 01H with accumulator

8104 C2, 00, 81 JNZ Level_1 Jump not zero to Level-1

8107 DB, 00 Level-2 IN 00 Input through Port A

8109 E6, 01 ANI 01H Logical AND 01H with accumulator

810B C2, 07, 81 JZ Level_2 Jump not zero to Level-1

810E C9 RET

Memory Machine

address Codes Labels Mnemonics Operands Comments

8150 0E, 20 Level_1 MVI C,20 Load 20H in C register

8152 06, FF Level_2 MVI B,FF Load FFH in B register (Contd.)

8154 05 DCR B Decrement B register

8155 C2, 52, 81 JNZ Level_2 If B register is not equal to zero, jump
 to Level-2

8158 0D DCR C Decrement C register

8159 C2, 50, 81 JNZ Level_1 If C register is not equal to zero, jump
 to Level-1

815C C9 RET

Memory Machine

address Codes Labels Mnemonics Operands Comments

8200 16, FF MVI D, FF Load suitable delay value FF in

 D register

8202 15 Level-3 DCR D Decrement the D register by 1

8203 C2, 02, 82 JNZ Level-3 If D is not equal to zero, jump to

 Level-3

8206 C9 RET

AC Supply

VAC

T1

VA

M V
f

I
f

R
C

100 W

+

–

C = 0.047 Fm

Snubber
Circuit

(Contd.)

Figure 10.67 shows a bridge-rectifier fed dc motor, which

consists of five diodes and one thyristor. The triggering pulses

of the thyristor can be controlled by the microprocessor. The

assembly-language program for triggering a thyristor, which is

already given in this section, can be used for bridge-rectifier-fed

dc motor control. Initially, the stack pointer should be defined

and initializes Port A as input and ports B and C as output ports.

Zero-cross detectors are used to sense the positive going zero

and negative going zero of the ac supply voltage. The micropro-

cessor can sense the zero-instant of the ac supply voltage and

generates a trigger pulse after a certain delay. The trigger sig-

nal from the microprocessor is applied to the input of the opto-

coupler circuit through PB0 and this trigger pulse must be hold

VAC

ZCD
Output

Firing
Pulse

Output
Voltage

Delay Angle

�

for a certain time interval. The opto-coupler output signal is applied to the gate of the thyristor to make the

thyristor ON. Once the thyristor becomes ON, it will be ON for the +ve half cycle of supply voltage. As the

rectified dc voltage is fed to the dc motor, the thyristor will also be ON in the –ve half cycle of supply voltage

when microprocessor sends the trigger pulse with the same delay in negative half cycle of supply voltage. The

ac input voltage, ZCD output, firing pulse and output voltage waveforms are shown in Fig. 10.68.

The speed of a dc motor can be controlled by varying the duty cycle of the transistor. Each duty cycle has a

definite ON time and OFF time. When the transistor is ON, the voltage applied across the armature of a dc

motor and motor accelerates. If the transistor is OFF, no voltage across the dc motor and motor decelerates.

While ON and OFF of transistor cycle is repeated continuously at a fixed frequency, the motor will run at a

definite constant speed as fixed average voltage is applied. But motor instantaneous speed will be variable

due to voltage or load fluctuation.

Assume motor load torque is constant and ON or OFF period of the armature voltage remains constant. If

Ton and Toff are the on-period and off-period of the transistor respectively, the duty ratio, d can be expressed as

 duty – ratio (d) =
on off

on

The average voltage applied across the armature of a dc motor is

 Vout = Vin ×
on off

on = Vin × d

where Vin is the supply voltage, Vout is output voltage, and d is the duty ratio.

The speed of a dc motor is directly proportional to the average voltage applied across armature. Therefore,

speed will be changed with variation in duration of on- or off-period of the armature voltage.

As the motor is operating at constant load torque, motor speed increases with increase in Ton. It should

be noted that the motor speed varies with the change in load torque, when duty ratio d is retained constant.

While load torque increases but this pulse duration or duty ratio d is constant, motor speed decreases. On the

other hand, any drop in load torque with constant pulse duration, motor speed will lead to increase.

The dc motor speed can be controlled either open loop or closed loop. The open speed control of the dc

motor is shown in Fig. 10.69. In open-loop control strategy, the pulse duration generated by the microprocessor

V
f

I
f

+

–

Vcc
(+ 12 V)

(a)

V
f

I
f

+

–

Vcc
(+ 12 V)

(b)

TIP120

is fixed. But in closed-loop control, the microprocessor generates pulse, which will be controlled by using

software. In this method, the speed of the dc motor can be controlled.

The schematic block diagram of the closed-loop speed control of a dc motor is shown in Fig. 10.70. In

this control scheme, by controlling the turn-on period of the supply voltage the average armature voltage can

be controlled. Therefore, the microprocessor-based controller is used to generate the controllable pulse and

the program of the dc motor closed loop speed control can be developed by the following steps.

Step 1 Initialize Port A as input port and Port B and Port C as output ports.

V
f

I
f

+

–

Vcc
(+ 12 V)

(c)

Source

Drain

Gate

V
f

I
f

+

–

Vcc
(+ 12 V)

(d)

(+ 12 V)

10 K 2N2222

100 �

8255

PB
0

1

2 5

4

MCT2E

8085

MP

10 K

1 K

2N2222

+ 12 V

8255 Port A

PC
7

PC
0 SC

EOC

D – D
0 7

A/D Converter

TG

V
f

+

–

V
M

M

5 V

0 V

V
M

V
av

0 V
T

off

T

T
on

Step 2 Initialize the on time delay (Ton) in register pair or memory location. Initialize the off time delay

(Toff) in the register pair or memory location. Initialize C register as counter.

Step 3 Send 1 high to Port B0 and call ON time delay subroutine to execute time delay program.

Step 4 Send 0 low to Port B0 and call OFF time delay subroutine to execute time delay program.

Step 5 Decrement D register. If D ! 0, repeat steps 3 to 5 for initial starting of dc motor.

Step 6 When the dc motor is rotating at a certain speed, tacho-generator generates dc voltage, which is fed

to ADC for analog to digital conversion.

Step 7 The microprocessor reads the ADC output and subtracts or compare from a reference input cor-

responding to speed. If the output speed is less than the reference speed, increase in time is by a very small

duration or is proportionate to error in speed. This is done through incrementing the content of on time delay

register. When output is more than reference, decrease in time is by small duration or proportionate to differ-

ence between reference and actual.

Step 8 Load C register with a count value.

Step 9 Send 1 PB0 and call for on time delay subroutine with new on time delay.

Step 10 Send 0 to PB0 and call for the off time delay which is not changed or remains unchanged.

Step 11 Decrement C register. If not equal to zero, repeat steps 9 to 11.

Step 10 Jump to Step 7 and repeat the process.

In the same way, closed-loop control is also possible and the programming of dc motor control is incor-

porated in this section. The output voltage waveform at specified Ton and Toff is shown in Fig 10.71(a). The

program flow chart for closed loop speed control of dc motor is depicted in Fig. 10.71(b).

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 31, 00, 90 LXI SP, 9000H Define stack pointer at 9000H

8003 3E, 80 MVI A, 80 Assign Port A and Port B and C

 as output ports

START

Initialize Port A, Port B, and Port C of 8255 as output ports

Set reference speed in B register

Set count value in D register for initial starting of dc motor

Generate a square wave/pulse at PB with T ON time and T OFF time0 ON OFF

Decrement D register

No

Is D = 0 ?

Yes

Call ADC subroutine to read digital equivalent of speed

Compare actual speed and reference speed

Yes
Is CY fag=1?

No

Decrement T time by 1ON Increment T time by 1ON

Generate a square wave/pulse at PB with

T ON time and T OFF time
0

ON OFF

8005 D3, 03 OUT 03 Write control word 80H in control

 word register

8007 3E, 01 LOOP MVI A, 01 Keep PB0 high

8009 3E, 01 OUT 01 Output through Port B

800B 0E, FF MVI C, FF Store on time delay (Ton) in Register C

800D 00 LEVEL-1 NOP No operation

800E 00 NOP No operation

800F 0D DCR C Decrement C register
(Contd.)

8010 C2, 0D, 80 JNZ LEVEL-1 Jump to level-1

8013 3E, 00 MVI A, 00 Keep PB0 low

8015 D3, 01 OUT 01 Output through Port B

8017 0E, 80 MVI C, 80 Store off time delay (Toff) in Register C

8019 00 LEVEL-2 NOP No operation

801A 00 NOP No operation

801B 0D DCR C Decrement Register C

801C C2, 19, 80 JNZ LEVEL-2 Jump on zero to LEVEL-2

801F C3, 07, 80 JMP LOOP Jump to loop

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 31, 00, 90 LXI SP, 9000H Define stack pointer at 9000H

8003 3E, 80 MVI A, 80 Assign Port A and Port B and C as

 output ports

8005 D3, 03 OUT 03 Write control word 80H in control

 word register

8007 06, 50 MVI B, 50 Store reference speed value, 50H in

 Register B

8009 16, 20 MVI D, 20 Store count value 20H in Register D

800B 3E, 01 LOOP_1 MVI A, 01 Keep PB0 high

800D D3, 01 OUT 01 Output through Port B

800F 0E, FF MVI C, 30 Store on time delay (Ton) in Register C

8011 00 LEVEL-1 NOP No operation

8012 00 NOP No operation

8013 0D DCR C Decrement Register C

8014 C2, 01, 80 JNZ LEVEL-1 Jump to level-1

8017 3E, 00 MVI A, 00 Keep PB0 low

8019 D3, 01 OUT 01 Output through Port B

801B 0E, 80 MVI C, 80 Store off time delay (Toff) in

 Register C

801D 00 LEVEL-2 NOP No operation

801E 00 NOP No operation

801F 0D DCR C Decrement Register C

8020 C2, 1D, 80 JNZ LEVEL-2 Jump on zero to Level-2

 DCR D

8023 C3, 0B, 80 JNZ LOOP_1 Jump not zero to loop_1

8026 CD, 00, 81 CONTROL CALL ADC Read the digital equivalent of

 speed from tacho-generator and ADC

 output Address of ADC is 8100
(Contd.)

(Contd.)

8029 21, 00, 83 LXI H, 8300 Move the content of 8300H in

 accumulator

802C 7E MOV A, M

802D B8 CMP B Compare B and A

802E DA, 36, 80 JC NEXT If carry flag is set, jump to trip

8031 23 INX H

8032 34 INR M

8033 C3, 3A, 80 JMP NEXT_1

8036 23 NEXT INX H Increment HL register pair

8037 35 DCR M

8038 0E, 10 LOOP_2 MVI C, 10

803A CD NEXT_1 NOP

803B 3E, 01 MVI A, 01 Send 01 to Port B and PB0 becomes 1

803D D3, 01 OUT 01

803F CD, 00, 82 CALL DELAY_1 Call delay loop-2, as PB0 will be high

 for specified duration. Address of

 DELAY-1 is 8200

8042 3E, 00 MVI A, 00 Send 00 to Port B and PB0 becomes 0

8044 D3, 01 OUT 01

8046 3E, 01 MVI A, 01 Send 01 to Port B and PB0 becomes 1

8048 D3, 01 OUT 01

804A CD, 50, 82 CALL DELAY_2 Call delay loop-2. Address of

 DELAY-1 is 8250

804D 0D DCR C Decrement Register C

804E C2, 38, 80 JNZ LOOP_2 Jump not zero to loop_2

8051 C3, 26, 80 JMP CONTROL Jump to control

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 3E, 08 MVI A, 08H Send start of conversion signal

 through PC3

8102 D3, 02 OUT 02H PC3 is high

8104 3E, 00 MVI A, 00H As PC3 will be high for 1or two clock

 pulse, make it 0

8106 D3, 02 OUT 02H PC3 becomes low

8108 DB, 02 LOOP IN 02 Read end-of-conversion signal

810A 17 RAL Rotate accumulator to check either

 onversion is over or not.

810B D2, 08, 81 JNC LOOP If conversion is not completed, jump

 to LOOP

(Contd.)

(Contd.)

810E DB, 00 IN 00 Read digital output of A/D converter

 corresponding to voltage due to speed

8110 2F CMA Complement of ADC output

8111 D6, 80 SUI 80H Subtract 80H

8113 57 MOV D, A Store digital equivalent of speed in

 Register D

8114 21, 00, 83 LXI H, 8300 Store digital equivalent of speed in

 8300 memory location

8117 77 MOV M, A Copy accumulator content in memory

8118 23 INX H Increment H-L register pair

8119 77 MOV M, A Copy accumulator content in memory

811A C9 RET Return to main program

Memory Machine

address Codes Labels Mnemonics Operands Comments

8200 21, 00, 83 LXI H, 8300H

8203 4E Level_1 MOV C, M The new delay value is loaded in

 Register C from memory location

 8301H

8204 06, FF Level_2 MVI B,FF Load FFH in Register B

8206 05 DCR B Decrement Register B

8207 C2, 04, 82 JNZ Level_2 If Register B is not equal to zero, jump

 to Level-2

820A 0D DCR C Decrement Register C

820B C2, 03, 82 JNZ Level_1 If Register C is not equal to zero, jump

 to Level-1

820E C9 RET Return to main program

Memory Machine

address Codes Labels Mnemonics Operands Comments

8250 16, FF MVI D, 80 Load suitable delay value 80 in

 Register D

8252 15 Level-3 DCR D Decrement the Register D by 1

8253 C2, 52, 82 JNZ Level-3 If D is not equal to zero, jump to

 Level-3

8256 C9 RET Return to main program

(Contd.)

Stepper motors are electromechanical devices, which convert electrical pulses into proportionate discrete
mechanical rotational movement. To rotate the stepper motor’s shaft, a sequence of pulses is required to be
applied to stator windings of a stepper motor. When a given number of command pulses are supplied to the
motor, the shaft will have turned through a known angle. Therefore, the motor can be used to control position
by keeping count of the number of command pulses. Each revolution of the stepper motor’s shaft is made up
of a series of discrete individual steps. A step is defined as the angular rotation produced by the shaft each
time when the motor receives a step pulse. Due to each step, the shaft can rotate a specified angle in degrees.
The rotation of the shaft due to each step is called step angle. The stepper motors are usually used in position
control of robot arms, paper-drive mechanism in a printer, machine-tools control, process control system, tex-
tile industry, integrated circuit fabrication, electric watches, tape as well as disk-drive systems, etc. Further,
the average motor speed is proportional to the rate at which the pulse command is delivered. At low command
pulse rate, the rotor moves in steps, but when the pulse rate is made sufficiently high, because of the inertia,
the rotor moves smoothly, as in case of dc motors. As motor speed is proportional to rate of command pulses,

it can be used for speed control. The advantages and disadvantages of stepper motors are as follows:

 The angle of rotation of the motor is directly proportional to the number of input pulses.
 The motor has full torque at standstill when the windings are energized.
 Precise position control with an accuracy of 3–5% of a step is possible and the error is noncumulative

from one step to the next step.
 This motor has very good response during starting, stopping and reversing operation.
 This motor drive is very reliable since there are no contact brushes in the motor. Consequently, the

life of the motor depends on the life of the bearing.
 The stepper motor drives provide open-loop control, making the drive system simpler and less costly

to control.
 It is possible to achieve very low speed synchronous rotation with a load, which is directly coupled

to the shaft.
 A wide range of speed control can be possible as the motor speed is directly proportional to the fre-

quency of the input pulses.
 Repeatability of operation is also feasible in stepper motors.

 It is not easy to operate at extremely high speeds.

 Resonance may occur if not properly controlled.

There are three basic stepper motor types: permanent magnet, variable reluctance–single stack or multi

stack type–and hybrid.

The permanent magnet stepper motors are very popular and most commonly used. The permanent-magnet

stepper motor is a low-cost and low-resolution type motor with typical step angles of 7.5° to 15° (48–24 steps/

revolution). It operates on the reaction between a permanent-magnet rotor and an electromagnetic field devel-

oped by a stator. When a coil of stator winding is energized, an electromagnetic field with a north and south pole

is developed. Therefore, the stator carries the magnetic field. The magnetic field can be altered by sequentially

energizing the stator coils, which generate rotary motion. The permanent magnet stepper motor with four stator

windings is shown in Fig. 10.72 (a) and its rotor is also depicted in Fig. 10.72(b). When a sequence of pulses is

applied to the windings of the stepper motor, the shaft of the stepper motor will rotate. For one complete rotation

of shaft, the required number of pulses are equal to number of internal teeth of the rotor.

The variable-reluctance (VR) stepper motors are different from the permanent-magnet stepper motors in

that they have no permanent-magnet rotor and no residual torque to hold the rotor at any position while turned

off. When the stator coils are energized, the rotor teeth will align with the energized stator poles. This type of

motor operates on the principle of minimizing the reluctance along the path of the applied magnetic field. The

stator field changes when stator windings are sequentially energized and the rotor is moved to a new position.

The stator teeth and the rotor teeth of the stepper motor are locked to each other.

When a pulse is applied to the winding, the rotor rotates by an angle, which can be expressed as

 i =
N N

N N
360

s r

s r-

where i–step angle in degree, Ns—number of sta-

tor teeth, and Nr —number of rotor teeth. Figure. 10.73

shows a typical variable-reluctance stepper motor. If

Ns = 8, and Nr = 6 number of rotor teeth, step angle in

degree will be i = 360 15
8 6

8 6-
- . Therefore, the rotor

will turn each time a pulse is applied. The switching

sequence to complete a full of rotation is illustrated in

Table 10.9. The motor can rotate in a clockwise direction

by repeating the sequence. This motor can also rotate in a

reverse direction by changing the sequence of switching.

The stepping sequence is illustrated in Table 10.8

and switching sequence waveform in Fig. 10.74 (a) is

known as ‘one-phase on’ stepping. In this method, one

phase is switched at a time. The most common method

of stepping is ‘two-phase on’ where both phases of the

motor are always energized and switching sequence

waveform is shown in Fig. 10.74(b). In two-phase, on

stepping, the rotor aligns itself between the average north and average south magnetic poles. As both phases

are always on, this method gives about 40% more torque than ‘one-phase on’ stepping. The motor can also be

operated in half stepping mode by inserting an off state between transitioning phases. Actually, this method

reduces the stepper’s full step angle in half. For example, a 15° stepping motor should move 7.5° on each

half step. But in half stepping, there will be 20%–30% loss of torque depending on step rate compared to the

two-phase on-stepping sequence. As one of the windings is not energized during each alternating half step,

the less electromagnetic force can be exerted on the rotor. As a result, there will be huge loss of torque.

South pole

North pole

(b)
(a)

1

2

3

4

5
6

B

C

D

A’

B

C
’

D

A

15°

A

B

C

D

5 V

0 V

(a)

A

B

C

D

5 V

0 V

(b)

C
O

U
N

T
E

R
 C

L
O

C
K

 W
IS

E

C
L

O
C

K
 W

IS
E

 Cycle Phase Hex –Code Position

 A B C D

 Cycle -1 1 0 0 0 08 0°

 0 1 0 0 04 15°

 0 0 1 0 02 30°

 0 0 0 1 01 45°

 Cycle -2 1 0 0 0 08 60°

 0 1 0 0 04 75°

 0 0 1 0 02 90°

 0 0 0 1 01 105°

 Cycle -3 1 0 0 0 08 120°

 0 1 0 0 04 135°

 0 0 1 0 02 150°

 0 0 0 1 01 165°

 Cycle -4 1 0 0 0 08 180°

 0 1 0 0 04 195°

 0 0 1 0 02 210°

 0 0 0 1 01 225°

 Cycle -5 1 0 0 0 08 240°

 0 1 0 0 04 255°

 0 0 1 0 02 270°

 0 0 0 1 01 285°

 Cycle -6 1 0 0 0 08 300°

 0 1 0 0 04 315°

 0 0 1 0 02 330°

 0 0 0 1 01 345°

$

$

 Cycle Phase

 A B C D

 Cycle-1 1 1 0 0

 0 1 1 0

 0 0 1 1

 1 0 0 1

 Cycle-2 1 1 0 0

 0 1 1 0

 0 0 1 1

 1 0 0 1

 Cycle-3 1 1 0 0

 0 1 1 0

 0 0 1 1

 1 0 0 1

 Cycle-4 1 1 0 0

 0 1 1 0

 0 0 1 1

 1 0 0 1

The hybrid stepper motor is operated under the combined principles of the Permanent Magnet (PM) and

Variable Reluctance (VR) stepper motors. The stator core structure of a hybrid motor is same as variable-

reluctance stepper motor. The rotor of a hybrid motor is multi-toothed like the variable reluctance motor and

contains an axially magnetized concentric magnet around its shaft. The teeth on the rotor provide a better path

that helps guide the magnetic flux to preferred locations in the air gap so that the detent, holding and dynamic

torque characteristics of the motor will be better than the VR and PM types stepper motors. These motors are

more expensive than the PM stepper motor but provide better performance with respect to step resolution,

torque and speed. Typical step angles for the hybrid stepper motor range from 3.6° to 0.9° (100–400 steps

per revolution).

Stepper-motor operating performance depends upon holding torque, step angle (degree), steps/revolu-

tion, operating voltage, and resistance of windings, length, diameter, shaft size and other mechanical specifi-

cations available from the manufacturer. This motor is not only used in position or servo-control system but

also low-speed operation. The actual speed of a stepper motor is dependent on the step angle and step rate.

The number of steps per second is known as the step rate. The speed of motor is expressed as

 N = No. of steps per second}

where N = motor speed in RPM, and W = step angle in degrees.

Figure 10.75 shows the interfacing of four-phase stepper motor windings. The four windings A, B, C and

D are connected PA0, PA1, PA2 and PA3 respectively. When PA0 is level ‘1’, the coil A is energized and motor

will rotate by one step clockwise. Similarly, the coil B will be energized when PA1 is in level ‘1’ and again

the motor rotates by one step. In the same way, the other phases are energized sequentially as per Table 10.9.

The assembly-language program for a stepper motor control in clockwise as well as anti-clockwise rotation

is illustrated below.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 08 START MVI A, 08H Send 08H in Port A

8006 D3, 00 OUT 00H

8008 CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine whose

 memory location is 8100

800B 3E, 04 MVI A, 04H Send 04H in Port A

800D D3, 00 OUT 00H

800F CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine

8012 3E, 02 MVI A, 02H Send 02H in Port A

8014 D3, 00 OUT 00H

8016 CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine

8019 3E, 01 MVI A, 01H Send 01H in Port A

801B D3, 00 OUT 00H

801D CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine

8020 C3, 04, 80 JMP START Jump to start

PA0

PA1

PA2

PA3

A

Vcc (+ 12V)

B

Vcc (+ 12V)

C

Vcc (+ 12V)

D

Vcc (+ 12V)

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 01 START MVI A, 01H Send 01H in Port A

8006 D3, 00 OUT 00H

8008 CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine whose

 memory location is 8100

800B 3E, 02 MVI A, 02H Send 02H in Port A

800D D3, 00 OUT 00H

800F CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine

8012 3E, 04 MVI A, 04H Send 04H in Port A

8014 D3, 00 OUT 00H

8016 CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine

8019 3E, 08 MVI A, 08H Send 08H in Port A

801B D3, 00 OUT 00H

801D CD, 00, 81 CALL DELAY_1 Call Delay-1 subroutine

8020 C3, 04, 80 JMP START Jump to start

Memory Machine

address Codes Labels Mnemonics Operands Comments

8100 16, 80 MVI D, 80 Load suitable delay value 80H in

 Register D

8103 15 Level_1 DCR D Decrement Register D by 1

8104 00 NOP

8105 00 NOP

8106 C2, 03, 81 JNZ Level_1 If DE is not equal to zero, jump to

 Level-1

 Nowadays microprocessors are used in different applications like instrumentation, industrial control,

aerospace engineering, etc. Microprocessors are also used in data-collection terminals, office equip-

ment, business machines, calculators, point-of-sale terminals, and various kinds of data communication

equipments, traffic light control system, appliances, motion control, position control, servo control,

elevators, automation, electric car, and control of ac/dc machines.

 In this chapter, a broad overview of measurement and display of electrical and physical quantities such

as voltage, current, frequency, phase angle, power factor, power, energy, force, displacement, speed,

temperature, pressure, torque stress, strain, water level, traffic light control, overvoltage protection,

speed control of dc motors are discussed.

 The servo-control mechanism using a stepper motor is also incorporated. The seven-segment display

has been discussed as it is used to display any quantity after measurement.

10.1 The required torque to move the rotor of a

stepper motor one full step is called

 (a) holding torque (b) residual torque

 (c) detent torque (d) none of these

10.2 The most popular types of stepper motors are

 (a) shunt and series

 (b) PM and VR

 (c) shunt and compound

 (d) hybrid motor

10.3 A thermocouple is a transducer that converts

 (a) voltage to temperature

 (b) temperature to voltage

 (c) analog signals to digital signals

 (d) temperature to resistance

10.4 The Bourdon tube is a

 (a) temperature transducer

 (b) pressure transducer

 (c) flow transducer

 (d) none of these

10.5 A load cell

 (a) generates a voltage which is proportional

to force

 (b) converts a physical displacement into a

pressure differential

 (c) converts flow into proportional electrical

output signal

 (d) is a piezoelectric transducer

10.6 A strain gauge is capable of measuring

 (a) pressure, temperature, resistance

 (b) force, torque, temperature

 (c) displacement, resistance, pressure

 (d) torque, weight, pressure

10.7 If the speed of the motor decreases, the thyris-

tor will trigger

 (a) earlier (b) later

 (c) at the same angle (d) none of the above

10.8 Isolation can be achieved by

 (a) transformer (b) opto-cupler

 (c) reed relay (d) all

10.9 Speed of an induction motor can be controlled

by using

 (a) cyclo converter (b) chopper

 (c) PWM converter (d) ac voltage controller

 (e) (a), (c) and (d)

10.10 Instrument transformers are

 (a) potential transformers

 (b) current transformers

 (c) power transformers

(d) (a) and (b)

10.11 The commonly used material for

thermocouples

 (a) platinium-rhodium

 (b) chromel-alumel

 (c) chromel-copal

 (d) any of the above

10.12 Which device cannot be used to measure

pressure?

 (a) Strain gauge (b) Pyrometer

 (c) LVDT (d) Pirani gauge

10.13 Which device is used to measure only

pressure?

 (a) Diaphragm

 (b) Radioactive method

 (c) Belt-type meter

 (d) Bubble gauge method

10.14 Which of the following is the best method for

the measurement of temperature of hot bod-

ies radiating energy in the visible spectrum?

 (a) Thermopile

 (b) Bolometer

 (c) Optical pyrometers

(d) thermocouple

10.15 A differential transformer is a

 (a) constant-pressure transducer

 (b) constant-displacement transducer

 (c) variable-inductance transducer

 (d) variable-pressure transducer

10.16 Which one is not a signal conditioner?

 (a) Amplifier

 (b) Signal converter

 (c) Equalizing network

 (d) Damping network

10.17 Which of the following can be measured with

the help of a piezoelectric crystal?

 (a) Acceleration (b) Temperature

 (c) Velocity (d) Force

10.18 Thermistors have temperature coefficient

 (a) low and positive

 (b) high and positive

 (c) low and negative

 (d) high and negative

10.1 Is it possible to measure frequency through SID line of microprocessor? If yes, explain.

10.2 What is ZCD? Mention some applications of ZCD.

10.3 What are the physical quantities measured using a microprocessor ?

10.4 How can you measure and display the speed of a motor using a microprocessor ?

10.5 Why do you need to execute a delay loop while sending a new 7-segment code to a 7-segment

display?

10.6 What is a stepper motor? Mention advantages and disadvantages of a stepper motor.

10.7 How can you use a stepper motor in position control of a robot arm?

10.1 What is a seven-segment display? Draw the diagram for common-cathode type and common-anode

type seven-segment displays and explain their operations. Write some applications of a seven-

segment display.

10.2 Draw the interfacing circuit of a seven-segment display with its decoder to the 8085-microproces-

sor. Explain principles of multidigit display. Write assembly language program for

 (a) single-digit display (b) two-digit display (c) four-digits display

10.3 What are the electrical quantities measured by a microprocessor? Draw the schematic block diagram

of dc voltage (5 V) measurement and discuss briefly. Write an assembly-language program for this

measurement. What modification is required in hardware and software to measure very high voltage

ac and dc?

10.4 Draw full-wave precision rectifier circuit and explain its operating principle.

10.5 Discuss dc current measurement using a microprocessor with diagrams. Write an assembly-language

program for this measurement scheme.

10.6 Explain ac current measurement using a microprocessor with a diagram. Write an assembly-

language program for this measurement scheme.

10.7 Draw the interface connections of a microprocessor-based overvoltage and under voltage relay

and explain how it operates. Draw the flowchart for this scheme and write the assembly-language

program for voltage protection.

10.8 Draw the interface connections of a microprocessor-based overcurrent relay and explain how it

operates. Draw the flowchart for this scheme and write the assembly-language program for current

protection.

10.9 Draw a circuit diagram of ZCD and discuss its operating principle with waveforms.

10.10 Discuss a microprocessor-based frequency measurement and display scheme. Draw the flowchart

for frequency measurement. Give the assembly-language program for frequency measurement.

10.11 Discuss a microprocessor-based technique to measure resistance and reactance of an electric circuit.

10.12 Draw a neat sketch and suitable interface for a microprocessor-based scheme to measure the

following quantities:

 (a) Phase angle (b) Power factor (c) Impedance (d) Resistance

 (e) Reactance

10.13 Discuss a microprocessor-based active power (W) and energy (WH) measurement scheme.

10.14 Discuss a microprocessor-based technique to measure VA and VAR.

10.15 Draw a schematic block diagram of any physical quantity measurement.

10.16 Discuss the microprocessor-based displacement measurement scheme with a suitable assembly-

language program.

10.17 Design a strain measurement scheme using the 8085 microprocessor with a suitable assembly-

language program.

10.18 Explain the microprocessor-based temperature measurement scheme with a suitable assembly-

language program.

10.19 Draw a neat sketch and suitable interface for a microprocessor-based scheme to measure the fol-

lowing physical quantities:

 (a) Force (b) Torque (c) Pressure (d) Resistance

10.20 Discuss the microprocessor-based water-level indicator with a suitable assembly-language program.

10.21 Draw a traffic light control system and explain its operation briefly. Write the assembly-language

program for the same traffic light control system.

10.22 Write an assembly-language program to generate a trigger pulse

 (a) a single-phase full wave controlled rectifier

 (b) a single-phase ac voltage controller

 (c) Assume the power supply frequency is 50 Hz

10.23 Show the interface connections of a microprocessor based firing-circuit of thyristors which are

placed in

 (a) a half-wave controller rectifier (b) a bridge-rectifier (c) ac voltage controller

 Explain why a zero-cross detector is required in this scheme.

10.24 Elaborate how to measure, display and control speed of a dc motor using microprocessor.

10.25 Explain with a suitable block diagram the control of an induction motor using a microprocessor.

10.26 Mention the advantages of a microprocessor-controlled ac and dc drives. Give a list of some in-

dustrial applications where such drives are widely used.

10.27 Show interface connections for a microprocessor-based stepper motor control scheme. Write the

assembly-language program for this scheme.

10.28 Design a stepper motor control interface circuit. A stepper motor has a step angle of 15° and is

required to rotate at 400 rpm. Determine the pulse rate for the motor. Write a program to rotate

the shaft at a speed of 20 revolutions per minute.

10.29 How to generate a square wave form using I/O port. Write a program to generate a square wave

form.

10.30 Draw a interface connections to control firing circuit of thyristors bridge rectifier. Write a program

to control the firing angle of thyristors.

 10.1 (a) 10.2 (b) 10.3 (b) 10.4 (b) 10.5 (a) 10.6 (d) 10.7 (b) 10.8 (b) 10.9 (e)

 10.10 (d) 10.11 (a) 10.12 (b) 10.13 (a) 10.14 (c) 10.15 (c) 10.16 (d) 10.17 (d) 10.18 (d)

In 1982, the 80186 microprocessor was developed by Intel. This is an improved 8086 with several common
functions built in blocks such as clock generator, system controller, interrupt controller, DMA controller,
and timer/counter. This processor has 8 new instructions and executes instructions faster than the 8086. Just
like the 8086 processor, it has a 16-bit external data bus. It is also available with an 8-bit external data bus,
and then the processor name is 80188 microprocessor. The initial clock frequency of the 80186 and 80188
is about 6 MHz. Generally, these processors are used as embedded processors and also used as the CPU of
personal computers.

The second generation of the 80186 family, such as the 80C186/C188 processors, have been developed
by Intel in 1987. The 80186 was redesigned as a static, stand-alone module known as the 80C186 Modular
Core and its pin configuration is compatible with the 80186 family. The high-performance CHMOS III pro-
cess allowed the 80C186 to operate at twice the clock rate of the NMOS 80186, but this processor consumes
less than one-fourth the power.

The 80C186 Modular Core family was further developed and the 80C186XL processor was developed in
1991. The 80C186XL/C188XL is a higher performance and lower power replacement for the 80C186/C188.

The 80186 and 80188 processor series are generally intended for embedded systems such as modems,
public and private PBX switching systems, cellular phones, etc. The architecture of 80186 can also be found
in many real-time environments such as robotics, automation industry, measurement control systems, sensors
and test equipments, fax machines, copiers, printers and medical equipment. Therefore, Intel 80186 proces-
sor family, 80186, 80C186XL, 80C186EA/EB/EC, have been accepted in a wide range of applications. In this
section, the detailed architecture, addressing modes and instruction sets have been discussed.

The Intel 80186 processor is a high-performance, highly integrated 16-bit microprocessors. Usually, the
80186 processors is intended for embedded systems, as microcontrollers with external memory. To reduce
the number of chips in systems, it is required to include clock generator, interrupt controller, timers, wait
state generator, DMA channels, and external chip select lines within a chip. The 80186 is a natural successor
to the 8086 in personal computers. However, because of its integrated hardware was incompatible with the
hardware used in the original IBM PC. The architecture of 80186 processor is shown in Fig. 11.1.

RES

RESET

X1
X2

Clock
Generator

16-Bit
ALU

16-Bit
General
Purpose
Registers

Execution Unit

Programmable
Interrupt
Controller

Control
Register

Programmable
Timers

0 1 2

Max Count
Register B

Max Count
Register A

Control
Registers
16 Bit

Count Register

CLKOUT

VCC GND

NMI

NMI3/ /IRQINTA

NMI2/ 0INTA

NMI1SELECT
INT0

TMR IN
1

TMR IN
0

TMR OUT 1 TMR OUT 0

16-Bit
Segment
Registers

6-Bit
Prefetech
Queue

Bus Interface
Unit

SRDY

ARDY

TEST

HOLD

HLDA

S0 S2– Chip-Select
Unit

Programmable
Control
Registers

Programmable
DMA Unit

20-Bit
Source Pointers

20-Bit
Destination Pointers

16-Bit
Transfer Count

Control
Registers

DRQ0

DRQ1

DT/R

LOCK

DEN

RD
WR

ALE

BHE/S7
(S7)

AD0-AD15
(AD0-AD7)
(A8-A15)

A16/S3-
A19/S6 MCS0-3 PCS0-4

PCS5/A1
PCS6/A2

LCS
UCS

Th architecture of 80186 is common with the 8086 and 8088 microprocessors. This processor is a very
high-integration 16-bit microprocessor. This IC combines 15 to 20 most common microprocessor compo-
nents onto a single chip and provides twice the performance of standard 8086. The object code of 80186 is
compatible with 8086 and 8088 microprocessors but it adds 10 new instructions. The following functional
description describes the basic architecture of 80186:

Clock generator

Bus interface unit

DMA controller

16-bit programmable timer consisting of three timers

Programmable interrupt controller

Chip select unit into a single chip

The 8086, 8088, 80186, and 80286 families all contain the same basic set of registers, instructions, and
addressing modes. The 80186 processor is also compatible with the 8086, 8088, and 80286 CPUs.

The 80186 base architecture has fourteen registers as shown in Fig. 11.2. These registers are grouped into
the five categories such as segment registers, base and index registers, status and control registers and status
word.

The 80186 processor consists of eight 16-bit general-purpose registers which
are used to perform all arithme tic and logical operations. Four of these registers AX, BX, CX, and DX can be
used as 16-bit registers or split into pairs of separate 8-bit registers.

Four 16-bit special-purpose registers (CS, DS, SS and ES) are used to select the
segments of memory at any given time. The memory can be immediately addressable as code, stack, and data.

Four of the general-purpose registers BX, BP, SI and DI can be used
to determine offset addresses of operands in memory. These registers may contain base addresses or indexes
to particular locations within a segment. The different addressing modes of the 80186 microprocessor selects
the specific registers to determine the physical address of memory for an operand.

Two 16-bit special-purposes registers (IP and Status word) are
also used to record or alter different aspects of the 80186 processor state. The IP (Instruction Pointer) register
contains the offset address of the next sequential instruction to be executed, but the status word register
contains status and control flag bits as depicted in Fig. 11.2 and Fig. 11.3 respectively.

BYTE
ADDRESSABLE
(16-BIT
REGISTERS)

16-BIT
REGISTER
NAME

Special
Register
Functions

MULTIPLY/DIVIDE
I/O INSTRUCTION

LOOP/SHIFT/REPEAT COUNT

BASE REGISTERS

INDEX REGISTERS

STACK POINTER

GENERAL REGISTERS

15 7

SP

DI

SI

BP

BX

CX

DX

AX

7 0 7

AH

CS

CH

BH

AL

DL

CL

BL

0

CS

15 0

DS

SS

ES

SEGMENT REGISTERS

EXTRA SEGMENT SELECTION

STACK SEGMENT SELECTION

DATA SEGMENT SELECTION

CODE SEGMENT SELECTION
015

F

IP

STATUS AND CONTROL
REGISTERS

STATUS WORD

INSTRUCTION

POINTER

The status word is used to record specific characteristics of the result of logical and arithmetic instructions
and controls the operation of the 80186 within a specified operating mode. The status word register is 16 bits
wide. Bits 0, 2, 4, 6, 7, and 11 are used for logical and arithmetic operations and bits 8, 9, and 10 are used to
control the processor operation. The function of the status word bits is given below.

The carry flag is set whenever a carry/barrow is generated after arithmetic
operations such as addition and subtraction; cleared otherwise.

This flag is set if low-order 8 bits or the final result after arithmetic/logical
operations contain an even number of 1 bit. If there is odd number of ones, it is reset.

This AF is set whenever there occurs a carry or borrow at the low-order four
bits of AL during any operations; cleared otherwise.

This flag is set if the result is zero after any operation; otherwise it is reset.

The sign flag is equal to high-order bit of result. It is set if the result is negative or
MSB = 1. It is reset if the result is positive or MSB = 0.

It is used in the processor in single-step mode. When this flag is set, a
single-step interrupt occurs after the next in struction executes. TF is cleared by the single-step interrupt.

When this flag is set, maskable interrupts is enabled cause the CPU
to transfer control to an interrupt vector specified location.

If DF is set, it causes string instructions to auto-decrement the appropriate
index register. Clearing DF causes auto-increment. When DF = 1, index register automatically decrement. If
DF = 0, index register automatically increment.

STATUS FLAGS

CARRY FLAGS

PARTY FLAG

AUXILIARY CARRY FLAG

ZERO FLAG

SIGN FLAG

OVERFLOW FLAG

CONTROL FLAGS

TRAP FLAG

INTERRUPT FLAG

DIRECTION FLAG

D
15

D
14

D
13 D

12 D
11

D
10

D
9

D
8

D
7 D

6
D

5
D

4 D
3

D
2

D
0

CFPFAFZFSFTFIFDFOF

When the signed result is too large and cannot be expressed within the
number of bits in the destination operand, overflow flag is set; cleared otherwise.

The 80186 has an on-chip clock generator for both internal and external clock generation. The features of the
clock generator are a crystal oscillator, a divide-by-two counter, synchro nous and asynchronous ready inputs,
and reset circuitry.

Figure 11.4 shows the 80186 crystal oscillator
configurations. The oscillator circuit of the 80186 is designed to be used with a
parallel resonant fundamental mode crystal. This can be used as the time base
for the 80186. The crystal frequency selected will be double the CPU clock
frequency. When an external oscillator is used, it can be connected directly to
the input pin X1 in lieu of a crystal. The output of the oscillator is not directly
available outside the 80186 microprocessor.

The 80186 clock generator provides the 50%
duty cycle processor clock for the 80186. It is possible by dividing the oscillator output by 2 forming the
symmetrical clock. When an external oscillator is used, the state of the clock generator will change on the
falling edge of the oscillator signal. If an external crystal of 12 or 16 MHz is connected with 80186, then it
generates a 6 or 8 MHz internal clock. Hence 80186/80188 is able to operate either at 6 or 8 MHz internal
clock. The requirement of crystal frequencies for 80186/80188 is 16 MHz and for advanced version, the
80186/80188 is 12 MHz. The CLKOUT pin gives the processor clock signal for use outside the 80186.
This can be used to drive other system components. Always all timings should be referenced to the output
clock.

The 80186 DMA controllers have two independent high speed DMA channels. Data transfers can take place
between memory and I/O devices (memory to I/O or I/O to memory) or within the same space (memory to
memory or I/O to I/O). Data can be transferred either in 8 bits (bytes) or in 16 bits (words) from even or odd
addresses. Each DMA channel consists of a 20-bit source and destination pointer. The content of the index
pointer can be incremented or decremented depending upon data-transfer byte or word. When data transfer is
one byte, the pointer is incremented by one. If data transfer is one word, the pointer is incremented by two.
Each data transfer always takes 2 bus cycles, i.e., minimum 8 T states. The first bus cycle is used to fetch data
and the other bus cycle can be used to store data. The maximum data transfer rate is about one Mword/s or 2
MBytes/s. Figure 11.5 shows the DMA block diagram of 80186.

Each DMA channel consists of six registers in the control block which defines
each channel’s specific operation. The control register has a 20-bit source pointer, a 20-bit destination pointer,
a 16-bit transfer counter, and a 16-bit control word. The source pointer and destination pointer have two-
words capacity as shown in Table 11.1 The number of DMA transfers to be performed is specified by the
Transfer Count Register (TC). A maximum of 64 K byte or word transfers can be performed with automatic
termination. The control word defines the channel’s operation. The content of all registers may be changed
or modified during any DMA operation. Any changes in the registers must be reflected immediately in DMA
operation. The DMA control register is depicted in Fig. 11.6.

20 pF

20 pF

X1X Mhz Crystal
X2

80186

20

20-bit Adder/Subractor Adder Control
Logic

Timer Request

DRQ1

DRQ0

Request
Selection
Logic

DMA
Control
Logic

16-Bit Transfer Counter Ch. 1

20-Bit Dest. Adrs. Pointer Ch. 1

20-Bit SRC Adrs. Pointer Ch. 1

20-Bit Transfer Counter Ch. 0

20-Bit Dest. Adrs. Pointer Ch. 0

20-Bit SRC Adrs. Pointer Ch. 0

20

16

Channel Control Word 1

Channel Control Word 0

Internal Address Data Bus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M/

IO

M/

IO

CHG/

NOCHG

ST/

STOP

DESTINATION

DEC INC

SOURCE

DEC INC
TC INT SYN P

T

D

R

Q

X
B/

W

X = DON’T CARE

Register Name Register Address

 Ch. 0 Ch. 1

Control Word CAH DAH

Transfer Count C8H D8H

Destination Pointer (upper 4 bits) C6H D6H

Destination Pointer C4H D4H

Source Pointer (upper 4 bits) C2H D2H

Source Pointer C0H D0H

Each DMA channel control word specifies the mode
of operation for any particular 80186 DMA channel. The control word registers states

The mode of synchronization

The number of bytes or words to be transferred

Interrupts to be generated after the last DMA data transfer

Ceasing of DMA operation after a programmed number of DMA cycles

The relative priority of one DMA channel with respect to the other DMA channel

Whether the source pointer will be incremented, decremented, or maintained constant after each
DMA operation

Whether the source pointer addresses memory or I/O devices

Whether the destination pointer will be incremented, decremented, or maintained constant after
each DMA operation

Whether the destination pointer will address memory or I/O devices

Usually, the DMA channel control registers can be changed at the same time when the channel is oper-
ating. But any changes in the DMA channel control registers made during operation will affect the current
DMA transfer.

If B/W = 0, a byte will be transferred. When B/W = 1, a word will be
transferred.

When ST/STOP =1, the specified channel starts data transfer. While
ST/STOP = 0, the specified channel should stop data transfer.

When CHG/NOCHG bit is set during writing
to the control word, the ST/STOP bit will be programmed by the write to the control word. If CHG/NOCHG

bit is cleared when writing the control word, the ST/STOP bit will not be changed. This bit cannot be stored
and will always will be 0 on read.

This bit is used as enable interrupts to CPU on byte count termination.

While TC is set, DMA operation will be terminated if the contents of the transfer count register
becomes zero. The ST/STOP bit will be reset, if TC is set. If TC bit is cleared, the content of transfer count
register in the DMA unit will be decrement for each DMA cycle operation. Although the DMA transfer will
not stop when the content of the TC register becomes zero.

The operation of synchronization bits is given below:

 SYN Bits Operation

 00 No synchronization

 01 Source synchronization

 10 Destination synchronization

 11 Unused

Depending B/W, on increment source pointer by 1 or 2 after each transfer. If B/W = 0,
increment source pointer by 1. When B/W = 1, increment source pointer by 2.

The source pointer is in M/IO space. If M/IO is set (1), the source pointer represents memory.
When M/IO = 0, the source pointer represents input/output device address.

Depending B/W, decrement the source pointer by 1 or 2 after each transfer. If B/W = 0, decrement
the source pointer by 1. When B/W =1, decrement the source pointer by 2.

Increment the destination pointer by 1 or 2 after each transfer. When B/W = 0, increment the
destination pointer by 1. If B/ W = 1, increment the destination pointer by 2.

When M/IO is set (1), the destination pointer represents
memory. If M/IO = 0, the destination pointer represents an input/output device address.

Depending on B/W, decrement the destination pointer by 1 or 2 after each DMA data transfer.

This bit stands for channel priority relative to other channel. Logic level 0 represents low priority and
logic level 1 represents high priority. If channels are set at the same priority level, the operation of channels
will alternate cycles.

If this bit is reset (0), disable DMA requests from the timer 2. When it is set (1) , enable DMA
requests from timer 2.

Bit 3 of DMA control register is not used.

The 80186 microprocessor has three internal 16-bit programmable timers as depicted in Fig. 11.7. Two of
these timers are highly flexible and programmable to count the external events and they are connected to four
external pins (2 per timer). These two timers can be used to count external events, time external events, and
generate non-repetitive waveforms. The third timer is not connected to any external pins. This timer can be

MODE / CONTROL

WORD

MAX COUNT VLAUE

B

MAX COUNT VLAUE

A

TIMER 0

T0

IN

T0

OUT

T0

INT

REQ.

MODE / CONTROL

WORD

MAX COUNT VLAUE

B

MAX COUNT VLAUE

A

TIMER 1

T1

IN

T1

OUT

T1

INT

REQ.

MODE / CONTROL

WORD

MAX COUNT VLAUE

TIMER 2

DMA

REQ.

T2

INT

REQ.

T2 OUT

CLOCK

INTERNALADDRESS / DATA BUS

used to interrupt the 80186 after a programmed interval of time to provide a count pulse to DMA unit, real-
time coding and time delay applications.

Usually, timers are controlled by 11 16-bit registers in the internal peripheral
control block. The timer control block format is demonstrated in Table 11.2. The count register contains
the current value of the timer and the timer count value can be read or written at any time when the timer
is running or not running. The value of this register can be incremented after each timer event. Each of the
timers is incorporated with a MAX COUNT register. In general, the MAX COUNT register is used to express
the maximum count value of the timer. After reaching the MAX COUNT register value, the timer count
value will reset to zero; so that the maximum count value is never stored in the count register itself. A second
MAX COUNT register is also present in the timers 0 and 1. This second MAX COUNT register enables the
timers 0 and 1 to swap their count between two different MAX COUNT values which is programmed by the
programmer.

Register name Register offset

 Timer-0 Timer-1 Timer-2

Count register 50H 58H 60H

Maximum count A 52H 5AH 62H

Maximum count B 54H 5CH Not present

Mode/Control word 56H 5EH 66H

As each timer gets a signal on every fourth CPU clock cycle, it can operate at speeds of up to one-quarter
the internal clock frequency. External clocking of the timers can be done at the rate of one-quarter of the
internal CPU clock rate. When the internal clock frequency is about 8 MHz, the timer operating frequency
is 2 MHz. Any timer output can take maximum six clocks to respond to any individual clock or gate input
due to internal synchronization and pipelining of the timer circuitry. As the count registers and the maximum
count registers are 16 bits wide, 16 bits of resolution are provided in timers. For any read or write operation,
the timers will add one wait state to the minimum four-clock bus cycle. This operation is required for syn-
chronization and coordination between the internal timers and the internal bus for the internal data flows. The
timers can be programmed in different modes as given below:

COUNT registers and be set to retrigger on external events.

All the above modes of timer operation are selectable through the timer mode/control word register.

Usually, the mode/control register is used to allow the user to
program in the specific mode of operation. It is also used to check the current programmed status for any
of the three timers. Figure 11.8 shows the timer mode/control register. The operation of timer mode/control
register bits are discussed in this section.

15 14

EN INH

13

INT RIU

12 11

0 MC

5 4 3 2

RTG P EXT ALT CONT

1 0

The ALT bit is used to find out which of two MAX COUNT registers is used for count comparison.
If ALT is logic level zero, Register A for that timer is always used, while if ALT is logic level one, the
comparison will alternate between Register A and Register B when each maximum count is reached. This
ALT bit can also be used to determine the function of the timer output pin. If ALT is logic level zero, the
output pin will go LOW for one clock, the clock after the maximum count is reached, If ALT is logic level
one, the output pin will reflect the current MAX COUNT register being used. Logic level 0 is used for
Register B and logic level 1 is used for Register A.

When the CONT bit is set, the associated timer runs continuously. If the CONT bit is
reset, the timer will halt upon maximum count. While CONT = 0 and ALT = 1, the timer will count to the
MAX COUNT Register A value.

This bit selects between internal and external clocking for the timer.
When this bit is set, the timer will count low-to-high transitions on the input pin. If it is cleared, it will count
an internal clock while using the input pin for control. This external bit signal may be asynchronous with
respect to the 80186 clock.

The prescaler bit must be ignored when internal clocking is not selected (EXT-0). When
the P bit is at logic level zero, the timer will count at one-fourth the internal clock frequency. If the P bit is at
logic level one, the output of Timer 2 can be used as a clock for the timer.

The RTG (Retrigger) bit is only active for internal clocking when EXT = 0. When
RTG = 0, the input level gates the internal clock on and off. If the input pin is HIGH, the timer will count
otherwise the timer will hold its value. If RTG = 1, the input pin is used to detect the low-to-high transitions.
The first such transition starts the timer running, clearing the timer value to zero on the first clock, and
subsequently increase. The next transitions on the input pin will again reset the timer to zero, from which it
will start counting up again. The input signal may be asynchronous with respect to the 80186 clock.

The EN (enable) bit gives the programmer control over the timer’s RUN/HALT status. If
this bit is set, the timer is always enabled to incre ment depending upon the input pin constraints in the internal
clock mode. When this bit is reset, the timer will be inhibited from counting.

The INH (inhibit) bit is used to allow for selective updating of the EN (enable) bit. If
INH is a logic level one while writing to the mode/control word, the state of the EN bit will be modified by
the write operation. When INH is a logic level zero during the write, the EN bit will not be affected by the
operation. This bit will always be a 0 on a read operation.

When this bit is set, the INT bit enables interrupts from the timer, which will be
generated on every terminal count. If this enable bit is reset after the interrupt request has been generated, but
before a pending interrupt is serviced, the interrupt request is latched in the Interrupt Controller.

The MC (Maximum Count) bit is set when the timer reaches its final maximum
count value. This bit is set regardless of the timer’s interrupt-enable bit. The MC bit provides information
to the programmer about the ability to monitor timer status through software instead of through interrupts.

The RIU (Register In Use) bit is used to indicate which MAX COUNT register
is currently being used for comparison to the timer count value. When RIU = 0, it indicates Register A. The
RIU bit cannot be written and its value is not changed when the control register is written. This bit is always
cleared when the ALT bit is zero.

Each timer has a 16-bit count register. The contents of this register can be read or
written by the processor at any time. If we write in the register while the timer is counting, the new value will
take effect in the current count cycle.

Timer 0 and Timer 1 have two MAX COUNT registers, but Timer 2 has a single
MAX COUNT register. The MAX COUNT registers are used to store the number of events that the timer will
count. In Timer 0 and Timer 1, the MAX COUNT register can exchange between the two maximum count
values whenever the current maximum count is reached.

The 80186 can receive interrupts from both internal and external sources. The internal interrupt controller is
able to merge all interrupt requests on a priority basis and provides individual interrupt service by the CPU.
Timers and DMA channels are the internal interrupt sources and these sources can be disabled by their own
control registers. These can also be disabled by mask bits within the interrupt controller. The 80186 interrupt
controller has control registers which can set the mode of operation for the controller.

The interrupt controller can always resolve priority among all pending requests simultaneously. So inter-
rupt service routines for lower priority interrupts might be interrupted by higher priority interrupts. The block
diagram of the interrupt controller is shown in Fig. 11.9.
The interrupt controller is able to operate in two different modes such as

non-iR MX 86 (Master) mode, and

non-iR MX 86 (Master-Slave) mode.

EXT. INPUT 2

CONTROL REG.

EXT. INPUT 3

CONTROL REG.

EXT. INPUT 1

CONTROL REG.

EXT. INPUT 0

CONTROL REG.

EXT. INPUT 1

CONTROL REG.

EXT. INPUT 0

CONTROL REG.

TIMER

CONTROL REG.

INTERRUPT

PRIORITY

RESOLVER

INTERRUPT

REQUEST TO

PROCESSOR

INTERNAL ADDRESS / DATA BUS

VECTOR

GENERATION

LOGIC

INTERRUPT

REQUEST REG.

INTERRUPT

MASK REG.

IN-SERVICE

REG.

PRIOR. LEV.

MASK REG.

INTERRUPT

STATUS REG.

TIMER

0

TIMER

1

TIMER

2

DMA

0

DMA

1 INT0 INT1 INT2 INT3 NMI

The interrupt controller provides five dedicated pins for
external interrupt sources. One of these pins is Nonmaskable Interrupt (NMI). This pin is used for power-fail
interrupts, etc. The other four pins may function either as four interrupt input lines with internally generated
interrupt vectors, as an interrupt line and an interrupt acknowledge line along with two other input lines with
internally generat ed interrupt vectors. While the interrupt lines are used in cascade mode, the 80186 interrupt
controller will not generate internal interrupt vectors. In the cascade mode, external sources use externally
generated interrupt vectors. If an interrupt is acknowledged, two INTA cycles are initiated and the vector is
used to read into the 80186 on the second cycle. In cascade mode, external 8259A programmable interrupt
controllers can be interfaced with the 80186 processor.

The basic modes of operation of the interrupt controller in non-iRMX mode (Master) are like the 8259A.
The interrupt controller responds identically to internal interrupts in all three modes, namely, fully nested
mode, cascade mode and special fully nested mode. But the difference of three modes is only in the interpre-
tation of function of the four external interrupt pins. The interrupt controller can be set into one of the three
modes after programming the INT0 and INT1 control registers.

In the fully nested mode, four pins are used as direct interrupt requests.
The vectors for these four inputs are generated internally. An in-service bit is provided for every interrupt
source. If a lower-priority device requests an interrupt while the in-service bit (IS) is set, no interrupt will be
generated by the interrupt controller. While interrupts are received and enabled, higher-priority interrupts will
be serviced. When a service routine is completed, the proper IS bit must be reset by writing the proper pattern
to the EOI register. An EOI command is issued at the end of the service routine just before the issuance of
the return from interrupt instruction.

In cascade mode, the 80186 has four
interrupt pins and two of them have dual functions. In the fully
nested mode, the four pins are used as direct interrupt inputs and
the corresponding vectors are generated internally. In the cascade
mode, the four pins are configured into interrupt input-dedicated
acknowledge signal pairs. The interconnection between 80186
and 8259A is shown in Fig. 11.10. INT0 is an interrupt input
which is used to interface an 8259A and INT2/INTA0 provides
the dedicated interrupt acknowledge signal. The same is true for
INT1 and INT3/INTA1. The primary cascade mode allows the
capability to serve up to 128 external interrupt sources through
the use of external master and slave 8259As. Three levels of priority are created, requiring priority resolution
in the 80186 interrupt controller, the 8259A masters, and the 8259A slaves.

The interrupt controller operates in this mode after setting the
SFNM bit in INT0 or INT1control register. This mode enables complete nest ability with the external 8259A
masters. Usually, any interrupt request from an interrupt source will not be recognized until the in-service bit
for that source is reset.

The interrupt controller register is depicted in Fig. 11.11.
It consists of fifteen registers such as in-service register, interrupt request register, mask register, priority
mask register, interrupt status register, timer control register, DMA 0, 1 control registers, INT0-INT3 control
registers, poll register, poll status register and EOI register. All registers can both be read or written to unless
specified.

INT

INTA

8259A

PIC

INTA0

INT0

80186

The interrupt
controller has a special iRMX 86 compatibility
mode that allows the use of the 80186 within the
iRMX 86 operating system interrupt structure.
This interrupt model requires one master and
multiple slaves 8259A in cascade connection.
In the iRMX mode, the internal 80186 interrupt
controller will be used as a slave controller to
an external master interrupt controller. Figure
11.12 shows the iRMX 86 interrupt controller
interconnection. The INT0 input is used as the
80186 CPU interrupt input. INT3 functions as an
output to send the 80186 slave-interrupt request
to one of the eight master PIC inputs. To get
correct master–slave interfacing, decoding of
slave address CAS0–CAS2 are required. INT1
is used as slave-select input. INT2 is used as an
acknowledge output and it is used to drive the
INTA input of an 8259A.

The iRMX mode of operation allows nest-
ing of interrupt requests. Vector generation in
the iRMX mode is exactly like that of an 8259A
slave. In iRMX mode, the specific EOI com-
mand operates to reset an in-service bit of a
specific priority. All control and command reg-
isters such as interrupt vector register, specific
EOI register, mask register, priority-level mask
register, in-service register, interrupt request reg-
ister, and Level 0–Level 5 control registers are

INT3 CONTROL REGISTER

INT2 CONTROL REGISTER

INT1 CONTROL REGISTER

INT0 CONTROL REGISTER

DMA 0 CONTROL REGISTER

DMA 1 CONTROL REGISTER

TIMER CONTROL REGISTER

INTERRUPT CONTROLLER STUATUS REGISTER

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

POLL STATUS REGISTER

POLL REGISTER

EOI REGISTER

3EH

OFFSET

3CH

3AH

38H

36H

34H

32H

2EH

30H

2CH

2AH

28H

22H

24H

26H

INT0

INT1

INT2

INT3

80186

INTA

INT

SLAVE SELECT
Cascade

Address Decoder

CAS0–2

Request from
Slaves

8259A Master

IR0

IR7

located inside the internal peripheral control block.
Figure 11.13 shows the interrupt controller registers
in iRMX86 mode.

The 80186 has 20-bit address lines and it can
directly address 220 =1MB memory. The memory of
80186 is organized in sets of segments. Each seg-
ment is available in a linear contiguous sequence
of up to 64K bytes. Memory is addressed using a
two-component address such as a 16-bit base seg-
ment and a 16-bit offset. The 16-bit base values are
stored in any one of four internal segment registers:
code segment, data segment, stack segment, and
extra segment. The physical address is calculated by
shifting the base value left by four bits and adding
the 16-bit offset value to determine a 20-bit physical
address just like the 8086 processor.

The 80186 has
six memory chip select outputs for three different
address spaces such as upper memory, midrange memory and lower memory. One memory chip select signal
is used for upper memory, four memory chip select signals are provided for midrange memory and one
memory chip select signal is used for lower memory.

The range for each memory chip select signal is programmable and the range can be set to 1K, 2K, 4K,
8K, 16K, 32K, 64K, 128K and 256K. In addition, the starting or base address of the midrange memory chip
select can also be selected. At a time, only one chip select can be programmed to be active for any memory
location. Generally, all chip select sizes are in bytes though the memory of 80186 is arranged in words. For
example, sixteen 64K × 1 memories are used to develop the 128K memory block.

The 80186 provides the upper memory chip select signal UCS to
select the top of memory. Generally, the top of memory is used as the system memory as the 80186 starts
executing at memory location FFFF0H after reset. The upper limit of memory is represented by the chip
select and it is FFFFFH, but the lower limit is programmable. Actually, the lower limit and the size of the
select block can be varied by programming as given in Table 11.3.

Starting Address Memory Block Size UMCS Value

FFC00H 1K FFF8H

FF800H 2K FFB8H

FF000H 4K FF38H

FE000H 8K FE38H

FC000H 16K FC38H

F8000H 32K F838H

F0000H 64K F038H

E0000H 128K E038H

LEVEL 4 CONTROL REGISTER (TIMER 1)

INTERRUPT REQUEST REGISTER

IN-SERVICE REGISTER

PRIORITY MASK REGISTER

MASK REGISTER

SPECIFIC EOI REGISTER

INTERRUPT VECTOR REGISTER

3AH

OFFSET

38H

36H

34H

32H

2EH

2CH

28H

2AH

22H

20H

LEVEL 5 CONTROL REGISTER (TIMER 2)

LEVEL 3 CONTROL REGISTER (DMA 1)

LEVEL 2 CONTROL REGISTER (DMA 0)

LEVEL 0 CONTROL REGISTER (DMA 0)

The 80186 provides four midrange memory chip select signals

which are active within a user locatable memory. This memory block may be within 1 Mbyte memory address
space exclusive the area defined by upper-memory chip-select block and lower-memory chip-select block.
The base address and the size of the select memory block for programming are shown in Table 11.4.

Total Memory Block Size Individual Memory Block Size MMCS Bits

8K 2K 0000001B

16K 4K 0000010B

32K 8K 0000100B

64K 16K 0001000B

128K 32K 0010000B

256K 64K 0100000B

512K 128K 1000000B

The 80186 provides the lower-memory chip-select signal LCS to select the
bottom of memory. Usually, the bottom of memory is used as the interrupt vector table starting from memory
location 00000H. The lower limit of memory is always defined by this chip select and it is 0H. The upper
limit and the size of the select memory block can be defined by programming as given in Table 11.5.

Starting Address Memory Block Size LMCS Value

003FFH 1K 0038H

007FFH 2K 0078H

00FFFH 4K 00F8H

01FFFH 8K 01F8H

03FFFH 16K 03F8H

07FFFH 32K 07F8H

0FFFFH 64K 0FF8H

1FFFFH 128K 1FF8H

3FFFFH 256K 3FF8H

In general, the 80186 generates chip-select signals for up to seven
peripheral devices. These chip selects are active for seven adjacent blocks of 128 bytes above a programmable
base address. This base address can be located in either memory or I/O space. The 80186 generates seven CS
lines called PCS0–6. The base address is user-programmable but it will be a multiple of 1k bytes. Therefore,
the least significant 10 bits of the starting address are always 0.

Usually PCS5 and PCS6 are programmed to provide latched address bits A
1
, A

2
. If these signals are pro-

grammed, they cannot be used as peripheral selects. These outputs can be connected directly to the A
0
, A

1

pins and are used to select internal registers of 8-bit peripheral chips. Then the hardware interface becomes
simplified as the 8-bit registers of peripherals are simply treated as 16-bit registers located on even boundar-
ies in I/O or memory space. In this case the lower 8-bits of the register are significant, but the upper 8-bits
are ‘don’t cares’

The starting address of the peripheral chip-select block can be described by the Peripheral Chip-Select
(PACS) register. This register is located at offset A4H in the internal control block. Bits 15–6 of this register
correspond to bits 19–10 of the 20-bit Programmable Base Address (PBA) of the peripheral chip-select block.
Bits 9–0 of the PBA of the peripheral chip-select block are all zeros. If the chip-select block is located in I/O
space, bits 12–15 must be programmed zero, since the I/O address is only 16 bits wide. Table 11.6 shows the
address range of each peripheral chip select with respect to the PBA contained in PACS register.

PCS Line Active between locations

PCS0 PBA PBA+127

PCS1 PBA+128 PBA+255

PCS2 PBA+256 PBA+383

PCS3 PBA+384 PBA+511

PCS4 PBA+512 PBA+639

PCS5 PBA+640 PBA+767

PCS6 PBA+768 PBA+895

The 80186 is a 68-pin IC and it is available in Plastic Leaded Chip Carrier (PLCC), ceramic Leadless Chip
Carrier (LCC) and Pin Grid Array (PGA) packages. Figure 11.14 shows the pin diagram of 80186 in ceramic
leadless chip carrier package. The pin functions are discussed elaborately as given below:

VCC (Input) +5 volt power supply

VSS (Input) Ground

The output of RESET
pin indicates that the 80186 CPU is being reset.
It can also be used as a system reset. When it is
logic level HIGH (1) and synchronized with the
processor clock, it lasts an integer number of
clock periods corresponding to the length of the
RES signal.

The X1 and X2 are crystal
input terminals. These pins provide an external
connection for a fundamental mode parallel
resonant crystal for the internal crystal oscillator,
but X1 can be used for interfacing an external
clock instead of a crystal.

The clock output
provides the system clock with a 50% duty-cycle
waveform. Usually, the clock signal (CLKOUT) is
generated when the input or oscillator frequency
is internally divided by two, so that frequency of
CLKOUT is one half of the crystal oscillator.

A16 / S3

1

A17 / S4

A18 / S5

A19 / S6

VSS

BHE

WR /OS1

WR / ASMD

ALE/OS0

X1

X2

RESET

CLKOUT

ARDY

S2

S1

S0 52

H
L
D
A

H
O
L
D

S
R
D
Y

L
O
C
K

T
E
S
T

M
M
I

IN
T
0

IN
T
1

V
C
C

IN
T
2
/
IN
T
A
0

IN
T
3
/
IN
T
A
1

D
T
/
R

D
E
N

M
C
S
0

M
C
S
1

M
C
S
2

M
C
S
3

35

UCS

LCS

PCS6/A2

PCS5/A1

PCS4

PCS3

PCS2

PCS1

PCS0

RES

TMR OUT 1

VSS

TMR OUT 0

TMR IN 1

TMR IN 0

DRQ 1

DRQ 018

A
D
1
5

A
D
7

A
D
1
4

A
D
1
3

A
D
1
2

A
D
6

A
D
5

A
D
4

V
C
C

A
D
1
1

A
D
3

A
D
1
0

A
D
2

A
D
9

A
D
1

A
D
8

A
D
0

80186

When input is logic level LOW (0), the system will be reset, so that the 80186 immediately
terminates its present operation, clears the internal logic, and enters into a dormant state. For proper reset
operation, RES must be low for at least 50 ms. This signal may be asynchronous to the 80186 clock. Generally,
this pin is connected to an RC circuit which generates a reset signal after application of power supply. When
RES occurs, the 80186 will drive the status lines to an inactive level for one clock, and then tri-state them.

The function of TEST input signal can be examined by the WAIT instruction. When the
TEST input is HIGH, WAIT execution starts and instruction execution will be suspended. This input signal
is synchronized internally.

These are timer input signals which are used either as clock or control
signals, depending upon the programmed timer mode. Usually, these inputs are active HIGH or logic level 1
and internally synchronized.

These are timer output signals which are used to provide a single
pulse or a continuous waveform generation, depending upon the selected timer mode.

The DRQ0 and DRQ1 are DMA request inputs for two internal DMA channels.
These pins are driven HIGH by an external device whenever it is required to perform data transfer though
DMA channel 0 or 1. These signals are active HIGH, level-triggered, and internally synchronized.

NMI (Non-Maskable Interrupt) is an positive edge-triggered input which causes a type 2
interrupt. It is not maskable internally. This signal is latched internally and is also internally synchronized.
NMI duration of one clock or more will guarantee service.

The maskable interrupt requests can be
requested by one of INT0, INT1, INT2/INTA0 and INT3/INTA1 pins. Usually, these input pins are active
HIGH and are synchronized internally. INT2 and INT3 can be configured through software to provide active-
LOW interrupt-acknowledge output signals. All interrupt inputs can be configured through software to be
either edge-triggered or level-triggered. To ensure the interrupt operation, all interrupt requests must remain
active until the interrupt is acknowledged.

A19–A16 are address bus outputs and S6–S3 are
bus cycle statuses. These signals are used as the four most significant address bits during T1. Generally,
these signals are active HIGH. During T2, T3, TW and T4, status information is available on these lines. S6
differentiates processor cycle and DMA cycle. S6 = 0 indicates processor cycle and S6 = 1 indicates DMA
Cycle. S3, S4, and S5 are defined as LOW during T2–T4.

These signals are time multiplexed address/data bus. During T1, the 80186 places A15

to A0 signals on these pins to locate the memory or I/O address. During T2, T3, TW and T4, these lines work as
data bus. The bus is always active HIGH.

The bus high enable signal can be used to determine if data is to be enabled onto
the most significant half of the data bus, pins D

15
–D

8
 during T

1
clock cycle. For any read, write, an interrupt

acknowledge operations BHE is LOW during T
1
 and a byte is to be transferred on the higher half of the bus.

The S7 status is available during T
2
, T

3
 and T

4
 clock cycle. S

7
 is always at logic level 1. Hence no latch is

required to de-multiplex S7. The function of processor depends on BHE and A0 as shown in Table 11.7.

The ALE/QS0 (Address Latch Enable/Queue Status 0) is provided by the 80186 to
latch the address into the 8282 / 8283 address latches. When ALE is active HIGH, addresses are valid on the
trailing edge of ALE.

BHE A0 Function

0 0 Work Transfer

0 1 Byte transfer on upper half of data bus (D15–D8)

1 0 Byte transfer on lower half of data bus (D7–D0)

1 1 Reserved

The WR/QSI (Write Strobe/Queue Status 1) is used to indicate that the data on the
bus is to be written into a memory or an I/O device. The WR signal is active for T2, T3, and TW of any write
cycle. When the 80186 is in queue status mode, the ALE/QSO and WR/QSI pins give information about
processor and instruction queue interaction as depicted in Table 11.8.

QS1 QSO Queue Operation

0 0 No queue operation

0 1 First opcode byte fetched from the queue

1 1 Subsequent byte fetched from the queue

1 0 Empty the queue

This signal is used indicate that the 80186 is performing a memory or I/O read cycle.
The RD is active LOW during T2, T3 and TW of any read cycle. RD is driven HIGH for one clock during reset,
and then the output driver is floated. During RESET, the pin is sampled to determine whether the 80186
should provide ALE, WR , and RD, or the queue-status should be provided. RD must be connected to GND
(ground) to provide queue-status data.

The asynchronous ready input signal is used to inform the 80186 processor that the
addressed memory or I/O device will complete a data transfer. This signal is internally synchronized by the
80186 on rising edge of the clock. The ARDY input pin will accept an asynchronous input, and is active
HIGH. When this pin is connected to +Vcc (+5 V), the 80186 functions normally. If this pin is connected to
ground, the 80186 enters WAIT states.

The synchronous ready input signal should be synchronized externally to the 80186.
This signal can be used as the ready input. This line is active HIGH. When this line is connected to Vcc, no
WAIT states are inserted. The ARDY (Asynchronous Ready) or SRDY (synchronous ready) must be active
before a bus cycle is terminated. When SRDY line is unused, it may remain connected to +5 V or it may be
connected to ground.

The LOCK output signal is used to prevent other bus masters from accessing the system
bus. Usually, the LOCK signal is requested by the LOCK prefix instruction while LOCK is active LOW for
the duration of locked instruction. This is activated at the beginning of the first data cycle connected with the
instruction following the LOCK prefix. It will be active until the completion of the instruction following the
LOCK prefix.

The bus cycle status output signals S2–S0 are used to provide bus-transaction
information as given in Table 11.9.

S2 S1 S0 Bus Cycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Read I/O

0 1 0 Write I/O

0 1 1 Halt

1 0 0 Instruction Fetch

1 0 1 Read Data from Memory

1 1 0 Write Data to Memory

1 1 1 Passive (no bus cycle)

S2 can be used for a logical M/IO signal, and S1 is used for DT/R indicator. These status lines are active
HIGH for one clock during reset, and then floated until a bus cycle begins.

The HOLD signal is used to indicate whether any other bus master is requesting the local
bus. This input is active HIGH and it may be asynchronous with respect to the 80186 clock.

After receiving a HOLD request, the 80186 will issue an HLDA hold acknowledge
signal at the end of T4 or T1. Then the 80186 will float the local bus and control lines.

The UCS (Upper Memory Chip Select) output signal is an active LOW whenever a
memory reference is made to select the upper portion of the memory map. This output line is software
programmable to enable memory size of 1KB -256KB.

The LCS (Lower Memory Chip Select) is active LOW whenever a memory reference
is made to select the lower portion of the memory map. This output line is also software programmable to
enable memory size of 1 KB–256 KB.

The midrange memory chip select signals, MCS0–3 are active LOW when a memory
reference is made to the specified midrange portion of memory (8K–512K). These lines are not floated during
bus HOLD and are software programmable.

The peripheral chip select signals PCS0–4 are active LOW when a reference is made to
the specified peripheral area about 65k byte I/O space. These lines are not floated during bus HOLD, but the
address ranges are software programmable.

The peripheral chip select 5 or latched address signal A1 can be programmed to
provide a sixth peripheral chip select, or to supply an internally latched A1 signal. The address range activated
by PCS5 is software programmable.

The peripheral chip select 6 or latched address signal A2 may be programmed to
provide a seventh peripheral chip select, or to give an internally latched A2 signal. The address range activated
by PCS6 is also software programmable.

The DT/R (Data Transmit/Receive) signal controls the direction of data flow through
the external data bus transceiver. If DT/R is LOW, data is transferred to the 80186. When DT/R is HIGH, the
80186 writes data on the data bus.

The DEN (Data Enable) is used enable the external data bus transceiver output. This is
active LOW during each memory and I/O access. If DEN is HIGH, DT/R changes state.

The 80186 provides eight different types of addressing modes to specify operands. The operand (data) is used
in the instruction to specify the addressing modes. The addressing mode byte is always the second byte of the
instruction code. Usually, the two addressing modes are provided for instructions that operate on the register
or immediate operands:

The operand is located in one of the 8- or 16-bit general
registers. The examples of 8-bit and 16-bit registers addressing are MOV AL, BL and MOV AX, BP
respectively.

The operand is included in the instruction. The examples of
immediate operand mode are MOV AL, FFH and MOV BX, 2354H.

The remaining six modes are provided to specify the location of an operand in a memory segment. Any
memory operand address consists of a segment base and an offset. The segment base must be supplied by a
16-bit segment register. The offset is called the effective address, and it is determined by summing any com-
bination of the following three address elements as given below:

The combinations of the above three address elements define the six memory addressing modes as given
below.

The operand’s offset is contained in the instruction as an 8- or 16-bit
displacement element. The example of direct addressing mode instruction is MOV AX, [3000].

In this addressing mode, the operand’s offset is stored in one
of the registers SI, DI, BX, or BP. The example of register indirect addressing mode instruction is MOV AX,
[BX].

The operand’s offset is the sum of an 8- or 16-bit displacement and the
contents of a base register (BX or BP). The example of based addressing mode instruction is MOV AX,
[BX+66].

In this addressing mode, the operand’s offset is the sum of an 8-bit or 16-
bit displacement and the contents of an index register (SI or Dl). The example of indexed addressing mode
instruction is MOV AX, [SI + 0300].

The operand’s offset is the sum of the contents of a base register
and an index register. The example of based indexed addressing mode instruction is MOV AX, [BX+SI].

In this addressing mode the operand’s
offset is the sum of a base register’s contents, an index register’s contents, and an 8- or 16-bit displacement.
The example of based indexed with displacement addressing mode instruction is MOV AX, [BX+SI+0200].

The 80186 microprocessor can directly support the different data types such as integer, ordinal, pointer,
string, ASCII and BCD.

Integer data is a signed binary numeric value represented in an 8-bit byte or a 16-bit word.
During all arithmetic operations, assume that the data is a 2’s comple ment representation. The signed 32-bit
and 64-bit integer’s data can be supported by using a numeric data processor.

It is an unsigned binary numeric value contained in an 8-bit byte or a 16-bit word.

The pointer is a 16-bit or 32-bit quantity, and it consists of a 16-bit offset element or a 16-bit
segment base element in addition to a 16-bit offset element.

String is a contiguous sequence of bytes or words. Any string may contain from 1 KB to 64 KB.

It is a byte representation of alphanumeric and control characters using the ASCII standard of
character representation.

BCD is an unpacked byte representation of the decimal digits 0–9.

It is a packed byte representation of two deci mal digits (0–9). One digit is stored in each
nibble (4 bits) of the byte.

Floating point is used for a signed 32-bit, 64-bit or 80-bit real number representation.
Usually, floating point operands are supported by using a numeric data processor.

Intel 80186 is the improved version of 8086, hence it has faster instruction execution time compared to the
8086 microprocessor. The 80186 processor is compatible with all instruction of 8086 microprocessors and a
few new instructions are introduced with the 80186. The new instructions are ENTER/LEAVE which is used
to replace several instructions when handling stack frames, PUSHA/POPA which is used for push/pop all
general registers, BOUND which can check array index against bounds, INS/OUTS which is used for input/
output of string. A very useful immediate addressing mode instruction is also added for the push, imul, and
multi-bit shift instructions. The detailed operations of all new instructions are described below:

This instruction is used to push the content of all registers onto the stack. Actually, it copies the
content of AX, CX, DX, BX, SP, BP, SI, and DI onto the stack. The contents of the SP register are pushed
before AX is pushed.

This instruction can be used to pop the content of all registers from the stack. In fact, it pops DI,
SI, BP, SP, BX, DX, CX, and AX from the stack. Usually, the popped SP value is discarded.

This instruction can be used to push an immediate 16-bit number onto the stack.
The example of PUSH immediate instruction is PUSH 4000H; Store 4000HH on stack immediately and
decrement the SP by 2.

This instruction is used for signed multiplication immediately. The common format of IMUL
instruction is

IMUL Destination Register, Source, Immediate data.

This instruction has three operands. The first operand is the destination register. The second operand is
the source of data which may be either the memory or the register. The third operand is the immediate data.

When the IMUL instruction is executed, the multiplication between the contents of the source operand and
immediate data is performed, and the lower 16 bits of the final result will be stored in the destination register.
But the upper 16 bits of the final result is ignored. The example of IMUL instruction is

IMUL BX, CX, 22; Multiply the content of CX register with 22H and result (lower 16-bits) is stored in
BX register

SHIFT/ROTATE Destination, immediate data, Immediate data states
number of bit shift.

This instruction is used to input a string byte or string word. The common format of INS instruction is

INS Destination, Port.

Actually, it copies a byte using INSB or a word using INSW from I/O port to the destination memory.
The port address is represented by DX and the contents of the port move to the memory location pointed by
DI. After completion of data transfer, DI must be updated.

This instruction is used to output a string byte or string word. The common format of OUTS
instruction is

OUTS Port, Source

Usually, this instruction copies a byte using OUTSB or word using OUTSW from a specified memory
location pointed by SI to the specified I/O port. The port address is represented by the content of the DX
register. After completion of data transfer, SI must be updated.

This instruction is used to detect values outside the predefined range. The format of BOUND
instruction is

BOUND REG, SRC.

(REG) ! (SRC) and an interrupt of type 5 occurs. BOUND REG, SCR must point to 2 consecutive
words in the memory.

This instruction is used to prepare the stack for procedure entry. The format of ENTER
instruction is

ENTER SIZE, Level. The stepwise operation of this instruction is given below:

Step 1 Push the content of BP. Save SP to a register TEMP.

Step 2 When Level = 0, go to Step 8.

Step 3 If LEVEL – 1 = 0, go to Step 7.

Step 4 (BP)![(BP) – 2]

Step 5 Push to the stack pointed by BP.

Step 6 Level!Level-1 and go to Step 3.

Step 7 Push TEMP.

Step 8 (BP)!(TEMP.)

Step 9 (SP)!(SP) - SIZE .

 (SP)!(BP) and Pop stack into BP

In this instruction, SIZE is a non-negative integer less than 65, 536 and Level is a non-negative integer
less than 256.

The comparison between 8086 and 80186 is given Table 11.10.

8086 microprocessor 80186 microprocessor

Intel 8086 was developed in 1978 and it has about Intel 80186 was developed in 1982 and it is the improved

3000 different instructions for programming. version of 8086, in the sense that it has faster instruction

 execution time, includes a few more instructions as

 compared to 8086.

DMA channels, programmable interrupt controller, High-speed DMA channels, programmable interrupt

programmable timers, programmable chip select logic controller, programmable timers, programmable chip

are not incorporated in the 8086 processor. select logic are incorporated in the 8086 processor.

8086 has an operating frequency of 5 to 10 MHz. 80186 has an operating frequency of 8 MHz to 10 MHz.

The operation codes 63H and 64H are not available 80186 accepts the operation code 63H and 64H and these

in 8086. codes will present an interrupt of byte-6.

8086 has arithmetic and logic instructions and 80186 is compatible with all existing instructions of 8086

numbers of instructions are more than 3000. and it has ten new instructions.

Slow performance with respect to 80186. Power 80186 is high-performance processor, with two times the

consumption is more than 80186. performance of the standard 8086. The power consumption

 is less than 8086.

8086 is a 40-pin IC and available in plastic leaded 80186 is a 68-pin IC and available in plastic leaded chip

chip carrier (PLCC), ceramic leads chip carrier carrier (PLCC), ceramic leads chip carrier (LCC) and pin

(LCC) and pin grid array (PGA) packages. grid array (PGA) packages.

PUSH and POP instructions are available in 8086. PUSH, POP and PUSH immediate instructions are

 available in 80186.

IMUL instruction is available for signed multiplication IMUL instruction is available for signed multiplication and

and it’s format is it’s format is

IMUL BL IMUL BX, CX, 22.

8086 has no high-level instructions. 80186 has three high-level instructions such as BOUND,

 LEAVE and ENTER.

For 8086 to execute a rotate or shift instruction, it In order to execute a rotate or shift instruction, the number

will need more than 1000 cycles to complete, and, of bits to shift is the count specified in the instruction

therefore, there is a long delay if an interrupt of modulo 32. This limits the number of shifts to 31. It

highest priority is requested. requires less execution time compared to 8086.

In 8086, the LOCK signal can be initiated by a lock The LOCK signal in 80186 will not be activated until the

instruction prefix and is maintained until the end of locked instruction starts its operand reference bus cycles.

the next instruction.

The Intel 80286 was introduced in early 1982. This is also known as iAPX 286 and it is an x86 16-bit micro-
processor with 134,000 transistors. It was the first Intel processor that could run all the software written for
its predecessor. It was widely used in IBM PC compatible computers such as IBM PC/AT during the mid
1984 to early 1990s.

Initially, 80286 was released with 6 MHz and 8 MHz, it was subsequently scaled up to 12.5 MHz. The
80286 had an average speed of about 0.21 instructions per clock. The 6 MHz model usually operated at 0.9
MIPS, the 10 MHz model at 1.5 MIPS, and the 12 MHz model at 1.8 MIPS.

 The 80286’s performance is more than twice that of its predecessors, i.e., Intel 8086 and Intel 8088 per
clock cycle. The 80286 processors have a 24-bit address bus. Therefore, it is able to address up to 16 MB of
RAM, whereas the 8086 could directly access up to 1 MB. The 80286 CPU was designed to run multitasking
applications, digital communications, real-time process control systems, and multi-user systems.

This processor is the first x86 processor, which can be used to operate in protected mode. The protected
mode enabled up to 16 MB of memory to be addressed by the on-chip linear memory management unit
(MMU) with 1 GB logical address space. The memory management unit is able to provide some degree of
protection from applications writing outside their allocated memory zones. But the 80286 could not revert to
the 8086 compatible real mode without resetting the processor.

80286 is a high-performance 16-bit microprocessor with on-chip memory management and protection
capabilities. Actually, this processor has been designed for a multi-user as well as a multitasking system.
Usually, the 80286 processor is booted in real mode, and thereafter it works in protected mode by software
command. But it is not possible to switch the 80286 from protected mode to real mode. To shift from pro-
tected mode to real mode, 80286 microprocessors must be reset. The 80286 with 8 MHz clock provides up to
6 times higher than the 5 MHz 8086.

There is no on-chip clock generator circuit in 80286. Therefore, an external 82284 chip is required to
generate the external clock. The 80286 has a single CLK pin for single-phase clock input. Usually, the exter-
nal clock is divided by 2 internally to generate the internal clock. The 82284 provides the 80286 RESET and
READY signals.

The 80286 operates in two different modes such as real mode and protected mode. The real mode is used
for compatibility with existing 8086/8088 software base, and the protected mode is used for enhanced system
level features such as memory management, multitasking, and protection.

The 80286 is the first advanced microprocessor with memory management and protection abilities. In
this chapter, the architecture, memory management and other functional details of 80286 are discussed.

The 80286 processor is an advanced, high-performance microprocessor with specially optimized capabilities
for multi-user and multitasking systems. The 80286 has built-in memory protection that supports operating
system and task isolation as well as program and data privacy. A 12 MHz 80286 provides about six times
more than the 5 MHz 8086. The 80286 includes memory management capabilities that map 230 (one giga-
byte) of virtual address space per task into 224 bytes (16 megabytes) of physical memory.

The 80286 is compatible with 8086 and 8088 operating software. The 80286 has two operating modes:
real address mode and protected virtual address mode. In real address mode, the 80286 is object code com-
patible with existing 8086, and 8088 software. In protected virtual address mode, the 80286 is source code
compatible with 8086, 8088 software and sometimes it may require upgrading to use virtual addresses sup-
ported by the 80286’s integrated memory management and protection scheme. Both modes operate at full
80286 performances and execute all instructions of the 8086 and 8088 processors.

The internal block diagram of the 80286 processor’s architecture is depicted in Fig. 11.15. The CPU of
the 80286 processor consists of four functional units such as

 Address Unit (AU)

 Bus Unit (BU)

 Instruction Unit (IU)

 Execution Unit (EU)

The address unit (AU) is used to determine the physical addresses of
instructions and operands which are stored in memory. The AU computes the 20-bit physical address based
on the contents of the segment register and 16-bit offset just like 8086. The address lines derived by AU
can be used to address different peripheral devices such as memory and I/O devices. This physical address
computed by the address unit is sent to the Bus Unit (BU) of the CPU.

The bus unit interfaces the 80286 with memory and I/O devices. This processor
has a 16-bit data bus, a 24-bit address bus, and a control bus. The bus unit is responsible for performing
all external bus operations. This unit consists of latches and drivers for the address bus, which transmit the
physical address A19–A0. The A19–A0 facilitates all memory and I/O devices for read and write operations.

The bus unit is used to fetch instruction bytes from the memory. Generally, the instructions are fetched
in advance and stored in a queue for faster execution of the instructions. This concept is known as instruction

pipelining.

Hence, to fetch instruction, the CPU will not wait till the completion of execution of the previous
instruction. While one instruction is being executed, the subsequent instruction is to be prefetched, decoded
and kept ready for execution. The prefetcher module in the bus unit performs this task of prefetching. The bus
unit has a bus control module which controls the prefetcher module. The fetched instructions are arranged in
a 6-byte prefetch queue. In this way, the CPU prefetches the instructions, to enhance the speed of execution.

The 6-byte prefetch queue forwards the instructions sequentially to the
Instruction Unit (IU). The instruction unit receives instructions from the prefetch queue and an instruction
decoder decodes them one by one. The decoded instructions are latched onto a decoded instruction queue.
The IU decodes maximum 3 prefetched instructions and loads them into decoded instruction queue for
execution by execution unit.

SEGMENT
BASED

SEGMENT
SIZE

SEGMENT
LIMIT

CHECKER

ADDRESS UNIT (AU)

OFFSET
ADDER

REGIS-
TERS

CONTROL

NMI BUSY

EXECUTION UNIT (EU)

3 DECODER
INSTRUCTION

QUEUE

ALU

PHYSICAL
ADDRESS
ADDER

INSTRUCTION
DECODER

INSTRUCTION UNIT (IU)

BUS UNIT (BU)

6-BITE
PREFETCH
QUEUE

DATA TRANSCEIVERS

BUS CONTROL

PREFETCHER
PROCESSOR
EXTENSION
INTERFACE

ADDRESS
LATCHES AND DRIVERS

A – A23 0

BHE, M/IO

PEACK

PEREQ

READY, HOLD

S , S1 0

COD/INTA
LOCK, HLDA

D – D15 0

RESET

CLK
VSS

VCC

CAP

The output of the decoded instruction queue is fed to a control circuit of the
execution unit. This unit is responsible for executing the instructions received from the decoded instruction
queue. The execution unit consists of the register bank, arithmetic and logic unit (ALU) and control block.
The register bank is used for storing the data as a scratch pad. The register bank can also be used as special-
purpose registers. The ALU is the core of the EU, and perform all the arithmetic and logical operations and
sends the results either over the data bus or back to the register bank. The control block controls the overall
operation of the execution unit.

The 80286 CPU family contains all the basic set of registers, instructions, and addressing modes of 8086.
The 80286 processor is upward compatible with the 8086, 8088, and 80186 CPU’s. In this section, operations
of registers are explained elaborately.

The 80286 base architecture has fifteen registers as depicted in Fig. 11.16. These registers can be grouped
into the four categories as given below:

 General-purpose registers

 Segment registers

 Base and index registers

 Status and control registers

Eight 16-bit general-purpose registers are used to store arithmetic
and logical operands. Four of these (AX, BX, CX, and DX) can be used either as 16-bit words or split into
pairs of separate 8-bit registers.

BYTE
ADDRESSABLE

Register Functions

MULTIPLY/DIVIDE
I/O INSTRUCTION

LOOP/SHIFT/REPEAT COUNT

BASE REGISTERS

INDEX REGISTERS

STACK POINTER

GENERAL PURPOSE REGISTERS

15 7

SP

DI

SI

BP

BX

CX

DX

AX

7 0 7

AH

DH

CH

BH

AL

DL

CL

BL

0

CS

15 0

DS

SS

ES

SEGMENT REGISTERS

EXTRA SEGMENT SELECTION

STACK SEGMENT SELECTION

DATA SEGMENT SELECTION

CODE SEGMENT SELECTION
015

F

IP

STATUS AND CONTROL
REGISTERS

STATUS WORD

INSTRUCTION

POINTER

(16-BIT REGISTER
NAMES SHOWN)

Four 16-bit special-purpose registers are used to select the segments of
memory that are immediately addressable for code, stack, and data.

Four of the general-purpose registers can also be used to determine
offset addresses of operands in memory. Usually, these registers hold base addresses or indexes to particular
locations within a segment. Any specified addressing mode determines the specific registers used for operand
address calculations.

The three 16-bit special-purpose registers are used of record
and control of the 80286 processor. The instruction pointer contains the offset address of the next sequential
instruction to be executed.

The flags word register records the specific characteristics of the result
of arithmetic and logical instructions. The flag register bits D0, D2, D4, D6, D7, and D11 are modified as per
result of the execution of arithmetic and logical instructions. These are called status flag bits. Bits D8 and D9
control the operation of the 80286 within a given operating mode and these bits are called control flags. The
flag register is a 16-bit register. Figure 11.17 shows the flag register of 80286 and the function of the flag bits
are explained below:

Set on high-order bit carry or borrow; cleared otherwise.

Set if low-order 8 bits of result contain an even number of 1bit; cleared
otherwise.

NESTED TASK

STATUS FLAGS

CARRY FLAGS

PARTY FLAG

AUXILIARY CARRY FLAG

ZERO FLAG

SIGN FLAG

OVERFLOW FLAG

CONTROL FLAGS

TRAP FLAG

INTERRUPT FLAG

DIRECTION FLAG

D
15

D
14 D

13
D

12
D

11 D
10

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

AFZFSFTFIFDFNT IOPL OF

D
0

PF CF
CF

I/O PREVILEGE

LEVEL

D
31

D
30

D
29 D

28 D
27 D

26
D

25 D
24

D
23

D
22 D

21 D
20

D
19 D

17
D

16D
18

PE PEMPEMTS

HATCHED BITS ARE

INTEL RESERVED

MACHINE

STATUS

WORD

TASK SWITCH

PROCESSOR EXTENSION EXTENSION

MONITOR PROCESSOR EXTENSION

PROTECTION ENABLE

Set on carry from or borrow to the lower-order four bits of AL; cleared otherwise.

Set if result is zero; cleared otherwise.

Set equal to high-order bit of result (0 if positive, 1 if negative).

Once set, a single-step interrupt occurs after the next instruction
executes. TF is cleared by the single step interrupt.

When set, maskable interrupts will cause the CPU to transfer
control to an interrupt vector specified location.

Causes string instructions to auto-decrement the appropriate index
registers when set. Clearing DF causes auto increment.

Set if result is a too-large positive number or a too-small negative number
(excluding sign-bit) to fit in destination operand; cleared otherwise.

Protection enable flag places the 80286 in protected mode, when PE is set. This can only
be cleared by resetting the CPU.

When MP is set, the monitor processor extension flag allows WAIT instruction to generate
a processor extension not present in the exception, i.e., exception number 7.

If EM is set, the emulate processor extension flag causes a processor extension absent
exception and permits the emulation of processor extension by CPU.

When TS set, this flag indicates the next instruction using extension will generate exception
7, permitting the CPU to test whether the current processor extension is for the current task.

The machine status word consists of four flags such as PE, MP,
EM and TS of the four lower-order bits D16 to D19 of the upper word of the flag register. The LMSW and
SMSW instructions are available in the instruction set of 80286 and these instructions are used to read and
write the MSW in real address mode.

The 80286 processor is available in 68-pin PLCC (Plastic Leaded Chip Carrier), 68-pin Ceramic LCC (Lead
Less Chip Carrier), and 68-pin PGA (Pin Grid Array) packages. In PLCC, conducting leads are provided for
external connections but in LCC, only conducting pads are provided in place of each pin. The pin diagram of
80286 for PLCC packages is depicted in Fig. 11.18. The pin functions of 80286 are briefly discussed below:

The CLK is the system clock input pin. The system clock frequency applied at this pin is
divided by two inside the 80286 to generate the processor clock. The internal divide-by-two circuits must be
synchronized with the external clock generator. The clock is generated using 82284 clock generator.

These are sixteen bidirectional data bus lines. The data bus inputs data during memory,
I/O and interrupt acknowledge read cycles. The data bus outputs data during memory and I/O write cycles.
The data bus is active high and floats to 3-state off during bus hold acknowledge.

These are the physical address output lines used to address memory or I/O port address or
I/O devices. A23–A16 are low during I/O transfers. A0 is low when data is to be transferred on pins D7–D0. The
address bus is active high and floats to tri-state off during bus hold acknowledge.

The bus high enable is an output signal and indicates that there is a transfer on the higher byte
of the data bus (D15–D8). Eight-bit oriented devices assigned to the upper byte of the data bus normally use
BHE, which is active low and floats to 3-state off during bus hold acknowledge.

 BHE A0 Function

 0 0 Word transfer

 0 1 Byte transfer on upper half of data bus D15-D8

 1 0 Byte transfer on lower half of data bus D7-D0

 1 1 Will never occur

These are bus cycle status signals. These signals are the active-low status output signals
which indicate initiation of a bus cycle. Along with M/IO and COD/INTA, these signals define the type of the
bus cycle as shown in Table 11.12.

The memory I/O select output signal differentiates memory operations from I/O operations.
If this signal is “1”, a memory cycle or a halt/shutdown cycle is in progress. If it is “0”, an I/O cycle or
interrupt acknowledge cycle is in progress.

The code/interrupt acknowledges output signal distinguishes instruction fetch cycle
from memory data read cycles. This signal also differentiates interrupt acknowledge cycles from I/O cycles.

COD / INTA M / IO S1 S0 Bus Cycle

0 0 0 0 Interrupt acknowledge

0 0 0 1 Will not occur

0 0 1 0 Will not occur

A
0

51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

68

1

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

52

1
1234567891011121314151617

44434241403938373635

18

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
45 46 47 48 49 50 51

52

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

A
1

A
2

CLK

V
CC

RESET

A
3

A
13

A
0

A
1

A
2

CLK

V
CC

RESET

A
3

A
13

A
1
4 A

2
1

A
2
2

A
2
3

V
S

S

P
E

A
C

K

N
.C

.

S
0

S
1

N
.C

.

B
H

L

B
H

L

N
.C

.

N
.C

.

S
1

S
0

P
E

A
C

K

A
2
3

A
2
2

V
S

S

A
2
1

A
1
4

PH NO. 1 MARX

CAP CAP

ERROR ERROR

BUSY BUSY

N.C. N.C.

N.C. N.C.

N.C.N.C.

INTR INTR

NMI NMI

Y
SS

Y
SS

PCRCO PCRCO

V
CC

V
CC

READY READY

HOLD HOLD

HLDA HLDA

COD/INTA COD/INTA

M/IOM/IO

LOCK LOCK

Y
S

S

D
0

D
S

D
1

D
S

D
2

D
1
0

D
P

D
1
1

D
4

D
1
2

D
5

D
1
4

D
1
5

D
1
3

D
6

D
7

Y
S

S

D
1

D
9

D
2

D
1
0

D
P

3

D
1
1

D
4

D
1
2

D
5

D
1
4

D
1
5

D
1
3

D
6

D
7

D
2

D
0

80286 80286

(Contd.)

0 0 1 1 None; not a status cycle

0 1 0 0 IF Al = 1 then halt; else shutdown

0 1 0 1 Memory data read

0 1 1 0 Memory data write

0 1 1 1 None; not a status cycle

1 0 0 0 Will not occur

1 0 0 1 I/O read

1 0 1 0 I/O write

1 0 1 1 None; not a status cycle

1 1 0 0 Will not occur

1 1 0 1 Memory instruction read

1 1 1 0 Will not occur

1 1 1 1 None; not a status cycle

This active-low output signal is used to indicate that the other system masters are not to
gain control of the system bus for the current and the following bus cycles. This signal is activated by LOCK
instruction prefix, or automatically by hardware during XCHG, interrupt acknowledge or descriptor table
access. LOCK is active low and floats to 3-state off during bus hold acknowledge.

This is an active-low input signal. It is used to terminate a bus cycle. Bus cycles are extended
without limit until terminated by READY low. This signal is neglected during HLDA cycle.

The hold request (HOLD) and hold acknowledge (HLDA) control ownership of the
local bus of 80286.

The HOLD input signal allows another local bus master to request control of the local bus. While the
control is granted, the 80286 will float its bus drivers to 3-state off and then activate the hold acknowledge
(HLDA) signal.

The local bus must be remain granted to the requesting master until HOLD becomes inactive so that
the 80286 deactivates HLDA and regains control of the local bus. This can terminate the hold acknowledge
condition. These signals are active high.

The interrupt request (INTR) signal requests the 80286 to suspend the execution of current
instruction and provide service to a pending interrupt request. Its function is just like that of INTR pin of 8086.

Whenever the interrupt enable bit in the flag word is cleared, interrupt requests are masked. When the
80286 responds to an interrupt request, it performs two interrupt acknowledge bus cycles to read an 8-bit
interrupt vector. INTR is active high and may be asynchronous to the system clock.

The non-maskable interrupt (NMI) request is an active-high, edge-triggered input signal. This
signal interrupts the 80286 with an internally supplied vector value of 2. No acknowledge cycles are needed
to be carried out. For proper recognition of NMI, this input signal must be previous low for at least four
system clock cycles and remain high for at least four system clock cycles.

The processor extension request and acknowledgement (PEREQ)
and acknowledge (PEACK) extend the memory management and protection capabilities of the 80286 to
coprocessor (80287 in case of 80286 CPU).

The PEREQ input requests the 80286 to perform a data-operand transfer for a processor extension. The
PEACK is an active-low output signal that indicates to the processor extension that the requested operand is
being transferred.

(Contd.)

The processor extension busy (BUSY) and error (ERROR) are active-low input
signals that indicate the operating conditions of a processor extension to 80286. When the BUSY becomes
low, 80286 stops the program execution and waits until the BUSY becomes inactive. During this time, the
processor extension is busy with its allotted job. After completion of the job, the processor extension drives
the BUSY input high indicating 80286 to continue with the program execution. An active ERROR input signal
causes the 80286 to perform the processor extension interrupt while executing the WAIT or ESC instructions.

A substrate filter capacitor, 0.047 μf, 12 V must be connected between this input pin and ground
to filter the output of the internal substrate bias generator. For correct operation of 80286 the capacitor must
be charged to its operating voltage. Till this capacitor charges to its full capacity, the 80286 may be kept
stuck to reset to avoid any spurious activity. A maximum dc leakage current of 1 μA is allowed through the
capacitor.

This pin is ground at 0 volts.

This pin is used to apply + 5 V power supply voltage of 80286.

The system RESET input clears the internal logic of 80286, and it is active high. Due to a
low to high transition on RESET, the 80286 may be reinitialized. For proper reinitialize, the active-high reset
input pulse width should be at least 16 clock cycles.

The 80286 has eight addressing modes for instructions to access operands from memory. The eight different
addressing modes are as follows:

 Register operand mode

 Immediate operand

 Direct mode

 Register indirect mode

 Based mode

 Indexed mode

 Based indexed mode

 Based indexed mode with displacement

The first two operating modes are related with the register and immediate operands. The remaining six
modes are provided to specify the location of an operand in a memory segment. A memory operand address
consists of two 16-bit components, namely, segment selector and offset. The segment selector is supplied by
a segment register either implicitly chosen by a segment override prefixes. The offset is determined by sum-
ming any combination of the following three address elements.

 The displacement (8- or 16-bit immediate value)

 The base (content of the BX or BP)

 Any carry out from the 16-bit addition is ignored; eight-bit displacements are sign extended to 16-bit
values

Combinations of these three address elements define the six memory addressing modes. All above modes
are explained in this section.

In this mode, the operand is located in one of the 8- or 16-bit general-
purpose registers.

In immediate operand mode, the operand is included in the instruction
itself.

In direct addressing mode, the operand’s offset is containing in the instruction as an 8- or
16-bit immediate displacement.

In register indirect addressing mode, the operand’s offset is stored in one of
the general-purpose registers or in SI, DI, BX or BP.

In this mode, the operand’s offset is computed after adding an 8- or 16-bit displacement
with the contents of a base register (BX or BP).

In index addressing mode, the offset is determined by adding a displacement with the
contents of an index register (SI or DI).

In this mode, the operand’s offset is calculated by the sum of the contents of a
base register and an index register.

In based indexed with displacement addressing mode,
the operand’s offset is obtained by adding an 8-bit or16-bit immediate displacement with contents of a base
register and an index register.

The 80286 directly supports seven types of data such as integer, ordinal, pointer, string, ASCII, BCD, packed
BCD, and floating-point types of data as given below:

It is a signed binary numeric value contained in an 8-bit byte or 16-bit word. All operations are
performed assuming 2’s complement representation of the operand. The signed 32 and 64-bit integers are
supported using the 80287 numeric data processor.

Ordinal is an 8-bit or 16-bit unsigned binary numeric value.

Pointer is a 32-bit quantity, composed of a segment selector component and an offset
component; each component is 16-bit word.

String is a contiguous sequence of bytes or words. A string may contain from 1 byte to 64 k bytes
or 32k words.

A byte representation of alphanumeric and control characters using ASCII standard of character
representation.

BCD represents decimal digits 0–9. All operations are performed based on decimal digits 0–9.

A byte representation of two decimal digits 0–9 storing one digit in each nibble of the byte.

A signed 32, 64 or 80 real-number representation.

The instruction sets of the 80286 processor are upwardly compatible with that of the 8086 processor. Most
of the instructions of 80286 are the same as the instructions of 8086. The additional instructions of 80286
processor are as follows:

 ARPL (Adjust RPL Field of Segment Selector)

 CLTS (Clear Task Switched Flag in CRO)

 LAR (Load Access Rights Byte)

 LGDT/LIDT (Load Global/Interrupt Descriptor Table Register)

 LLDT (Load Local Descriptor Table Register)

 LMSW (Load Machine Status Word)

 LOADALL (Load All Registers)

 LSL (Load Segment Limit)

 LTR (Load Task Register)

 SGDT (Store Global Descriptor Table Register)

 SIDT (Store Interrupt Descriptor Table Register)

 SLDT (Store Local Descriptor Table Register)

 SMSW (Store Machine Status Word)

 STR (Store Task Register)

 VERR/VERW (Verify a Segment for Reading or Writing)

In this section, all new instructions are explained elaborately with examples.

The ARPL instruction
enables the lower privileged routines to access higher privileged routines or data. The common format of
ARPL instruction is ARPL destination, source

This instruction compares the RPL bits of ‘destination’ against ‘source’. If the RPL bits of ‘destination’
are less than ‘source’, the destination RPL bits are set equal to the source RPL bits and the zero flag is set.
Otherwise, the zero flag is cleared. The example of ARPL instruction is

 register, register

The operation of CLTS instruction is to clear the task switched
flag of the status flag word. This instruction is a privileged instruction to be executed at the level 0 by the
operating system software.

When this instruction is executed, the access rights byte of the
descriptor associated with the source (Operand 2) as a selector is loaded into the higher byte of the destination
register (Operand 1) and the lower byte of the operand 1 is set to 00. The zero flag is set if the load operation
is successful. The format of LAR instruction is

LAR destination, source

The example of LAR instruction is LAR AX, 4000H.

This instruction loads a value from an operand into the
Global Descriptor Table (GDT) register. No flags are affected.

The format of LGDT instruction is

LGDT source

This instruction loads a value from an operand
into the Interrupt Descriptor Table (IDT) register. No flags are affected. The format of LIDT instruction is

LIDT source

The LLDT instruction loads a value from an operand
into the Local Descriptor Table Register (LDTR). This instruction is used by operating systems. No flags are
affected. The format of LLDT instruction is LLDT source. The example of LLDT instruction is

LLDT BP

This instruction loads the MSW from the effective
address of the operand. The example LMSW instruction is

LMSW BP; Load MSW from address DS:BP

This instruction loads the segment limit of a selector into the
destination register if the selector is valid and visible at the current privilege level. The zero flag is set, if
loading is successful. Otherwise, zero flag is cleared. The format of LSL instruction is

LSL destination, source

The example of LSL instruction is LSL AX, Selector or LSL register_16, register_16.

This instruction loads the current task register with the value
specified in ‘source’. No flags are affected. The format of LTR instruction is

LTR source

The example of LTR instruction is LTR [5000H]

This instruction stores the Global Descriptor Table
(GDT) register into the specified operand. No flags are affected. The format of SGDT instruction is

SGDT destination

This instruction stores the Interrupt Descriptor
Table (IDT) register into the specified operand. No flags are affected. The format of SIDT instruction is

SIDT destination

This instruction stores the MSW to the effective address
of the operand. A general protection error exception is generated, if the operand points to a write protected
segment or is if invalid memory reference. The stack-fault exception is generated for stack-segment limit
overrun. The example of SMSW instruction is

SMSW BP; Store MSW to address ES:BP

This instruction stores the current task register to the specified
operand. No flags are affected. The format of STR instruction is

STR destination

The example of STR instruction is STR [5000H]

A general protection exception is generated when there is an attempt of a write operation in a write
protected segment or an invalid memory reference. A stack-fault exception is generated for usual reasons.

The VERR instruction sets the zero flag if the segment pointed to by the
selector (a 16-bit register or a memory operand) can be read. The example of VERR instruction is VERR BP.

The VERW instruction sets the zero flag if the segment pointed to by the
selector (a 16-bit register or a memory operand) can be written. The example of VERW instruction is VERW
MEMORY.

This instruction modifies the stack for entry to procedure for high-
level language. This instruction which is used by most of the structured high-level languages requires two
operands. The format of Enter instruction is

ENTER locals, level

Operand ‘locals’ specifies the amount of storage to be allocated on the stack. ‘Level’ specifies the nesting
level of the routine. No flags are affected by this instruction. Paired with the LEAVE instruction, this is an
efficient method of entry and exit to procedures. The example of Enter instruction is

ENTER immed_16, immed_8

The operation of LEAVE is exactly the opposite operation
of ENTER instruction. This instruction is used with high-level languages to exit a procedure. When RET
instruction is executed after LEAVE, it returns the control to the calling program.

When this instruction is executed, the array index in
the source register is checked against upper and lower bounds in memory source. The format of BOUND
instruction is

BOUND source, limit

The first word located at ‘limit’ is the lower boundary and the word at ‘limit+2’ is the upper array bound.
When the source value is less than or higher than the source, Interrupt 5 occurs. None of the flags are affected.
The example of BOUND instructions are BOUND register_16, memory_32, and BOUND BX, memory_32

Memory_32 is a memory block starting address containing four bytes, two bytes for the starting index
and the other two for ending index.

This instruction copies bits 0–7 of the flags register
into AH. This includes flags AF, CF, PF, SF and ZF other bits are undefined.

AH: = SF ZF xx AF xx PF xx CF

When this instruction is executed, a 16-bit immediate data is
pushed to the stack after decrementing the stack pointer (SP) by 2. If the new value of SP is outside the
stack segment, a stack fault exception is generated. As the new segment reference is illegal, usually a general
protection exception is generated for a push operation. Flags are not affected after execution of PUSH IMD
instruction.

After execution of PUSH A instruction, the contents of AX, CX, DX, BX,
SP, BP, SI, and DI are pushed onto the stack. Hence the stack pointer (SP) is decremented by 16. As the
structure of the stack is Last In First Out (LIFO), the last pushed register contents appear first, in the stack
memory segment. During execution of PUSH A, if the stack segment limit is overrun, a stack fault exception
is generated. None of the flags are affected.

When this instruction is executed, the contents of the registers DI, SI, BP, SP, BX,
DX, CX and AX are popped from the stack in the sequence that is exactly opposite to that of pushing. No
flags are affected. Exceptions are exactly the same as PUSH A instruction.

When this instruction is executed, the content of AL is multiplied with a signed
immediate operand and the signed 16-bit result is stored in AX. The flags CF and OF are cleared, while the

AH is a sign extension of AL, else CF and OF are set. When the immediate operand is a signed 16-bit data, the
contents of AX is multiplied with signed 16-bit data and the signed result is stored in DX: AX combination,
with DX as MSB and AX as LSB. Other flags are undefined.

This is a group of four instructions such as RCL, RCR, ROL, and ROR.
These instructions work as in 8086, but an additional mode of count is allowed. In 8086, the count value is
either 1 or CL, but in 80286 the value can be an immediate count value 0 to 31 (decimal). After execution of
rotate instruction, only the OF and CF flags are changed.

When INS instruction is executed, a string of byte data or word from a variable
port address specified only in DX will be read. The port address may be of 16 bits. No flags are affected by
this instruction. The data string read by this instruction must be stored in memory at the address pointed by
ES:DI, in the sequence in which they were read. After execution of INS instruction, the DI is automatically
advanced depending upon the direction flag DF. The example of INS instruction is INSB ES:DI, DX.

When OUTS instruction is executed, a string of bytes or words from
the memory location specified by DS:SI will be write to a port pointed by DX. The SI is automatically
incremented by 1 for byte or incremented by 2 for word operations. The example of OUTS instruction is
OUTS DX, DS:SI.

The 80286 microprocessor operates in two different modes such as Real Address Mode and Protected Virtual
Address Mode (PVAM). In this section, the real address mode as well as virtual address mode are discussed.

In the real addressing mode of operation, 80286 executes a fully
upward-compatible instruction of the 8086 instruction set. It works
as a fast 8086. In real address mode, the 80286’s object code is
compatible with 8086 and 8088 software. In this addressing mode,
the 80286 addresses a contiguous array of up to 1 M (1,048,576
bytes) of physical memory using A19–A0 and BHE. The lines A23–
A20 should be ignored.

During addressing the physical memory of up to 1MB, the
80286 uses BHE along with A19–A0 in the real address mode. The
address bits A23–A20 will not be always zero in this mode. Hence
A23–A20 should not be used by the processor when the 80286 oper-
ates in real address mode. The 20-bit physical address is generated
in the same way as that in 8086. Figure 11.19 shows the address
calculation in real address mode.

The segment selector portion of the pointer is used as the
upper 16 bits of a 20-bit segment address. The lower four bits of
the 20-bit segment address are always zero. Therefore, segment
addresses begin on a multiple of 16 bytes. In this addressing mode, all segments are 64 kB in size and may
be read, written or executed. An exception or interrupt can occurs if data operands or instructions attempt to
wrap around the end of a segment.

15 0

15 0

0000

0000 OFFSET
OFFSET

ADDRESS

SEGMENT

ADDRESS

SEGMENT

SELECTION

ADDER

20-BIT PHYSICAL

MEMORYADDRESS

In real address mode, the 80286 reserves two fixed areas of
memory, namely, system initialization area and interrupt table
area. Memory locations from addresses FFFF0(H) to FFFFF(H)
are reserved for system initialization. The memory location from
00000(H) through 0003FF(H) are reserved for interrupt vectors
as depicted in Fig. 11.20.

The 80286 executes a fully upward-compatible superset of the
8086 instruction set in protected virtual address mode. The PVAM
operation of the 80286 processor provides memory management
and protection mechanisms and associated instructions.

The 80286 enters into protected virtual address mode from
real address mode when the PE (Protection Enable) bit of the machines status word is set with the execution
of LMSW (Load Machine Status Word) instruction. This operating mode also provides extended physical
and virtual memory address space, memory protection mechanisms and new operations to support operating
systems and virtual memory.

In this mode, 80286 provides a 1-gigabyte virtual address space per task mapped into a 16-megabyte
physical address space defined by the address pin A23–A0 and BHE. The virtual memory address space must
be larger than the physical address space since any use of an address that does not map to a physical memory
location will cause a restartable exception.

The protected mode uses a 32-bit pointer which consists of 16-bit selector and 16-bit offset components.
The selector specifies an index into a memory resident table rather than the upper 16 bits of a real memory
address. The 24-bit base address of the desired segment can be obtained from the tables in memory. The
16-bit offset will be added to the segment base address to form the physical address. Figure 11.21 shows the

Interrupt Pointer
For Vector 255

Reset Bootstrap Program
JUMP

Interrupt Pointer
For Vector – 1

Interrupt Pointer
For Vector – 0

FFFFFH

FFFF0H

003FFH

003FCH

00007H

00004H
00003H

00000H

Physical
Address
Adder

Segment Base
Address

Selector Offset

PHYSICAL MEMORY

MEMORY
OPERAND

SEGMENT
DESCRIPTION

SEGMENT
DESCRIPTOR

TABLE

SEGMENT

23 0

24-bit

Pointer

CPU

If S = 1, E = 1,

Code Segment

Base [15 : 0]

Lim [15 : 0]

PDPL S TYPE A Base [23:16]

Intel Reserved

0

+2

+4

+6

08 715

+1

+3

+5

+7

If S = 1, E = 0,

Data Segment

memory addressing in PVAM. The segment descriptor tables are referenced by the CPU whenever a segment
register is loaded with a selector. The memory-based tables hold 8-byte values called descriptors.

Descriptors state how to use the memory by the 80286 processor. Some special types
of descriptors are used to define new functions for transfer of control and task switching. The 80286 has
segment descriptors for code, stack and data segments. This processor also has system control descriptors
for special system data segments and control transfer operations. In this section, code and data segment
descriptors, system segment descriptors, gate descriptors, segment descriptor cache registers are explained.

The
code and data segment descriptors contain segment base addresses,
segment attributes including segment size up to 64 KB; access rights
such as read, read/write, execute, and execute/read; and presence in
memory for virtual memory system. Figure 11.22 shows the code
and data segment descriptors and access-rights byte definitions are
illustrated in Table 11.13.

Bit Position Name Function

7 Present (P) P = l Segment is mapped into physical memory

 P = 0 No mapping to physical memory exits, base and limit are not used.

6-5 Descriptor Segment privilege attribute used in privilege tests

 Privilege

 Level (DPL)

4 Segment S = l Code or data segment descriptor

 Descriptor(S) S = 0 System segment descriptor or gate descriptor

3 Executable (E) E = 0 Data segment descriptor type is

2 Expansion ED = 0 Expand up segment, offsets must be limit

 Direction ED = l Expand down segment, offsets must be > limit

1 Writable (W) W = 0 Data segment may not be written into

 W = 1 Data segment may be written into

3 Executable (E) E = l Code segment descriptor type is

2 Conforming (C) C = l Code segment may only be executed when

 CPL DPL and CPL remains unchanged.

1 Readable (R) R = 0 Code segment may not be read

 R = l Code segment may be read.

0 Accessed (A) A = 0 Segment has not been accessed
 A = 1 Segment selector has been loaded into segment register or used by
 selector test instructions.

The protected mode 80286 states
the system segment descriptors which contain a table of descriptors (Local descriptor table descriptor) and
segments which holds the execution state of a task (task state segment descriptor). Figure 11.23 shows the

system segment descriptor and system segment descriptor fields
are given in Table 11.14. This descriptor consists of 24-bit base
address of the segment and 16-bit limit. The access byte defines
the type of descriptor, its states and privilege level. Bit 4 of the
access byte is always 0 to indicate the system control descriptor.
The functions of P, DPL and Type (1–3) are given in Table 11.14.

Name Value Description

P 0 Descriptor contents are not valid

 1 Descriptor contents are valid

DPL 0-3 Descriptor privilege level

TYPE 1 Available Task State Segment (TSS)

 2 Local descriptor table

 3 Busy Task State Segment (TSS)

BASE 24-bit number Base address of special system data segment in real memory

LIMIT 16-bit number Offset of last byte in segment

The
gate descriptors are used to control the access to entry
points within the target code segment. There are four types
of gate descriptors such as call gates, task gates, interrupt

gates and trap gates. The gate descriptors provide
information regarding indirection between the source and
the destination of control transfer. Call gates are used to
change privilege levels. Task gates are used to perform a
task switch. The interrupt and trap gates are used to specify interrupt service routines. Figure 11.24 shows
the gate descriptor and the gate descriptor fields are depicted in Table 11.15. The gate descriptor consists of
a 16-bit destination selector, 16-bit destination offset and access byte format. The operation of access byte
format is given in Table 11.15.

Name Value Description

P 0 Descriptor contents are not valid

 1 Descriptor contents are valid

DPL 0-3 Descriptor privilege level

TYPE 4 Call gate

 5 Task gate

 6 Interrupt gate

 7 Trap gate

Word Count 0-31 Number of words to copy from callers stack to called procedures stack;

 only used with call gate

Destination Selector 16-bit selector Selector to the target code segment (Call, Interrupt of Trap Gate) selector

 to the target task state segment (Task Gate)

Destination Offset 16-bit offset Entry point within the target code segment

Base [15 : 0]

Lim [15 : 0]

PDPL 0 TYPE Base [23:16]

Intel Reserved

0

+2

+4

+6

08 715

+1

+3

+5

+7

Destination Selector [15 : 2]

P DPL 0 TYPE X X X Word Count [4 :0]

Intel Reserved

0

+2

+4

+6

08 715

+1

+3

+5

+7

X X

Destination Offset [15 : 0]

Figure 11.25 shows the segment descriptor cache
register which is assigned to each of the four segments registers, i.e., CS, DS, SS, and ES. The segment
descriptors are automatically loaded into a segment descriptor cache register, whenever the associated
segment register is loaded with a selector. Once segment descriptors are loaded into segment descriptor cache
registers, the segment of memory uses the cached descriptor information instead of accessing the descriptor.
The segment descriptor cache registers are invisible to programs.

Program Visible

Segment Selectors

Segment Registers
Loaded by Program

Segment Descriptor Cache Registers
Loaded by CPU

Program Invisible

Access Rights Segment Physical Base Address Segment Size

CS

DS

SS

ES

15 0
1547 4030 16 0

In the protected mode of 80286, the selector has three fields such as descriptor

entry index, local or global descriptor table indicator (TI), and
selector privilege (RPL) as shown in Fig. 11.26. The first two
bits D1–D0 are called requested privilege level RPL field. The
D2 bit states the descriptor table type. The index D15–D3 bits
are used to indicate descriptor base in the descriptor table. The
function of the fields is given in Table 11.16.

Bits Name Function

0-1 Request privilege level (RPL) Indicates selector privilege level desired

2 Table indicator (TI) TI = 0, use global descriptor table

 TI = 1, use local descriptor table

15-3 Index Select descriptor entry in table

The local and global descriptor tables contain all
descriptors accessible by a task at any given time. Actually, a descriptor table is a linear array of up to 8K
(8192) descriptors. The upper 13 bits of the selector field are an index into a descriptor table. Each descriptor
table has a 24-bit base register to locate the descriptor table in physical memory and it has a 16-bit limit
register which confines descriptor access to the defined limits of the table. Figure 11.27 shows the local and
global descriptor tables.

The Global Descriptor Table (GDT) contains descriptors available to all tasks. The Local Descriptor
Table (LDT) contains descriptors that can be private to a task. All tasks may have their private LDTs. The
GDT may contain all descriptor types except interrupt and trap descriptors. The LDT contains segment, task
gate, and call gate descriptors. A segment cannot be accessed by a task if its segment descriptor does not exist
in either GDT or LDT at the time of access.

Index

15

TI RPL

3 2 1 0

D
15

D
3
D
2
D
1

D
0

The LGDT (Load Global Descriptor Table) and LLDT (Load
Local Descriptor Table) instructions load the base and limit of the
GDT and LDT. The LGDT and LLDT are privileged, and these
instructions may only be executed by programs at privilege level 0.
The LGDT instruction loads a six-byte field containing the 16-bit
limit and 24-bit physical base address of the GDT as depicted in Fig.
11.27. The LLDT instruction loads a selector which refers to an LDT
descriptor containing the base addresses and limit as shown in Fig.
11.28.

In the protected mode, the 80286 processor has a third descriptor
table known as Interrupt Descriptor Table (IDT). The IDT can be used to define up to 256 interrupts. Figure
11.29 shows the Interrupt Descriptor Table. The IDT contains task gates, interrupt gates and trap gates. The
IDT has a 24-bit physical base and a16-bit limit register in the CPU. The privileged LIDT (Load Interrupt
Descriptor Table) instruction loads these registers with a 6-byte value in same way of the LGDT instruction.
Usually, the IDT entries are made through INT instructions, external interrupt vectors, or exceptions. The
IDT should have 256 bytes in size to allocate space for all reserved interrupts.

The 80286 processor can support a four-level hierarchical privilege system which
controls the use of privileged instructions and access to descriptors within a task. Figure 11.30 shows four-
level privilege mechanism. The privilege levels are numbered 0 through 3. Level 0 is the most privileged level
whereas Level 4 is the least privileged level. Privilege levels provide protection within a task. The operating

0

+2

+4

08 715

+1

+3

+5 Intel Reserved Base [23:16]

0 7 015

Base [15 : 0]

Limit [15 : 0]

GDT Limit

LDT Base
24-bit physical address

GDT Base
24-bit physical address

LDT Descriptor
Selector

LDT Limit

CPU

15 0

23 0

15 0

15 0

23 0

PHYSICAL MEMORY

GDT

LDT1LDT1

LDTn

Current
LDT

Increasing
Memory
Addresses

system routines interrupt handlers, and other system software can be protected from unauthorized accesses
within the virtual address space of each task using the four levels of privilege. Each task in the system has a
separate stack for each privilege levels. Tasks, descriptors, and selectors have a privilege level attribute that
can find out whether the descriptor may be used. The task privilege has an effect on the use of instructions
and descriptors. The descriptor and selector privilege only effect access to the descriptor.

The comparison between 8086 and 80286 is given Table 11.17.

IDT Base

Gate for
interrupt # n

IDT Limit

CPU

15 0

23 0

PHYSICAL MEMORY

LDT1

Interrupt
Description
Table

Increasing
Memory
Addresses

Gate for
interrupt # – 1n

Gate for
interrupt # 1

Gate for
interrupt # 0

High Speed
Operating system

Interfaces

Kernel
PL = 0
Most
Privilege

System Services

PL = 1

PL = 2

OS Extensions
PL = 3

Applications

CPU Enforced
Software Interfaces

8086 microprocessor 80286 microprocessor

Intel 8086 was developed in 1978 and it has about Intel 80286 was developed in 1983 by Intel and it is the

3000 different instructions for programming improved version of 80186, in the sense that it has faster

 instruction execution time, includes a few more

 instructions as compared to 80186

DMA channels, programmable interrupt controller, High-speed DMA channels, programmable interrupt

programmable timers, programmable chip select logic controller, programmable timers, programmable chip

are not incorporated in the 8086 processor select logic are incorporated in the 8086 processor

8086 has operating frequency of 5 to 10 MHz 80286 has an operating frequency 8 MHz to 12.5 MHz

8086 has no memory management capability 80286 has memory management capability that maps

 230(1GB) of virtual address

The 8086 has 20-bit address lines and can able to The 80286 has 24-bit address lines and can able to access

access 220 = 1MB memory. 224 = 16 MB memory.

8086 operates in real addressing mode 80286 operates in real mode as well as protected virtual

 address mode

8086 has arithmetic and logic instructions and numbers 80286 is compatible with all existing instructions of 8086

of instructions are more than 3000 and it has some new instructions.

Slow performance with respect to 80286. Power 80286 is a high-performance processor. Six times the

consumption is more than 80286 performance of the standard 8086. The power

 consumption is less than 8086

8086 is a 40-pin IC and available in plastic leaded chip 80286 is a 68 pin IC and available in plastic leaded chip

carrier (PLCC), ceramic leads chip carrier (LCC) and carrier (PLCC), ceramic leads chip carrier (LCC) and pin

pin grid array (PGA) packages. grid array (PGA) packages

PUSH and POP instructions are available in 8086 PUSH, POP and PUSH immediate instructions are

 available in 80286

IMUL instruction is available for signed multiplication IMUL instruction is available for signed multiplication

and its format is IMUL BL and its format is IMUL BX, CX, 22

8086 has no high-level instructions 80286 has three high-level instructions such as BOUND,

 LEAVE and ENTER

In case of 8086 to execute a rotate or shift instruction, In order to execute a rotate or shift instruction, the number

it will need more than 1000 cycles to complete and, of bits to shift is the count specified in the instruction

therefore, there is a long delay if an interrupt of highest modulo 32. This limits the number of shifts to 31. It

priority is requested requires less execution time compared to 8086.

In 8086, the LOCK signal can be initiated by a lock The LOCK signal in 80286 will not be activated until the

instruction prefix and is maintained until the end of the locked instruction starts its operand reference bus cycles

next instruction

The comparison between 80186 and 80286 is given Table 11.18.

80186 microprocessor 80286 microprocessor

Intel 80186 was developed in 1982 and it is the Intel 80286 was developed in 1983 by Intel and it is the

improved version of 8086, in the sense that it has improved version of 80186, in the sense that it has faster

faster instruction execution time, includes a few more instruction execution time, includes a few more

instructions as compared to 8086. instructions as compared to 80186.

80186 has an operating frequency of 8 MHz to 10 MHz. 80286 has an operating frequency of 8 MHz to 12.5 MHz.

80186 has no memory management capability. 80286 has memory management capability that maps

 230(1GB) of virtual address.

The 80186 has 20-bit address lines and is able to The 80286 has 24-bit address lines and can able to access

access 220 = 1MB memory. 224 = 16 MB memory.

80186 operates in real addressing mode. 80286 operates in real mode as well as protected virtual

 address mode.

80186 is compatible with all existing instructions of 80286 is compatible with all existing instructions of 80186

8086 and it has ten new instructions. and it has some new instructions

80186 is two times the performance of the standard 80286 is six times the performance of the standard 8086.

8086. The power consumption is less than 8086. The power consumption is less than 8086.

CAP is not available in the 80186 microprocessor. 80286 has a new pin CAP. An external capacitor is

 connected to the CAP pin for filtering the bias voltage.

The concepts of memory management, privilege and protection was introduced with 80286. The 16-bit
word length of 80286 provides limitations on its operating speed. But for advanced applications, technology
demanded high-speed machines with more powerful instruction sets incorporating all the features of 80286.
Subsequently, a CPU with a 32-bit word size and higher operating frequency and high speed of operation, has
been developed to overcome all the limitations of 80286. The new processor is called the 80386 processor.
This is the third-generation processor and is introduced by Intel in 1985. The features of 80386 processor are
as follows:

 The 80386 is a 32-bit microprocessor that can support 8-bit, 16-bit and 32-bit operands. It has 32-bits
registers, 32-bits internal and external data bus, and 32-bit address bus.

 Due to its 32-bit address bus, the 80386 can address up to 4GB of physical memory. The physical
memory of this processor is organised in terms of segments of 4 GB size at maximum.

 The 80386 CPU is able to support 16k number of segments and the total virtual memory space is 4
giga bytes x 16k = 64 terrabytes.

 It has a 16-byte prefetch queue.

 It is manufactured by Intel using 0.8-micron CHMOS technology.

 It is available with 275k transistors in a 132-Pin PGA package.

 It operates at clock speeds of 16 MHz to 33 MHz.

 This processor has memory management unit with a segmentation unit and a paging unit.

 It operates in real, protected and virtual real mode. The protected mode of 80386 is fully compatible
with 80286.

 The 80386 instruction set is upward compatible with all its predecessors.

 The 80386 can run 8086 applications under a protected mode in its virtual 8086 mode of operation.

 The 80386 processor supports Intel 80387 numeric data processor.

In this chapter, the architectural and operational features of 80386 are presented.

The simplified block diagram of the 80386 processor is depicted in Fig. 11.31, and Fig. 11.32 shows the
detailed architecture of 80386. The internal architecture of the 80386 processor consists of three different
sections such as Central Processing
Unit (CPU), Memory Management
Unit (MMU) and Bus Interface Unit
(BIU).

The central processing unit consists
of an Execution Unit (EU) and an
Instruction Unit (IU). The Execution
Unit (EU) has eight general-purpose
registers and eight special-purpose
registers. These registers are used for
handling data or calculating offset
addresses. The Instruction Unit (IU)
is used to decode the opcode bytes
received from the 16-byte instruction code queue and followed by arranging them into a 3-instruction decoded-
instruction queue. After decoding opcode bytes of instructions, information passes to the control section to
provide the necessary control signals. The barrel shifter increases the speed of all shifts and rotate operations.
The multiply or divide logic implements the bit-shift-rotate algorithms to complete the instruction operations
within minimum time. The 32-bit multiplications/divisions can also be executed within one microsecond by
the multiply/divide logic.

The Memory Management Unit (MMU) has a
Segmentation Unit (SU) and a Paging Unit (PU).

The segmentation unit uses two address components, namely, segment and
offset to relocate and sharing of code and data. The segmentation unit allows a maximum size of 4 GB
segments. The segmentation unit has four-level protection mechanisms to protect and isolate the system’s
code and data from the application programs. The ‘limit and attribute PLA’ is used to check segment limits
and attributes at segment level to keep away from invalid accesses to code and data.

The paging unit arranges the physical memory in terms of pages of 4 KB size each.
The paging unit always acts under the control of the segmentation unit and each segment is divided into
pages. The virtual memory is also arranged in terms of segments and pages by the memory management unit.
Usually, the paging unit converts linear addresses into physical addresses. The ‘control and attribute PLA’ is
used to check the privileges at the page level. Each page always maintains the paging information of the task.

Instruction Unit (IU)
Control
Unit
(CU)Registers

ALU

Execution Unit (EU)

Addressing
Unit (AU)

Bus Interface Unit (BIU)

Prefetch Queue

Data

Address

The bus interface unit interfaces the 80386 processor with memory and I/O
devices. To fetch instructions and transfer data from code fetcher unit, the processor provides address, data
and control signals through BIU. The code prefetch is used for fetching instructions from the memory while
BIU is not executing any bus cycle. The bus control section has a ‘request prioritizer’ to decide the priority
of the various bus requests. This section controls the bus access. The address driver is used for bus enable
signals BE3–BE0 and address signals A31–A0. The pipeline and bus size control units handle the related
control signals.

Projection
Test Unit

STATUS
FLAGS

Effective Address Bus

Effective Address Bus

32-Bit

32-Bit

32-Bit

32-Bit

32-Bit

Barrel
Shifter
Adder

MULTIPLY /
DIVIDE

Register
File

ALU

ALU
CONTROL

CONTROL

control
ROM

Decode and
Sequencing

Instruction
Decoder

3-Decoded
Instruction
Queue

INSTRUCTION
PREDECODE

32 – BIT

CODE
STREAM

INSTRUCTION
PREFETCHER

16 Byte
Instruction
CODE

Prefetcher
/ Limit
Checker

Dedicated ALU Bus

Execution Unit (EU) and Instruction Unit (IU)

D
is
p
la
c
e
m
e
n
t

B
u
s

L
in
e
a
r
A
d
d
re
s
s
B
u
s

C
o
d
e
F
e
tc
h
/
P
a
g
e
F
e
tc
h

P
h
y
s
ic
a
l
A
d
d
re
s
s
B
u
s

34-Bit

Limit and
Attribute
PLA

Description
Register

3-input
Adder

SEGMENTATION UNIT PAGING UNIT

Adder

Page
Cache

Control
And

Attribute
PLA

Memory Management Unit (MMU) Bus Interface Unit
(BIU)

BUS CONTROL

Request
Prioritizer

C
o
n
tr
o
l

Address
Driver

Pipeline /
Bus Size
Control

MUX /
Trans-
ceivers

D –D0 31

M/IO#, D/C#
WR#, LOCK#,
ADS#, NA#
Bs16#, READY#

BEO# – BE3#
A –A2 31

HOLD,
INTR,
NMI,
ERROR,
BUSY,
RESET,
HLDA

Internal Control Bus

The 80386 processor has significantly extended the 8086 register set. All the registers of 80286 are existing in
the 80386 processor and some new registers have been added in 80386. Generally, the registers of 80386 are
of 32 bits and they can be used as 8-bit and 16-bit registers. Figure 11.33 and Table 11.19 show the registers
of 80386.
The registers of 80386 are divided as general-purpose registers and special registers.

General-purpose registers are

 32-bit EAX, EBX, ECX, EDX, ESI, SDI, EBP, and ESP.

Special registers are

 – Segment (selector) registers 16-bit CS, DS, ES, SS, FS, and GS
 – 32-BIT EIP
 – EFLAGs

The IP of 8086 and 80286 can only support program segments of 64 KB but the EIP
register is able to support programs up to 4 GB. The CS register enables larger programs and its content can
be changed under program control. The instruction pointer cannot be written directly by the program. The IP
can be changed by execution of JUMP, CALL, RETURN and INTERRUPT instructions. For example, during
execution of FAR CALL and JUMP instructions, the values of CS as well as IP are changed to locate a new
physical memory location.

ECX

EAX

EBX

EDX

ESI

EDI

EBP

ESP

31 16 15 8 7 0

General Purpose Registers

ALAH

BLBH

CLCH

DLDH

SI

DI

BP

SP

Instruction Pointer

31 16 15 0

IPEIP

15 0

Segment Registers

CS

SS

DS

ES

FS

GS

EFLAG FLAG

EFLAG Register

31 16 15 0

Each program has a stack segment. In the 8086
microprocessor, the stack grows downward and the value of the stack pointer decreases with execution of
PUSH instruction and increases with execution of POP instruction. In the 80386 processor, when the data is
stored on the stack, the value of ESP is decreased by 4 as the 80386 always writes a complete double word or
4 bytes. If the 80386 operates in 16-bit mode, two bytes will be stored on the stack and the value of SP will
be reduced by 2 after each PUSH command.

The general-purpose registers is able to hold 8-, 16-, or 32-bit
data. The 8086 microprocessor has byte and word-sized registers, but the 80386 contains double-word sized
or extended registers. The 8- and 16-bit registers can be addressed just like the 8086 processor.

The AX, BX, CX, DX, SI, DI, BP, SP, FLAGS and IP registers are 16-bit registers and they have been
extended to 32 bits. A 32-bit register is called an extended register and it is represented by the register name
with prefix E. For example, a 32-bit register corresponding to AX is represented by EAX. Similarly, all 32-bit
general-purpose registers are represented by EAX, EBX, ECX, EDX, ESI, EDI. The other 32-bis registers are
EBP, ESP, EFLAGS, and EIP.

Besides the above 32-bit registers, the 80386 also provides 2 new 16-bit
segment registers such as FS and GS. Therefore, all segment registers of 80386 are CS, DS, ES, SS, FS, and
GS. The FS and GS registers are additional extra segment registers which allows access 6-different segments

in memory without reloading a segment register. In real-mode operation, segment registers contain a segment
address and in protected mode operation, they contain a selector just as in the 8086.

 32-bit 16-bit 8-bit
Name register register register Applications

Accumulator EAX AX AH, AL Multiplication, division, input/output and shifts

Base Register EBX BX BH, BL Pointer to base address in data segment

Count Register ECX CX CH, CL Counting, rotates and shifts

Data Register EDX DX DH, DL Multiplication, division, input/output

 32-bit 16-bit
Name register register Applications

Base Pinter EBP BP Pointer-to-base address in stack segment

Source Index ESI SI Index pointer and source string

Destination Index EDI DI Index pointer and destination string

Stack pointer ESP SP Stack operation

Instruction pointer EIP IP Instructions offset

Flag EFLAG FLAG Processor status

The 80386 processor has four 32-bit control registers: CR0–CR3. These
registers are used to hold global machine status. The load and store instructions are used to access these
registers. In 80386, these registers perform paged memory management, cache enable/disable and protected
mode operation. Figure 11.34 shows the control registers.

The 80386 has eight 32-bit debug registers DR7–DR0 for hardware
debugging as depicted in Fig. 11.34. Among the eight debugging registers, two registers DR5 and DR4 are
reserved by Intel. The first four registers DR3 to DR0 are used to store four program controllable breakpoint
addresses. The DR7 and DR6 hold breakpoint control and breakpoint status information respectively.

Two test registers TR6 and TR7 exist in the 80386 processor for page caching as
shown in Fig. 11.34. TR6 is known as test control and TR7 is called a test status register.

The 80386 has four system address registers to refer the descriptor
tables as shown in Fig. 11.34. The four different types of descriptor tables are Global Descriptor Table (GDT),
Interrupt Descriptor Table (IDT), Local Descriptor Table(LDT), Task State Segment descriptor (TSS).

The system address and segment registers are used to hold the addresses of descriptor tables GDT,
IDT, LDT and TSS and their respective segments. These registers are called GDTR, IDTR, LDTR and TR
respectively. The GDTR and IDTR are known as system address, but the LDTR and TR are known as system

segment registers.

The flag register of the 80386 is a 32-bit register as shown in Fig. 11.35. Among
these 32 bits, D31 to D18, D15, D5 and D3 are reserved by Intel and D1 is always 1. The lower fifteen bits of
flag register of 80386 are same as 80286. Only two flags are newly added to the 80286 flag register to get the
flag register of 80386. The two new flags are VM and RF flags.

This is the first bit in the extended EFLAGS register. It is used with the debug
register breakpoints. At the starting of each instruction cycle, the status of RF is always checked. If RF =
1, any debug fault will be ignored while executing any instruction. This flag is automatically reset after
execution of instructions except IRET and POPF.

STATUS FLAGS

CARRY FLAGS

PARTY FLAG

AUXILIARY CARRY FLAG

ZERO FLAG

SIGN FLAG

OVERFLOW FLAG

D
15

D
14

D
13 D

12
D

11
D

10
D

9
D

8
D

7 D
6 D

5
D

4
D

3
D

2
D

1 D
0

0 NT IOPL OF DF IF TF SF ZF 0 0AF PF 1 CF

NESTED TASK

I/O PREVILEGE

LEVEL

CONTROL FLAGS

TRAP FLAG

INTERRUPT FLAGS

DIRECTION FLAGS

D
31

D
20

D
19

D
18

D
17 D

16

RFVM

VIRTUAL MODE

RESUME FLAG

HATCHED BITS ARE

RESERVED FOR INTEL

GDTR

IDRT

GDT Base Address

IDT Base Address

LDT Base Address

TSS Base Address

LDTSS Selector

TSS SelectorTR

LDTR

15 0 31 0 19 0
Memory Management Registers

TR7

TR6

CR0

CR1

31 1615 0
Test Registers

CR2

CR3
31 1615 0

Control Registers

31 16 15 0
Debug Registers

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DR0

GDT Limit

IDT Limit

LDT Limit

TSS Limit

When this flag is set, the 80386 enters in the virtual 8086 mode within
the protected mode. If VF is set, 80386 operates in protected mode. When this flag is cleared or reset, the
80386 operates in real address mode.

The 80286 family has a sinking current of 2.0 mA but each output pin of the 80386 is capable of sinking
4.0 mA current for address and data buses or 5.0 mA for other connections. Therefore, there is significant
improvement in the current handling capability. Figure 11.36 shows the pin diagram of 80386 processor.

Address lines A31–A2 are used as the upper 30 bits of the 32-bit address bus.
These lines can address any memory locations of 1 GB x 32 memory in the 80386 memory system.

Al and A0 are encoded to generate BE3, BE2, BE1 and BE0.

The data bus D31–D0 are used to transfer data between the microprocessor and
memory and input/output devices.

HOLD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

1
0
0

9
9

9
8

9
7

9
6

9
5

9
4

9
3

9
2

9
1

9
0

8
9

8
8

8
7

8
6

8
5

8
4

8
3

8
2

8
1

8
0

7
9

7
8

7
7

7
6

TOP VIEW

HLDA
Vss

D0

Vss

NA#

READY#

Vcc

Vcc

Vcc

Vss
Vss

Vss
Vss

CLK2
ADS#

BLE#

A1
BHE#

NC
Vcc
Vss

M/IO#

D/C#
W/R# A2

A3
A4
A5
A6
A7

A8
Vcc

A9
A10
A11
A12

A13
A14
A15

Vss
Vss
Vcc

A16
Vcc

A17
A18

A19

A20

Vss

L
O
C
K
#

N
C

F
L
T
#

N
C

N
C

N
C

V
c
c

R
E
S
E
T

B
U
S
Y
#

V
s
s

E
R
R
O
R
#

P
E
R
E
Q

N
M
I

V
c
c

IN
T
R

V
s
s

V
c
c

N
C

N
C

N
C

N
C

N
C

V
c
c

V
s
s

V
s
s

D
1

D
2

V
s
s

V
c
c

D
3

D
4

D
5

D
6

D
7

V
c
c

D
8

D
9

D
1
0

D
1
1

D
1
2

V
s
s

V
c
c

D
1
3

D
1
4

D
1
5

A
2
3

A
2
2

V
s
s

V
s
s

A
2
1

The memory system of 80386 can be observed as a 4-byte wide
memory access mechanism. The four byte enable signals are BE3, BE2, BE1, and BE0. These signals are
used to enable four banks. These signals are generated by the microprocessor from address bits Al and A0 and
used to access 1 byte, 2 bytes or word, and 4bytes or double word of data simultaneously.

 The M/IO pin is used to select the memory and I/O related operations.
When it is logic level ‘1’, memory devices will be selected. If it is logic level ‘0’, I/O devices will be selected
for data transfer. During I/O operation, the address bus consists of a 16-bit I/O address.

The W/R signal is used to indicate the read and write bus cycles. When W/R = 1,
the current bus cycle is a write cycle. If W/R = 0, the current bus cycle is a read cycle.

This pin indicates that the 80386 issues a valid memory or I/O address
and the address bus and bus cycle pins W/R, D/C, M/IO and BE3–BE0 are holding their respective valid
signals.

 When RESET pin is high, the processor suspends the current operation and becomes reset.
Therefore, the processor restarts the execution from the starting memory location FFFFFFF0H.

The CLK2 input pin provides a clock signal for the operation of 80386 and the
clock frequency is two times of the operating frequency of the 80386.

The READY signal indicates that the previous bus cycle has been completed and the bus is
ready for the next bus cycle. This signal controls the number of WAIT states inserted into the bus cycle.
Usually, this signal is used for interfacing slow I/O devices with CPU.

When the LOCK output pin is at logic level 0, the bus lock prevents the other bus masters from
gaining control of the system bus. This signal is most frequently used during DMA accesses.

The D/C output signal indicates whether the current bus cycle is data
cycle, i.e., memory and I/O read or write cycles, or the current bus cycle is a control cycle, i.e., interrupt
acknowledge, halt or code fetch operations.

Bus size of 16 bits BS16 indicates the interfacing of 16-bit devices with the 32-bit wide 80386 data
bus.

The NA represents the Next Address input signal. When this signal is active low, it allows address
pipelining in the 80386 bus cycles.

The Hold request signal allows another bus master to request control of the local bus. This signal
is commonly used in DMA operation just like it did on the 8086 microprocessor.

 The Hold Acknowledge (HLDA) indicates that the 80386 processor has surrendered control of
its local bus to another bus master.

The Processor Extension Request (PEREQ) indicates that the 80387 arithmetic coprocessor has
data to transfer to the processor.

The BUSY input signal indicates that the math coprocessor is busy.

The Error input signal indicates that the math coprocessor has an error condition.

The Interrupt Request (INTR) pin is used as a maskable interrupt input. This pin will be masked
using the IF of the flag register.

The Non-maskable Interrupt (NMI) signal requests a nonmaskable interrupt just like the 8086
microprocessor.

This pin is connected to a +VCC system power supply.

System ground provides the 0 V connection. This pin is connected to a ground terminal of system
power supply.

The 80386 can operate in all the addressing modes which were available with the 80286 processor. The 80386
processor can also operate in all addressing modes of 80286 with 32-bit immediate or 32-bit register operands
or displacements. Besides all addressing modes of 80286, the 80386 has a family of scaled modes. In the
scaled modes, the index register values will be multiplied by a valid scale factor to get the final displacement.
The valid scale factors are 1, 2, 4 and 8. In this section, all scaled modes are briefly explained.

The content of an index register is multiplied by a scale factor 1, 2, 4 or 8 and
subsequently the computed value will be added to get the final operand offset. For example,

MOV ECX, [ESI*2]

MOV ECX, [ESI*4]

MOV ECX, [ESI*8]

The based scaled indexed mode instruction is the content of an index
register is multiplied by a scale factor and the computed value is added with the base register to find the offset.

MOV EAX, [EBX*2] [ECX]

MOV EBX, [EDX*4] [ECX]

MOV EAX, [EBX*8] [ECX]

The based scaled indexed mode with displacement
instruction is the content of an index register multiplied by a scaling factor and the computed value is added
with the content of base register and a displacement to obtain the address of an operand. The offset can be
expressed as

 Offset = Index Register × Scale factor + Displacement

and the 32-bit memory address is computed by

 [Base Register] + [Index Register] × Scale factor + [Displacement]

 The above expression can be expressed for different registers as given below:

1

2

4

0

8

EAX

EBX

ECX

ESP

EBP

ESI

EDI

EAX

EBX

ECX

ESP

EBP

ESI

EDI

bit dislacement

bit dislacement

bit dislacement
8

16

+ +

-

-

-

R

T

S
S
S
S
S
S
S
S
S
S

R

T

S
S
S
S
S
S
S
S
S
S

R

T

S
S
S
S
S

>

V

X

W
W
W
W
W
W
W
W
W
W

V

X

W
W
W
W
W
W
W
W
W
W

V

X

W
W
W
W
W

H

The example of based scaled indexed mode with displacement instructions are

MOV ECX, [ESI*2] [EBX+0111]

MOV ECX, [ESI*4] [EAX+0FFF]

MOV ECX, [ESI*8] [EBX+0400]

The 80386 processor is able to support the following data types:

 Bit

 Bit Field: A group of 4 bytes (32 bits)

 Bit String: A string of contiguous bits of maximum 4 GB in length

 Signed Byte: Signed byte data

 Unsigned Byte: Unsigned byte data

 Integer Word: Signed 16-bit data

 Long Integer: 32-bit signed data

 Unsigned Integer Word: Unsigned 16-bit data

 Unsigned Long Integer: Unsigned 32-bit data

 Signed Quad Word: Signed 64-bit or four word data

 Unsigned Quad Word: Unsigned 64-bit data

 Offset: 16 or 32-bit displacement used in any of the addressing modes

 Pointer: A pair of 16-bit selector and 16/ 32-bit offset

 Character: ASCII equivalent of any alphanumeric or control characters

 Strings: Sequences of bytes, words or double words; it contains minimum one byte and maximum
4 gigabytes

 BCD: Decimal digits (0–9) represented by unpacked bytes

 Packed BCD: Two packed BCD digits representing 00 to 99

The 80386 processor is able to operate in three different modes as given below:

 Real addressing mode,

 Protected mode, and

 Virtual 386 mode.

In this section, the above three modes are explained elaborately.

The 80386 always starts from the memory location FFFFFFF0H in the real address mode whenever the pro-
cessor is reset. In this mode, 80386 works as 8086 processor with 32-bit registers and data types. The address-
ing modes, memory size, interrupt handling of 80386 are same as the real address mode of 80286. Initially,
the 80386 starts with real mode and then prepares for protected mode operation. All the instructions of 80386
are available in this mode except protected address mode instructions. In this mode, the operand size is 16
bits by default. The 32-bit operands and addressing modes can be used with the help of override prefixes. In
this mode, the segment size is 64 k.

During real addressing mode, the 80386 can address up to 1 MB of physical memory using address lines
A19–A0. In this address mode, the paging unit is disabled so that the real addresses are the same as the physi-
cal addresses. To compute a physical memory address, the contents of the segment register are shifted left by

four bit positions and then added to the 16-bit offset address formed using one of the addressing modes just
like the 8086 real address mode. Figure 11.37 shows the physical address computation in real mode of 80386.
In real-mode operation of 80386, the segments can be read, written or executed. The segments in 80386 real
modes can be overlapped or non-overlapped.

In protected mode, the 80386 can able to address 4 gigabytes of physical memory and 64 terrabytes of virtual
memory. In this mode, the 80386 has capability to support all programs written for 80286 and 8086 and to be
executed. The controls of memory management and protection abilities of 80386 are possible in this operat-
ing mode. All additional instructions and addressing modes of 80386 feasible in protected mode.

In protected mode addressing, the contents of segment registers are used as selectors which can address
the segment descriptors. The segment descriptors consist of the segment limit, base address and access rights
byte of the segment. The effective or offset address is added with segment base address to determine linear
address. When the paging unit is disabled, the linear address is used as physical address. If the paging unit
becomes enabled, the paging unit converts the linear address into physical address. Figure 11.38 and Fig.
11.39 show the protected mode addressing without paging and with paging unit respectively. In general, the

15 0

19 0

OFFSETSEGMENT
ADDRESS

SEGMENT
SELECTION

0000
Physical
Address
Adder

OFFSET
ADDRESS

PHYSICAL MEMORY

MEMORY
OPERAND

SEGMENT
BASE

64 K Bytes
in Real Mode

47/31 31/15 0

Offset

SEGMENT
BASE ADDRESS

Segment Selector

Physical
Address
Adder

48/32-bit Pointer

PHYSICAL MEMORY

MEMORY
OPERAND

Segment Limit

Access Rights

Limit

Base Address

Up to 4 GB Bytes
in

Protected Mode

paging unit is a memory management unit which is enabled only in the protected mode. The paging mecha-
nism is able to handle memory segments in terms of pages of 4 KB size. Usually, a paging unit operates under
the control of segmentation unit.

The 80386 starts with real mode and then changes the operation from real mode to the protected mode
operation. To change the operation from real mode to the protected mode, the following steps must be
followed:

Step 1 Intialize the IDT so that it contains valid interrupt gates for at least the first 32 interrupt type num-
bers. Usually, IDT contains up to 256 8-byte interrupt gates to define all 256 interrupt type.

Step 2 Initialize the GDT so that it contains a null descriptor at Descriptor 0. The valid descriptors are used
for at least one code, one stack and one data segment.

Step 3 Switch to protected mode after setting the PE bit in CR0.

Step 4 Perform an intrasegment near JMP operation to flush the internal instruction queue and load the TR
with the base TSS descriptor.

Step 5 After that, load all the segment registers with their initial selector values.

Step 6 80386 operates in the protected mode using segment descriptors that are defined in GDT and IDT.

The function of the memory-management unit is to convert a linear address into physical address. This unit
uses paging mechanism to locate any physical address on memory.

The segmentation provides protection to different types of data and code. The
80386 has three types of segment descriptor tables as already exist in the 80286. But, there are some
differences between the 80386 and the 80286 segment descriptor structures. The three types of the 80386
segment descriptor tables are given below:

 Global Descriptor Table (GDT)

 Local Descriptor Table (LDT)

 Interrupt Descriptor Table (IDT)

47 31 0

OffsetSegment Selector

Physical
Address
Adder

48-bit Pointer

PHYSICAL MEMORY

Memory Operand

4 K Bytes

Access Rights

Limit

Base Address

Physical page80386 CPU
Paging

Mechanism

Physical
Address

Page Frame
Address

4 K Bytes

4 K Bytes

4 K Bytes

4 K Bytes

4 K Bytes

4 K Bytes

The registers used for descriptor tables GDT, LDT, and IDT are Global Descriptor Table register (GDTR),
Local Descriptor Table Register (LDTR) and Interrupt Descriptor Table register (IDTR) respectively. LGDT,
LLDT and LIDT instructions are used to load the three corresponding registers.

The descriptors of 80386 are a series of 8 bytes which is used to describe and locate a
memory segment. Figure 11.40 shows the structure of the 80386 descriptor. The 80386 segment descriptors
have a 20-bit segment limit and a 32-bit segment address. The descriptors of 80386 contain access right or
attribute bits along with the base and limit of the segments. The function of bits of segment descriptors is
given in Table 11.20.

31 24 23 22 21 20 19 16 15 14 13 12 11 9 8 7 0

7

3

Base [31 : 24] G D 0 AVL Lim [19:16] P DPL S Type A Base [23 : 16]

Lim [15 : 0]Segment Base [15 : 0]

Byte
Address

+4

0

Name Function

BASE (B31–B0) Base address of the segment

LIMIT (L19–L0) Length of the segment

P Present Bit

 P = 1 for Present, P = 0 for Not Present

DPL Descriptor privilege level from 0 to 3

S Segment descriptor

 S = 0 for System descriptor, S = 1 for Code or Data Segment Descriptor

TYPE Type of segment

A Accessed bit

G Granularity bit

 If G = 1, Segment length is page granular

 If S = 0, Segment length is byte granular

D Default operation size

 D = 1 for 32-bit segment, D = 0 for 16-bit segment

0 This bit must be ‘0’ for compatibility with other processors

AVL Available field for user or OS

The 80386 processor has five types of descriptors as follows:

 Code or data segment descriptors

 System descriptors

 Local descriptors

 TSS (Task State segment) descriptors

 GATE descriptors

The structures of the above descriptors are slightly different from the general segment descriptor struc-
ture of 80286. The 80386 also provides a four-level protection mechanism which is exactly in the same way
as the 80286 works.

The paging technique is most commonly used in the memory management
of 80386. The segmentation can divide the physical memory into different sizes of segments while the
paging divides the memory into fixed-size pages. Generally, the segments may be the logical segments
of the program, but the pages do not have any logical relation with the program. Actually, the fixed size
portions of the program module are called pages. The main advantage of the paging system is that it is not
required in the complete segment of a task in the physical memory at any time. But only some required pages
of the segments should be available in the physical memory for the execution. Subsequently, the memory
requirement for the specified task has been reduced, and the CPU can relinquish the available memory for
other tasks. When the remaining pages of the specified task are required for execution, these pages can be
fetched from the secondary memory storage devices. After execution of pages, it is not required to make
available the already executed pages in the memory. Therefore, the space occupied by the already executed
pages may be relinquished for other tasks. In this way the paging technique can be used to manage the
physical memory for multitasking operating systems. Figure 11.41 shows the complete paging mechanism.

Linear
Address

+ + +

OffsetDirectory Page

Page
Directory

Page
Tables

Control Registers

Memory Pages

31 22 21 12 11 0

31 0 31 0 31 0

CR0

CR1

CR2

CR3

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Table Address [31 : 12] OS reserved 0 0 D A 0 0 U/SR/W P

The paging unit of 80386 has a two-level table mechanism to convert the linear address
into a physical address. Firstly, the paging unit generates the linear addresses from the segmentation unit
then converts the linear addresses into physical addresses. After that, the paging unit converts the complete
memory map of a task into pages and the size of each page is 212 or 4 k. Actually, the paging unit handles each
task based on page directory, page tables and the page descriptor base registers.

The 32-bit linear address is stored at the control register CR2
at which the previous page fault can be detected. The control register CR3 is used as page directory which
is known as physical base address register. Hence, CR3 is used to store the physical starting address of the
page directory. The lower 12 bits of CR3 must be zero so that page size must be 4K and the page size must
be aligned with the directory.

The size of the page directory is 4 Kbytes. Each directory entry consists of four
bytes. Consequently, a total of 1K or 1024 entries are allowed in a directory. The example of a typical
directory entry is shown in Fig. 11.42. The upper 10 bits of the linear address are used as an index to the
equivalent page directory entry. The corresponding page directory entry is used to indicate the page tables.

The size of each page table is 4 Kbytes and each page table has a maximum 1024 entries.
Usually, the page table entries contain the starting address of the page and the information about the page.
Figure 11.43 shows the page table entry. Generally, the upper 20 bits of the page frame address of the page
table entry is combined with the lower
12 bits of the linear address. The address
bits A21–A12 of linear address are used to
choose the 1024 page table entries.

The P-bit can be used in
address translation. When P = 1, the entry can be used in address translation. If P = 0, the entry cannot be
used. The P-bit of the presently executed page is always high.

The User/Supervisor (U/S) bit and Read/Write (R/W) bit are used to provide the four
level protections as shown in Table 11.21. The level 0 has the highest privilege level, but the level 3 has the
lowest privilege level.

U/S R/W Permitted for privilege level 3 Permitted for privilege level 2, 1, 0

0 0 None Read Write

0 1 None Read Write

1 0 Read only Read Write

1 1 Read Write Read Write

The A-bit (access bit) must be set by the 80386 processor before accessing any page. If A = 1, the
page is accessed. When A=0, the page is not accessed.

The D-bit (Dirty bit) is set before a write operation to the page. The D-bit is undefined for page
directory entries.

The OS reserved bits are defined by the operating system.

Initially the paging unit gets a 32-bit linear address from the segmentation unit. Then the upper 20 bits of the
linear address (A31–Al2) are compared with the 32 entries in the translation look-aside buffer to find if any
matches exist with the 32 entries. Whenever it matches, the 32-bit physical address is computed from the
matching TLB entry and put on the address bus.

During the linear-addresses-to-physical-addresses conversion, each conversion process uses the two-
level paging and a certain amount of time is always wasted in the conversion process. To optimize conversion
process, a 32 entry or 32 × 4 bytes page table cache is used. This page table cache stores the just now accessed
32-page table entries. The page table cache is also called Translation Look-aside Buffer (TLB). When a linear
address is converted to a physical address, firstly check the page table cache entries to find the corresponding
address. Figure 11.44 shows the paging operation with TLB.

If the page table entry does not exist in TLB, the 80386 processor reads the page directory entry. After
that it checks the P-bit of the directory entry. When P = 1, the page table exists in the memory. Subsequently,
80386 uses the appropriate page table entry and sets the A bit (access bit). If P = 1 in the page table entry, it
is confirmed that the page is available in the memory. After that the 80386 processor updates the A and D bits
and accesses the page. Then upper 20 bits of the linear address will be read from the page table and will be

31 12 11 9 8 7 6 5 4 3 2 1 0

Page Frame Address [31:12] OS reserved 0 0 D A 0 0 U/SR/W P

stored in TLB for future access. If P = 0, the processor generates a page fault exception to indicate that page
protection rules are violated.

In real mode, 80386 is able to execute the
8086 programs along with all capabilities
of 80386. But once the 80386 processor
enters into the protected mode from real
mode, it cannot revert back to the real
mode without a reset operation. During
the protected mode of operation, 80386
processors confer a virtual 8086 operating
environment to execute the application pro-
grams of 8086. Therefore, the virtual mode
operation of 80386 provides an advantage
of executing 8086 programs although the
80386 processor is in protected mode.

The address computation mechanism
in virtual 80386 modes is same as 8086
real mode. In this mode, 80386 can address
1 Mbytes of physical memory, which will
be within the 4 Gbytes memory address of
the protected mode of 80386. The paging
mechanism and protection capabilities are
also available in this mode of operation. In
the virtual mode, the paging unit provides
256 pages, each of 4 Kbytes size. Each
of the pages will be anywhere within the
maximum 4 Gbytes physical memory. The 80386 can support multiprogramming; hence the multiple 8086
real-mode software applications can be executed at a time. Figure 11.45 shows the memory management in
virtual 386 modes in a multitasking virtual 8086 environment.

Linear
Address

Translation Look-side Buffer
(TLB)

32 Page Entries

Match

Physical Memory

Mismatch

Page Table

Page Directory

+

31 0 31 0

Page Directory
Root

8086 Virtual Mode Page Directory
Task – 1

Task – 1
Page Table

Empty

8086 OS

Page–1

Page – N

8086 Virtual Mode
Page Directory

Task – 2

Task – 1
Page Table

Empty

8086 OS

Page–1

Page – N

Physical Memory

Available

Available

Available

The 80386 processor can support all the instructions of 80286. Usually, the instruction sets of 80286 are
designed to operate with 8-bit or 16-bit data, but the same mnemonics may be executed with 8-bit, 16-bit, and
32-bit operands in the 80386 processor. Due to the enhanced architecture of 80386 over 80286, with addi-
tional general-purpose registers, segment registers and flag register, some new instructions were incorporated
in the instruction set of 80286, to get the instruction set of 80386. As scaled addressing mode is added with
80386 processor, the number of instructions of 80386 increased significantly. The newly added instructions
can be divided into the following functional groups as given below:

 Bit scan instructions

 Bit test instructions

 Conditional set byte instructions

 Shift double instructions

 Control transfer via gates instructions

The 80386 processor has two bit-scan instructions such as BSF (Bit-
Scan Forward) and BSR (Bit-Scan Reverse). The BSF and BSR instructions can scan the operand for a ‘1’
bit, without rotating the operand. The BSF instruction scans the operand from right to left whereas the BSR
instruction scans the operand from left to right. When a ‘1’ is encountered during the scan, a zero flag will be
set and the bit position of ‘1’ will be stored into the destination operand. If there is no ‘1’, zero flag is reset.

The 80386 CPU has four bit-test instructions, namely, BT (Test a Bit),
BTC (Test a Bit and Complement), BTS (Test and Set a Bit) and BTR (Test and Reset a Bit). The BT, BTC,
BTS and BTR instructions test the bit position in the destination operand which is specified by the source
operand. The carry flag is affected whenever the bit position of the destination operand satisfies the condition
specified in the mnemonics. If the bit position in the destination operand, specified by the source operand is
‘1’ for BT instruction, the carry flag is set, or else the carry flag is cleared.

The conditional set byte instructions can set all the operand
bits when the condition specified by the instruction is true. There are 16 conditional set byte instructions as
given in Table 11.22.

Instruction Function

SETO Set on with overflow

SETNO Set on without overflow

SETB/SETNAE Set on below/ Set on not above or equal

SETNB/SET AE Set on not below/ Set on above or equal

SETE/SETZ Set on equal/ Set on zero

SETNE/SETNZ Set on not equal/ Set on not zero

SETBE/SETNA Set on below or equal/ Set on not above

SETNBE/SET A Set on not below or equal/ Set on above

SETS Set on sign

SETNS Set on not sign

(Contd.)

SETP/SETPE Set on parity/ Set on parity even

SETNP Set on not parity/parity odd.

SETL/SETNGE Set on less/ Set on not greater or equal

SETNL/SET GE Set on not less/ Set on greater or equal

SETLE/SETNG Set on less or equal/ Set on not greater

SETNLE/SETG Set on not less or equal/ Set on greater

The shift double instructions shift the specified number of bits from
the source operand into the destination operand. The 80386 has two shift double instructions such as SHLD
(Shift Left Double) and SHRD (Shift Right Double). The SHLD instruction is used to shift the number of
bits specified in the instruction from the upper side. The SHRD instruction is used to shift the number of bits
specified in the instruction from the lower side. For example,

Instruction Function

SHLD EAX, ECX, 2 This instruction can shift 2 MSB bits of ECX into the LSB positions of

 EAX one by one starting from the MSB of ECX.

SHRD EAX, ECX, 6 This instruction is used to shift 6 LSB bits of ECX into the MSB positions of

 EAX one by one starting from the LSB of ECX.

The 80386 instruction set does not have any additional
instructions for the intrasegment jump. However, for intersegrrient jumps, it has got a set of new instructions
which are variations of the previous CALL and JUMP instructions, and are to be executed only in the
protected mode. These instructions are used by 80386 to transfer the control either at the same privilege or
at a different privilege level. Also, different versions of control transfer instructions are available to switch
between the different task types and TSS (Task State Segment). The corresponding RET instructions are also
available to switch back from the new task initiated via CALL, JMP or INT instructions to the parent task.

The comparison between 80286 and 80386 is given Table 11.23.

80286 microprocessor 80386 microprocessor

Intel 80286 was developed in 1983 by Intel and it is Intel 80386 was developed in 1985 using CHMOS III

the improved version of 80186. technology and it is the improved version of 80286.

80286 is a 16-bit processor. 80386 is the first 32-bit processor.

It is available with 134K transistors in a 68 Pin PGA It is available with 275K transistors in a 132-pin PGA

package. package.

80286 has operating frequency 8 MHz to 12.5 MHz. 80386 operates at clock speed of 16 MHz to 33 MHz.

The 80286 has a 16-bit data bus and a 24-bit address The 80386 has a 32-bit data bus and a 32-bit address bus.

bus.

The 80286 has 24-bit address lines and can able to The 80386 has 32-bit address lines and is able to address

access 224=16 MB of physical memory up to 232= 4 GB physical memory

The 80286 processor supports Intel 80287 numeric The 80386 processor supports Intel 80387 numeric data

data processor. processor.

The 80286 processor has a 6-byte prefetch queue. The 80386 processor has a 16-byte prefetch queue.

(Contd.)

Due to the increasing demand for more sophisticated processing capability in advanced applications, the
80387 numeric data processors became compulsory for processors. Subsequently, the designers developed
a new processor after incorporating the floating-point unit inside the CPU itself. The Intel 80486 is the first
processor with an in-built 80387 floating-point unit and it is developed in 1989 using CHMOS IV technology.
The features of the 80486 processor are given below:

 It has complete 32-bit architecture which can support 8-bit, 16-bit and 32-bit data types.

 8 KB unified level 1 cache for code and data has been added to the CPU. In advanced versions of the
80486 processor, the size of level 1 cache has been increased to 16 KB.

 The 80486 is packaged in a 168-pin grid array package. The 25 MHz, 33 MHz, 50 MHz and 100
MHz (DX-4) versions of 80486 are available in the market.

 Execution time of instructions is significantly reduced. Load, store and arithmetic instructions are
executed in just one cycle when data already exists in the cache.

 Intel 80486 operates at much faster bus transfers.

 This processor retains all complex instruction sets of 80386, and more pipelining has been intro-
duced to improve performance in speed.

 Floating-point unit is integrated with 80486 processor. Hence the delay in communications between
the CPU and FPU has been eliminated and all floating-point instructions are executed within very
few CPU cycles.

 For fast execution of complex instructions, the 80486 has a five-stage pipeline. Two out of the five
stages are used for decoding the complex instructions and the other three stages are used for execution.

 Clock-doubling and clock-tripling technology has been incorporated in faster versions of Intel 80486
CPU. These advanced i486 processors can operate in existing motherboards with 20–33 MHz bus
frequency, while running internally at two or three times of bus frequency.

 Power management and System Management Mode (SMM) of 80486 became a standard feature of
the processor.

The different variations of 80486 processors are manufactured, but two most common versions are
80486DX with integrated FPU and 80486SX without integrated FPU. The Intel 80486 microprocessor was
developed for speeds up to 100 MHz. AMD486 produced at 120 and 133 MHz versions of the 80486, and
also manufactured in small quantities the 150 MHz and possibly 166 MHz versions. In this section basic
architecture, pin functions of 80486 are explained.

The 80486DX is a 32-bit processor. Figure 11.46 shows the simplified block diagram of 80486 and the inter-
nal architecture of 80486 is depicted in Fig. 11.47. The architecture of Intel’s 80486 can be divided into three
different sections such as

 Bus interface unit (BIU),

 Execution and control unit (EU), and

 Floating-point unit (FU).

The bus interface unit is used to organize all the bus activities of the
processor. The address driver is connected with the internal 32-bit address output of the cache and the system
bus. The data bus transreceivers are interconnected between the internal 32-bit data bus and system bus. The
write data buffer is a queue of four 80-bit registers and is able to hold the 80-bit data which will be written to
the memory. Due to pipelined execution of the write operation, data must be available in advance. To control
the bus access and operations, the following bus control and request sequencer signals ADS, W/ R, D/ C,
M / IO, PCD, PWT, RDY, LOCK, PLOCK, BOFF, A20M, BREQ, HOLD, HLDA, RESET, INTR, NMI,
FERR and IGNNE are used.

The burst control signal updates the processor
that the burst is ready. This signal works as a ready signal in the burst cycle. The BLAST output shows that
the previous burst cycle is over. The bus size control signals BS16 and BS8 indicates dynamic bus sizing. The
cache control signals KEN, FLUSH, AHOLD and EADS are used to control the cache control unit.

The parity generation and control unit generates the parity and carries out the checking during the pro-
cessor operation. The boundary scan control unit of the processor performs boundary scan tests operation to
ensure the correct operation of all components of the circuit on the mother board.

The prefetcher unit fetches the codes from the memory and arranges them in a 32-byte code queue. The
function of the instruction decoder is to receive the code from the code queue and then decodes the instruction
code sequentially. The output of the decoder is fed to the control unit to derive the control signals, which are
used for execution of the decoded instructions. Before execution, the protection unit should check all protec-
tion norms. If there is in any violation, an appropriate exception is generated.

The control ROM stores a microprogram to generate control signals for execution of instructions. The
register bank and ALU are used for their usual operation just like they perform in 80286. The barrel shifter
is used to perform the shift and rotate algorithms. The segmentation unit, descriptor registers, paging unit,
translation look aside buffer and limit and attribute PLA are worked together for the virtual memory manage-
ment. These units also provide protection to the op-codes or operand in the physical memory.

The floating-point unit and register banks of FPU communicate
with the bus interface unit (BIU) under the control of memory management unit (MMU), through a 64-
bit internal data bus. Generally, the FPU is used for mathematical data processing at very high speed as
compared to the ALU.

Prefetcher
(32-byte
queue)

Floating
Point Unit (FPU)

Decoding
Unit (DU)

Control
Unit (CU)

Cache
(8K
bytes)

Register
and ALU

Paging
Unit (PU)

Segmentation
Unit (SU)

B
u
s
In
te
rf
a
c
e
U
n
it
(B
IU
)

Control Signals

Status Signals

A –A31 0

D –D31 0

R
e
g
is
te
r
F
ile

(R
F
)

B
a
rr
e
l
S
h
if
te
r

(B
S
)

A
ri
th
m
e
ti
c

L
o
g
ic

U
n
it
(A
L
U
)

B
a
s
e
/

In
d
e
x

B
u
s

S
e
g
m
e
n
ta
ti
o
n

U
n
it
(S
U
)

D
e
s
c
ri
p
to
r

R
e
g
is
te
r
(D
R
)

L
im
it
a
n
d

A
tt
ri
b
u
te

P
L
A

P
a
g
in
g

U
n
it
(P
U
)

T
ra
n
s
la
ti
o
n

L
o
o
k
-a
s
id
e

B
u
ff
e
r
(T
L
B
)

2
0
-B
it

P
h
y
s
ic
a
l

A
d
d
re
s
s

M
e
m

o
ry

M
a
n
a
g
e
m

e
n
t

8
K
B
y
te

C
a
c
h
e

2

P
C
D
,
P
W
T

C
a
c
h
e
U
n
it

1
2
8

3
2
-B
it

3
2
-B
it

3
2
-B
it

3
2
-B
it

6
4
-b
it

D
a
ta
b
u
s

3
2
-B
it3
2
-B
it

L
in
e
a
r
A
d
d
re
s
s
B
u
s

3
2
-b
it
D
a
ta
b
u
s

3
2
-b
it
D
a
ta
b
u
s

M
ic
ro
-I
n
s
tr
u
c
ti
o
n

D
is
p
la
c
e
m
e
n
t
B
u
s

3
2
-B
it

C
o
d
e
S
tr
e
a
m

2
4
-B
it

3
2
B
y
te

C
o
d
e
Q
u
e
u
e

2
×
1
6
B
y
te
s

P
re
fe
tc
h
e
r

In
s
tr
u
c
ti
o
n

D
e
c
o
d
e
r
(I
D
)

C
o
n
tr
o
l
a
n
d

P
ro
te
c
ti
o
n
te
s
t

U
n
it

C
o
n
tr
o
l

R
O
M

F
lo
a
ti
n
g

P
o
in
t
U
n
it
(F
P
U
)

F
lo
a
ti
n
g
P
o
in
t

R
e
g
is
te
r
F
ile

F
lo

a
ti
n
g

P
o
in

t
U

n
it

(F
P

U
)

E
x
e
c
u
ti
o
n

a
n
d

C
o
n
tr

o
l
U

n
it

B
u
s

In
te

rf
a
c
e

U
n
it

A
d
d
re
s
s
D
ri
v
e
rs

W
ri
te
B
u
ff
e
rs

4
×
8
0

D
a
ta
B
u
s

T
ra
n
s
c
e
iv
e
rs

B
u
s
C
o
n
tr
o
l

R
e
q
u
e
s
t
S
e
q
u
e
n
c
e
r

B
u
rs
t
B
u
s
C
o
n
tr
o
l

B
u
s
S
iz
e
C
o
n
tr
o
l

C
a
c
h
e
C
o
n
tr
o
l

P
a
ri
ty
G
e
n
e
ra
ti
o
n

a
n
d
C
o
n
tr
o
l

P
C
H
K
#

D
P
–
D
P

0
5

A
–
A

3
1

2

B
E
#
–
B
E
#

3
0

A
D
S
#

W
/R
#

D
/C
#

M
/I
O
#

P
C
D
,

P
W
T

R
D
Y
#

L
O
C
K
#

P
L
O
C
K
#

B
O
F
F
#

A
2
0
M
#

B
R
E
Q

H
O
L
D

H
L
D
A

R
E
S
E
T

IN
T
R

N
M
I

F
E
R
R
#

IG
N
N
E
#

B
R
D
Y
#
B
L
A
S
T
#

B
S

#
B
L
A
S
T
#

1
6

K
E
N
#

F
L
U
S
H
3

A
H
O
L
D
,
E
A
D
S

The registers of the 80486 processor are same as the 80386 processor, except for the flag register. Figure
11.48 shows the flag register. As compared to the flag register of 80386, the flag register of 80386 has only
one additional flag called alignment check flag or AC flag. The D18 position of the flag register is AC flag as
depicted in Fig. 11.48. When the AC flag bit is set to ‘1’, there is an access to a misaligned address and an
exception (fault) will be generated. The alignment faults are generated only at privilege level 3.

STATUS FLAGS

CARRY FLAGS

PARTY FLAG

AUXILIARY CARRY FLAG

ZERO FLAG

SIGN FLAG

OVERFLOW FLAG

D
15

D
14

D
13 D

12
D

11
D

10
D

9
D

8
D

7 D
6 D

5
D

4
D

3
D

2
D

1 D
0

0 NT IOPL OF DF IF TF SF ZF 0 0AF PF 1 CF

NESTED TASK

I/O PREVILEGE

LEVEL

CONTROL FLAGS

TRAP FLAG

INTERRUPT FLAGS

DIRECTION FLAGS

D
31

D
20

D
19

D
18

D
17 D

16

RFVM

VIRTUAL MODE

RESUME FLAG

HATCHED BITS ARE

RESERVED FOR INTEL

ALIGNMENT CHECK

The pin diagram of 168-pin PGA (Pin Grid Array) package 80486 is shown in Fig. 11.49 and the schematic
pin diagram of 80486 processor is depicted in Fig. 11.50. All signals of 80486 are grouped according to their
functions. Some of the most important groups of signals are explained in this section.

The CLK input signal provides the timing for the operation of 80486.

The address lines A31–A2 are used for selecting memory and I/O devices.

For memory and I/O addressing, byte enable signals BE3–BE0 are required. When the byte
enable signals BE3–BE0 are active-low, these indicate which byte of the 32-bit data bus is active during the
read or write cycle. For example, when BE0 = 0, the least significant byte is active. In the same way, if BE3 =
0, the most significant byte in 32-bit data is accessed.

The data lines D31–D0 are a bidirectional data bus. D31 is the most significant data bit and D0 is
the least significant data bit.

These pins are used to detect the parity during the memory read and write
operations.

The four data parity input/output pins are DP3–DP0. These pins are used to represent the
individual parity of 32 bits (4 bytes) of the data bus.

A B C D E F G H J K L M N P Q R S

A B C D E F G H J K L M N P Q R S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

D20 D19 D11 D9 Vss DP1 Vss Vss INC Vss Vcc Vss D2 D0 A31 A28 A27

D22 D21 D18 D13 Vcc D8 Vcc D3 D5 Vcc D6 Vcc D1 A29 Vss A25 A28

TCK Vss CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DP0 A3D A17 Vcc A23

D23 Vss Vcc A19 Vcc VOLDET

DP3 Vcc Vcc A21 A18 A14

D24 D25 D27 A24 Vcc Vss

Vss Vcc D26 A22 A15 A12

D29 D31 D28 A20 Vcc Vss

Vss Vcc D30 A16 Vcc Vss

INC SRESET A13 Vcc Vss

Vss Vcc A9 Vcc Vss

A5 A11 Vss

INC WB/ INC A7 A9 A10

TDH TMS A2 Vcc Vss

NMI HOLD PWT D/ HLDA BREQ A3 A6

INTR TDO RESET Vcc Vcc Vcc Vcc Vcc Vcc M/ Vcc A4

AHOLD Vss Vss Vss PCO Vss Vss Vss W/ Vss CLKMUL

SMI

UP

HITM CACHE SMIACT

WT

FEAR

IGNNE FLUSH A20W KEN BRDY BE2 BE0 C LOCK

BSE RDY BE1 IO PLOCK BLAST

EADS BS16 BOFF BE3 R PCHK ADS

STPCLK

PIN SIDE VIEW

The M/IO output pin is used to differentiate between memory and I/O operations.

The W/R output pin is used to differentiate between read and write bus cycles.

: This output pin can be used to differentiate between data and control operations.

32-BIT

ADDRESS

BUS

DATA BUS

CLK

32-BIT

DATA
D0-D31

BUS

CONTROL

INTERRUPT

SIGNALS

CACHE

INVALIDATION

CACHE

CONTROL

PAGE

CACHING

CONTROL

NUMERIC

ERROR

REPORTING

ADDRESS BIT

20 MASK

A20M #

IGNNE #

FERR #

PCD

PWT

FLUSH #

KEN #

EADS #

AHOLD

NMI

RESET

INTR

RDY #

ADS #

A2-A31

BE3 #

BE2 #

BE1 #

BE0 #

M/IO #

D/C #

W/R #

LOCK #

PLOCK #

HOLD

HLDA

BOFF #

BREO #

BRDY #

BLAST #

BS8 #

BS16 #

DP3

DP2

DP1

DP0

PCHK #

PARTY

BUS SIZE

CONTROL

BURST

CONTROL

BUS

ARBITRATION

BUS CYCLE

DEFINITION

BYTE

ENABLES

4
8
6
M
IC
R
O
P
R
O
C
E
S
S
O
R

This output pin is used to state that the current bus cycle is locked.

 The PLOCK (pseudo lock) output pin indicates that the current operation requires more than
one bus cycle to complete the task. This signal is at logic level 0 for arithmetic co-processor operations.

The ADS (address data strobe) output pin indicates that the address bus contains a valid memory
address.

 The RDY (ready) input pin acts as a ready signal and this signal is used for the current nonburst
cycle.

The BRDY (burst ready) input pin indicates the burst mode of memory read or memory operation.
During burst mode, the speed of memory access may be doubled compared to normal memory read/write
operations.

 When the BLAST (burst last) output signal is high, it indicates that CPU initiates the burst mode
of memory access. If this signal is low, it indicates that the burst bus cycle is completed and the BRDY signal
is next asserted for starting the next memory access operation.

The HOLD pin acts as a local bus hold input. This pin may be activated by another bus master
like DMA controller. This pin is functionally similar to the BREQ pin.

The HLDA output signal is used to acknowledge the receipt of a valid HOLD request.

When the BREQ (bus request) output signal is active-high, it indicates that the 80486 CPU has
generated a internal bus request.

 When the BOFF (back off) input pin is at logic level 1, 80486 CPU places its buses at hold state.
The active-high back off input signal forces the current bus master of 80486 CPU to release the bus in the
next clock cycle.

The INTR pin is a maskable interrupt input. It is controlled by the IF in the flag register.

This is a type-2 nonmaskable interrupt input.

The RESET input pin is used to reset the processor when it becomes high.

The KEN (cache enable) input pin is used to decide whether the current cycle is cacheable or not.

The FLUSH is a cache flush input signal. When this pin is activated, it clears the cache contents
and validity bits.

The AHOLD (address hold request) input signal enables other bus masters to use the 80486
system bus for a cache invalidation cycle.

The EADS (external address) input signal is used to indicate that a valid address for external bus
cycle is available on the address bus.

The PCD (page cache disable) output pin reflect the status of the PCD attribute bit in page table or
page directory entry.

The PWT (page write-through) output pin indicates the status of the PWT attribute bit in page
table or page directory entry.

The BS8 (bus size 8) input pin is used for the 8-bit dynamic bus sizing feature of 80486 and the
80486 can be interfaced with 8-bit external devices.

The BS16 (bus size 16) input pin is used for the 16-bit dynamic bus sizing feature of 80486 and
the 80486 can be interfaced with 16-bit external devices.

When the A20M (address bit 20 mask) input pin is activated, the 80486 masks the physical
address line A20 before performing any memory or cache cycle. This is very useful to wrap the physical
address space from 00FFFFH to 000000H as the 8086 microprocessor does and it works around the 1 Mbyte
memory size, i.e. physical memory space of 8086 in virtual 8086 mode.

The FERR output signal is activated whenever the floating point unit generates any error.

 When the IGNNE (Ignore Numeric Processor Extension) input pin is activated, the 80486
ignores the floating processor (FPU) errors and execute non-control floating-point instructions continuously.

 The test access is a unique facility, which is available in the 50 MHz
version 80486. The test access signals are used to check the fault conditions of the components on the
motherboard.

The TDI (test data) input of 80486 is the serial input pin which is used to shift the JTAG instructions
and data into components.

The TCK (test clock) input provides the basic clock signal, which is required by the boundary test
feature.

The TDO (test data output) pin is the serial output pin which is used to shift the JTAG instruction
and data out of components under test.

The TMS (test mode select) input is decoded by the JTAG TAP (tap access port) to select the
operation of this test logic.

The VCC pin is connected to +5 V power supply. There are 24 VCC pins in the 80486 processor.

Ground Lines

The VSS pin is connected to the ground terminal of power supply. There are 28 VSS pins in the 80486
processor.

The comparison between 80386 and 80486 is given Table 11.24.

80386 Microprocessor 80486 Microprocessor

Intel 80386 was developed in 1985 using Intel 80486 was developed by Intel in 1989 using CHMOS

CHMOS III technology and it is the improved IV technology and it is the improved version of 80386.

version of 80286.

It is available with 275K transistors in a 132-pin The 80486 is available with 1200K transistors packaged in

PGA package. a 168-pin grid array package.

80386 operates at clock speed of 16 MHz to 33 MHz. The 25 MHz, 33 MHz, 50 MHz and 100 MHz (DX-4)

 versions of 80486 are available in the market.

On-Chip cache is not available in 80386. 8 KB unified level-1 cache for code and data is available to

 the CPU. In advanced versions of the 80486 processor, the

 size of level 1 cache has been increased to 16 KB.

4.0 MIPS at 25 MHz. Most of the instructions 15.0 MIPS at 25 MHz. Most of the instructions require 1

require 2 CLK for execution. CLK for execution

The 80386 processor supports Intel 80387 numeric Numeric data processor (floating point unit) is integrated

data processor. There is no on-chip numeric data with the 80486 processor. Therefore the delay in

processor. communications between the CPU and FPU has been

 eliminated and all floating point instructions are executed

 with in very few CPU cycles.

The 80386 processor has a 16-byte prefetch queue. 80486 processor has a 32-byte prefetch queue.

The 80386 processor has no multiprocessing The 80386 processor has multiprocessing support

support capability. capability.

The 80386 has less power management capability The 80486 has 2–3 times more power management

compared to 80486. capability compared to 80386

There is no RISC feature in 80386. RISC feature is incorporated in 80486.

The alignment check (AC) flag does not exist in 80386. The Alignment Check (AC) flag exists in 80486.

 This chapter starts with an introduction of the 80186 microprocessor. The basic architecture, register
set, memory organisation, addressing modes, data types and instruction set of 80186 has been discussed
elaborately. The pin diagram of 80186 microprocessors and function of each pin have been discussed.

 The 80286 processor is an advanced, high-performance microprocessor with specially optimized capa-
bilities for multi-user and multitasking systems. The 80286 has built-in memory protection that sup-
ports the operating system and task isolation as well as program and data privacy. In this chapter, archi-
tecture features of 80286 such as register set, addressing modes, and data types are discussed in detail.
The pin descriptions, instruction set and memory management feature of the 80286 microprocessor are
also incorporated in this chapter.

11.1 80286 has
 (a) 24-bit address bus and 16-bit data bus
 (b) 14-bit address bus and 16-bit data bus
 (c) 16-bit address bus and 16 bit data bus
 (d) 16-bit address bus and 24-bit data bus.

11.2 The bus unit of 80286 has
 (a) 32-byte prefetch queue
 (b) 16-byte prefetch queue
 (c) 12-byte prefetch queue
 (d) 6-byte prefetch queue

11.3 Instruction unit of 80286 consists of
 (a) 6 decoded instruction queues
 (b) 3 decoded instruction queues
 (c) 2 decoded instruction queues
 (d) 1 decoded instruction queues

11.4 The format of a cache register is
 (a) 6-byte or 48-bit format
 (b) 5-byte or 40-bit format
 (c) 4-byte or 32-bit format
 (d) 3-byte or 24-bit format

11.5 The concept of memory management, privi-
lege and protection are incorporated in

 (a) 8088 (b) 8086
 (c) 80186 (d) 80286

11.6 80286 can be operated in
 (a) real mode only
 (b) protected virtual mode only

 (c) both real and protected virtual modes

 (d) virtual 8086 mode

11.7 80386Dx is a__________ processor

 (a) 16-bit (b) 24-bit

 (c) 32-bit (d) 64-bit

11.8 80386 has

 (a) 24-bit address bus and 16-bit data bus

 (b) 32-bit address bus and 32-bit data bus

 (c) 24-bit address bus and 32-bit data bus

 (d) 16-bit address bus and 32-bit data bus

11.9 80486 is the combination of

 (a) 80386 and 80387

 (b) 80386 and 80287

 (c) 80286 and 80387

 (d) 80286 and 80287

11.10 The memory management unit consists of

 (a) segmentation unit

 (b) paging unit

 (c) both segmentation unit and paging unit

11.11 The instruction prefetcher of 80386 proces-
sor consists of

 (a) 16-byte instruction code queue

 (b) 12-byte instruction code queue

 (c) 10-byte instruction code queue

 (d) 6-byte instruction code queue

 The first 32-bit processor is 80386 which was introduced after 80286. The internal architecture and
register set of the 80386 microprocessor are explained in this chapter. The signal descriptions, address-
ing modes, data types and instruction set of 80386 are discussed. The real address mode of operation
and protected virtual address mode of operation has been explained in detail. The paging unit, a new
feature of 80386 is also discussed elaborately along with the virtual 8086 mode of operation of 80386.

 With the increasing demand for more sophisticated processing capability in advanced applications, the
80387 numeric data processor has been incorporated with processors. The Intel 80486DX is the first
processor with an in-built 80387 floating-point unit. In this chapter, the basic features of 80486 proces-
sors are enlisted. The internal architecture, flag register and signal descriptions of 80486 processors are
discussed. The comparison between 8086 and 80186, 8086 and 80286, 80186 and 80286, 80286 and
80386, 80386 and 80486 are given in this chapter.

11.12 80386 can be operated in
 (a) real mode only
 (b) protected virtual mode only
 (c) real and protected virtual modes only
 (d) real, protected virtual mode and virtual

 8086 mode

11.13 The segmental unit allows maximum
 (a) 4 GB segment (b) 4 MB segment
 (c) 64 KB segment (d) 4 KB segment

11.14 The paging unit organises the physical mem-
ory in terms of pages of

 (a) 8 KB size page (b) 4 KB size page
 (c) 4 MB size page (d) 4 GB size page

11.15 The difference between the 80386 and 80486
flag register is

 (a) alignment check flag
 (b) virtual mode flag
 (c) resume flag
 (d) trap flag

11.1. Write the length of the address and data buses of the following processors:
 (i) 80186 (ii) 80286 (iii) 80386 (iv) 80486

11.2. What are the different registers of the 80186 microprocessor?

11.3. What are the different types of data supported by the 80186 microprocessor?

11.4. How many new instructions are available in 80186 with respect to 8086?

11.5. What are different features of the 80286 processor?

11.6. What are the different addressing modes of 80286?

11.7. Write the difference between Real Address Mode and Protected Virtual Address Mode (PVAM).

11.8. What are the different interrupts available in 80286?

11.9. What are the advantages the 80286 microprocessor with respect to the 8086 microprocessor?

11.11. Mention the three operating modes of Intel 80386 processor.

11.12. What do you mean by paging? What are the advantages of paging?

11.13. What are the difference between logical address, linear address and physical address?

11.14. What is translation look-aside buffer? How can it increase the speed of execution of programs?

11.15. What are the new features of 80486 over 80386?

11.16. What is the difference between flag register of 80486 and 80386?

11.1. Draw the block diagram of the 80186 microprocessor and explain its operation.

11.2. Explain memory organization of the 80186 microprocessor.

11.3. Write the functions of the following pins of 80186:
 (i) DRQ0, DRQ1 (ii) WR / OS1 (iii) LOCK (iv) DEN
 (v) RD / QSMD

11.4. Discuss the different addressing modes of 80186 microprocessor with suitable examples.

11.5. Explain the operation of the following instructions of 80186:
 (i) IMUL (ii) BOUND (iii) ENTER (iv) INS
 (v) OUTS

11.6. Write the difference between 8086 and 80186.

11.7. Draw the internal block diagram of the 80286 microprocessor and discuss its operation.

11.8. Draw and discuss the flag register of 80286.

11.9. What are different registers of 80286?

11.10. Explain the function of the following pins of 80286:

 (i) ERROR (ii) PEACK (iii) CAP (iv) COD / INTA
 (v) A23–A0

11.11. Write the operations of the following instructions of 80186:
 (i) ARPL (ii) VERR/VERW (iii) LAR (iv) LGDT/LIDT
 (v) SGDT (vi) SMSW

11.12. Discuss Real Address Mode and Protected Virtual Address Mode (PVAM) operation of 80286.

11.13. How is the physical address computed in Real Address Mode of 80286.

11.14. Explain the concept of virtual memory.

11.15. What do you mean by a descriptor? Discuss different types of descriptor supported by the 80286
and their applications.

11.16. Write short notes on the following:
 (i) Interrupt descriptor table (ii) Local and global descriptor tables
 (iii) Segment descriptor cache registers (iv) Privilege

11.17. What are the different addressing modes of 80286? How can the 80286 enter into PVAM ?

11.18. What are the different data types supported by 80286?

11.19. Show how the virtual to physical address translation takes place in 80286.

11.20. Give a list of features of 80386

11.21. Draw the internal block diagram of the 80386 microprocessor and discuss its operation in detail.

11.22. Draw the register set of 80386 processor and explain the operation of each register in brief.

11.23. Draw the flag register of the 80386 processor and discuss operation of each flag.

11.24. Explain the function of the following pins of 80386:
 (i) ADS# (ii) BE3#–BE0# (iii) W/R# (iv)D/C#
 (v) LOCK (vi) BS16 (vii) M / IO (viii) D31–D0

11.25. Write short notes on the following:
 (i) Segment descriptor registers (ii) Control registers
 (iii) System address registers (iv)Debug and test registers

11.26. Discuss the different addressing modes of 80386.

11.27. What are the different operating modes of 80386? Explain how physical address is commutated in
real mode of 80386.

11.28. Explain the paging mechanism of the 80386 processor in detail.

11.29. Discuss the procedure of conversion of a linear address into a physical address.

11.30. Explain the operation of the following instructions of 80386:
 (i) Bit-scan instructions (ii) Bit-test instructions
 (iii) Conditional set byte instructions (iv) Shift double instructions

11.31. Discuss the virtual 8086 mode of the 80386 processor.

11.32. Draw the internal block diagram of the 80486 microprocessor and explain briefly.

11.33 Write the difference between
 (i) 8086 and 80186 (ii) 8086 and 80286 (iii) 80186 and 80286
 (iv) 80286 and 80386 (v) 80386 and 80486

11.34 Enlist different architectural advancement in 80486 over 80386.

11.35 Write the different functional groups of signals of 80486 and explain each functional group signals
briefly.

 11.1 (a) 11.2 (d) 11.3 (b) 11.4 (a) 11.5 (d) 11.6 (b) 11.7 (c) 11.8 (b) 11.9 (a)

 11.10 (c) 11.11 (a) 11.12 (d) 11.13 (a) 11.14 (b) 11.15 (a)

After the development of the 80486 processor in 1989, Intel started to work on the next generation of pro-

cessors and in 1993, Intel developed the fifth-generation processor 80586 (P5) known as Pentium processor.

The name Pentium was derived from the Greek word pente, meaning ‘five’, and the Latin ending -ium. The

term ‘Pentium processors’ refers to a family of microprocessors which can share a common architecture and

instruction set. Since 1993, various versions of Pentium processors have been evolved incorporating new

features. The features of the Pentium processor are as follows:

 5 V processor fabricated in 0.8-micron Bipolar Complementary Metal Oxide Semiconductor

(BiCMOS) technology

 Runs at a clock frequency of 60 MHz or 66 MHz and has 3.1 million transistors

 Two independent integer pipelines and a floating-point pipeline

 Branch prediction

 Compatibility with 80386 instructions through a microprogrammed CISC unit

 Separate code anda caches

 Wider 64-bit data bus with pipelined burst mode for quicker cache line fills and write backs

 Memory management unit for paging

 System management to implement power-save functions

 Compatibility with all x 86 and x 87 predecessors

 Dual processor support with on-chip Advanced Programmable Interrupt Controller (APIC)

The Pentium is a 32-bit processor, but it has a 32-bit address bus and a 64-bit data bus. This processor’s data

bus serves the on-chip caches, but not the 32-bit registers. The internal and external data buses are connected

through the caches. Figure 12.1 shows the internal architecture of the Pentium processor which consists of

8K byte code cache, 8K byte data cache, Translation Look-aside Buffer (TLB), Branch Trace Buffer (BTB),

Integer pipelines U and V, floating-point pipeline, Microcode ROM, and Control Unit (CU).

There are separate code and data caches, and the cache line size is 32 bits

just like the 80486 processor. Each cache is connected with its own Translation Look-aside Buffer (TLB).

Therefore, the paging unit of the Memory Management Unit (MMU) can rapidly convert linear code or data

addresses into physical addresses. Due to two separate caches, the pre-fetches cannot conflict with data

access cycles.

Branch prediction consists of a Control Unit (CU) and a Branch Trace Buffer

(BTB). The function of control unit and Branch trace buffer are as follows:

The BTB is used to store the target address and statistical information

about the branch operation. Hence, the branch prediction is able to predict branches and cause the Pentium to

use the most likely target address for instruction fetching. Pipeline freeze up caused by pipeline flushes and

the subsequent fetching operations are reduced and the program execution is accelerated.

The control unit

controls the five-stage integer pipelines U

and V, and the eight-stage floating-point

pipeline. In the Pentium processor, the

integer pipelines are used for all instructions

which are not involved in any floating-

point operations. Therefore, the Pentium

can transmit two integer instructions in the

same clock cycle and performance of the

processor is improved. This method is called

superscalar architecture. Figure 12.2 shows

the superscalar organization of the Pentium

processor.

The first four stages of the floating-point

pipeline overlap with the U pipeline and the

32-bit Address Bus 64-bit Data Bus

Pentium

Bus Interface Unit

TLB
Data Cache
8 K bytes

Control Unit

Code Cache
8 K bytes TLB BTB

Prefetch Buffer

Instruction Decode

V pipeline U pipeline

Register Set Divider

Adder

Multiplier

Floating Point
Pipeline

Microcode
ROM

Decode instruction and
generate control word (D1)

Pipeline U

Decode instruction and
generate control word (D1)

Pipeline V

Decode control word
and generate memory

address ()D2

Decode control word
and generate memory

address ()D2

Access Data Cache and
Calculate ALU result ()EX

Access Data Cache and
Calculate ALU result ()EX

Write Back Result ()WB Write Back Result ()WB

Instruction fetch () or Prefetch ()IF PF

P
ip
e
lin
e
U

P
ip
e
lin
e
V

parallel operation of the integer and floating-point pipelines is possible only under some specified condi-

tions. If the operating clock frequency of Pentium is same as 80486, the Pentium floating-point unit is able

to execute floating-point instructions 3 to 5 times faster than 80486. This is possible as a hardware multiplier,

divider and quicker algorithms are incorporated in the microcode floating-point unit.

The Pentium has a microcode support unit to support complex functions. The support unit controls the

pipelines with the microcode. Actually, this unit uses both pipelines together. Therefore, complex microcode

instructions run very fast on a Pentium than on a 80486.

The Pentium is a superscalar processor and it has two integer pipelines, called U and V. The process of issuing

two instructions in parallel is known as pairing.

The U-pipeline is able to handle the full instruction set of the

Pentium but the V-pipeline has limited handling capability. The

V-pipeline is able to handle only simple instructions without any

microcode support. The V-pipeline is used to execute ‘simple inte-

ger instructions’ such as load/store type instructions and the FPU

instruction FXCH, but the U-pipeline executes any legitimate Pentium

instructions. Actually, Pentium processors use a set of pairing rules to

select a simple instruction which can go through the V pipeline. When

instructions are paired, initially the instruction is issued to the U-pipe

and then the next sequential instruction is issued to the V-pipe.

There are two integer pipelines and a floating-point unit in the

Pentium processor. Figure 12.3 shows an integer pipeline. Each integer

unit has the basic five-stage pipeline as given below:

 Prefetch (PF)

 Decode-1 (D1)

 Decode-2 (D2)

 Execute (E)

 Write Back (WB)

In the prefetch stage of integer pipeline of the Pentium processor, instructions are

fetched from the instruction cache as instructions are stored initially in the instruction cache. After fetching,

the CPU aligns the codes properly. As the instructions are of variable lengths, the initial opcode bytes of each

instruction must be properly aligned. After completion of the prefetch stage, the decode stages D1 and D2

will be executed.

In the decode-1 (D1) pipeline stage, the CPU decodes the instruction and generates

a control word. The D1 pipeline stage has two parallel instruction decoders. These implement the pairing

rules. Only a single control word may be sufficient to start execution of the data transfer, arithmetic and

logical operations in RISC processor. This processor supports complex CISC instructions with the help of

microcoded control sequencing.

The decode-2(D2) pipeline stage is required whenever the control word from D1

stage is decoded to complete the instruction decoding. In this stage, the CPU generates addresses for data

memory.

Instruction fetch (IF) or Prefetch (PF)

Decode instruction and
generate control word ()D1

Decode control word and
generate memory address ()D2

Access Data Cache and Calculate
ALU result ()EX

Write Back Result ()WB

The execution stage is used for both ALU operations and data cache access. The data

cache is used for data operands and ALU performs arithmetic logic computations or floating-point operations.

In the execution stage, all U-pipe and V-pipe instructions, except conditional branches, are verified for correct

branch prediction. A microcode is designed to use both the U and V pipes. Therefore, microcode instructions

are executed faster on the Pentium than on the 80486.

The final stage of the five-stage pipeline is Write Back (WB). In the WB stage,

the CPU updates the contents of registers and status of the flag register after completion of execution. In this

stage, the V-pipeline conditional branch instructions are verified for correct branch prediction.

The Pentium pipeline structure is similar to 80486 pipeline structure. Usually, the 80486 takes two clock

cycles to decode instructions, but the Pentium processor takes only one clock cycle as Pentium processor has

an additional integrating hardware in each pipeline stages to speed up the process.

The Pentium processor architecture has been designed based on Superscalar. In Superscalar architecture, two

instructions are executed in parallel. Figure 12.2 shows the superscalar architecture. Two independent integer

pipelines are depicted in Fig. 12.2. In the PF and D1 stages, the microprocessor can fetch, instructions decode

instructions and generate control words. In this stage, decoded instructions issue them to two parallel U and

V pipelines. For complex instructions, D1 generates microcoded sequences for U and V pipelines. Several

techniques are used to resolve the pairing of instructions.

The 80486DX CPU is the first processor in which the 80387 math co-processor has been incorporated on-

chip to reduce the communication overhead. The 80486 CPU contains a floating-point unit, but this floating-

point unit is not pipelined. The Pentium processor has been designed for incorporating on the chip numeric

data processor. The Floating-Point Unit (FPU) of Pentium has an eight-stage pipeline as shown in Fig. 12.4.

The eight pipeline stages are

 Prefetch (PF)

 Decode-1 (D1)

 Decode-2 (D2)

 Execute (dispatch)

 Floating Point Execute-1 (X1)

 Floating Point Execute-2 (X2)

 Write Float (WF)

 Error Reporting (ER)

The first five stages of the pipeline are similar to the U and V integer pipelines. During the operand fetch

stage, the FPU fetches the operands either from the floating-point register or from the data cache. The float-

ing-point unit has eight general-purpose floating point registers. There are two execution stages in Pentium

such as the first execution stage (X1 stage) and the second execution stage (X2 stage). In the X1 and X2

stages, the floating-point unit reads the data from the data cache and executes the floating-point calculation.

The prefetch stage is same as the integer pipeline of Pentium processor.

The decode-1 (D1) pipeline stage is also same as the integer pipeline of Pentium

processor.

The decode-2 (D2) pipeline stage is worked as required whenever the control

word from D1 stage is decoded to complete the instruction decoding. In this stage, it is the integer pipeline

of Pentium processor.

During the execution stage (E), the floating-point unit accesses the data cache

and the floating-point register to fetch operands. Before writing the floating-point data to the data cache, the

floating-point unit converts internal data format into appropriate memory representation format.

In the Floating Point Execute-1 (X1) stage, the floating-point

unit executes the first steps of the floating-point calculations. While reading the floating-point data from the

data cache, the floating-point unit writes the data into the floating-point register.

During the Floating Point Execute-2 (X2) stage, the Floating

Point unit execute the remaining steps of the floating-point computations.

In the Write Float (WF) stage, the floating-point unit completes the execution

of the floating-point calculations and then writes the computed result into the floating-point register file.

In the error reporting(ER) stage, the floating-point unit generates a report

about the internal special situations and updates the floating point status.

The floating-point unit of Pentium consists of a dedicated adder, multiplier and division units. All inde-

pendent circuits are used to perform addition, multiplication, division and other mathematical operations

within very few clock cycles.

The block diagram of the floating-point unit is depicted in Fig. 12.5. There are five segments such as

Floating-point Adder Segment (FADD), Floating-point Multiplier Segment (FMUL), Floating-point Divider

Decode instruction and
generate control word (D1)

Pipeline U

Decode instruction and
generate control word (D1)

Pipeline V

Instruction fetch () or Prefetch ()IF PF

Decode control word and
generate memory address

()D2

Access Data Cache and
Calculate ALU result ()EX

Decode control word and
generate memory address

()D2

Access Data Cache and
Calculate ALU result ()EX

X1 X1
X2

WF

ER

Adder

Multiplier

Divider

Floating Point Unit (FPU)

Register stack
ST (0) – ST (7)

Segment (FDIV), Floating-point Exponent Segment (FEXP) and Floating-point Rounder Segment (FRD)

in the floating-point unit of Pentium processors. These segments are used to perform five different floating-

point computations. In this section, the functions of the above segments are discussed.

The floating-point adder segment is used for

addition of floating- point numbers and execution of floating-point instructions such as addition, subtraction

and comparison. During X1 and X2 stages of the pipeline, the FADD segment is active and executes floating-

point instructions based on single-precision, double-precision and extended precision data.

The floating-point multiplier segment executes

floating-point multiplication in single-precision, double-precision and extended precision modes.

This segment performs the floating-point division

and executes square-root instructions.

The floating-point exponent segment calculates

the floating-point exponent. This segment communicates with all other floating-point segments for proper

adjustment of mantissa and exponent fields in the final stage of a floating-point computation.

After the floating-point addition or division

operations, it is required to round off the computed results before write back to the floating-point registers.

The floating-point rounder segment is used to perform the round-off operation before write-back stage.

There are six possible floating-point exceptions in Pentium processors during integer arithmetic computa-

tions. The six different floating-point exceptions are divide by zero, overflow, underflow, denormal oper-

and and invalid operation. The divide-by-zero exception, invalid operation exception and denormal operand

exception may be detected before the actual floating-point computation.

Floating Point
Exponent ()FEXP

Floating Point
Adder ()FADD

Floating Point
Divider ()FDD

Floating Point
Multiplier ()FMUL

Floating Point Rounder
()FRD

Floating Point Rounder
()FRD

The Safe Instruction Recognition (SIR) mechanism is used in a Pentium processor to determine that

any floating-point operation can be executed without creating any exception. Whenever an instruction can

be executed safely without any exception, the SIR mechanism can be used to allow the instruction for execu-

tion. When a floating-point instruction is not safe, the pipeline halts the instruction for three cycles and the

exception is generated.

Initially an instruction is loaded into the U pipeline. After that the next instruction will be loaded into V and

it must be part of a pair. As per the Pentium processor’s pairing rules, if it is not part of a pair then it cannot

be loaded into the V pipeline. Then the instruction has to wait till the next slot is available in the U-pipeline.

Usually, the instruction decoding and pairing decisions are done in hardware.

Instruction
K

Instruction
K + 1

Instruction Fetch
(IF)

Decode – 1
(D1)

Decode – 1
(D2)

Execution
(EX)

Write Back
(WB)

Instruction
K – 2

Instruction
K – 4

Instruction
K – 6

Instruction
K – 8

Instruction
K – 1

Instruction
K – 3

Instruction
K – 5

Instruction
K – 7

Result
K–8

Pipeline U

Pipeline V

Cycle
n

Result
K – 7

Instruction
K + 2

Instruction
K + 3

Instruction
K

Instruction
K – 2

Instruction
K – 4

Instruction
K – 6

Instruction
K + 1

Instruction
K – 1

Instruction
K – 3

Instruction
K – 5

Result
K – 6

Pipeline U

Pipeline V

Cycle
+ 1n

Result
K – 5

Instruction
K + 4

Instruction
K + 5

Instruction
K + 2

Instruction
K

Instruction
K – 2

Instruction
K – 4

Instruction
K + 3

Instruction
K + 1

Instruction
K – 1

Instruction
K – 3

Result
K – 4

Pipeline U

Pipeline V

Cycle
+ 2n

Result
K – 3

Instruction
K + 6

Instruction
K + 7

Instruction
K + 4

Instruction
K + 2

Instruction
K

Instruction
K – 2

Instruction
K + 5

Instruction
K + 3

Instruction
K + 1

Instruction
K – 1

Result
K – 2

Pipeline U

Pipeline V

Cycle
+ 3n

Result
K – 1

Instruction
K + 8

Instruction
K + 9

Instruction
K + 6

Instruction
K + 4

Instruction
K + 2

Instruction
K

Instruction
K + 7

Instruction
K + 5

Instruction
K + 3

Instruction
K + 1

Result
K

Pipeline U

Pipeline V

Cycle
+ 4n

Result
K + 1

The Pentium pipeline must be transparent to programmers. Whenever the compiler is aware of the

Pentium pipeline strategy then instruction throughput can be improved. Figure 12.6 shows the instruction

pairing in a Pentium processor. Figure 12.7 shows the example where an instruction cannot be paired.

Instruction
K

Instruction
K + 1

Instruction Fetch
(IF)

Decode – 1
(D1)

Decode – 1
(D2)

Execution
(EX)

Write Back
(WB)

Instruction
K – 2

Instruction
K – 4

Instruction
K – 6

Instruction
K – 8

Instruction
K – 1

Instruction
K – 3

Instruction
K – 5

Instruction
K – 7

Result
K–8

Pipeline U

Pipeline V

Cycle
n

Result
K – 7

Instruction
K + 1

Instruction
K + 2

Instruction
K

Instruction
K – 2

Instruction
K – 4

Instruction
K – 6

Instruction
K – 1

Instruction
K – 3

Instruction
K – 5

Result
K – 6

Pipeline U

Pipeline V

Cycle
+ 1n

Result
K – 5

Instruction
K + 3

Instruction
K + 4

Instruction
K + 1

Instruction
K

Instruction
K – 2

Instruction
K – 4

Instruction
K + 2

Instruction
K – 1

Instruction
K – 3

Result
K – 4

Pipeline U

Pipeline V

Cycle
+ 2n

Result
K – 3

Instruction
K + 5

Instruction
K + 6

Instruction
K + 3

Instruction
K + 1

Instruction
K

Instruction
K – 2

Instruction
K + 4

Instruction
K + 2

Instruction
K – 1

Result
K – 2

Pipeline U

Pipeline V

Cycle
+ 3n

Result
K – 1

Instruction
K + 7

Instruction
K + 8

Instruction
K + 5

Instruction
K + 3

Instruction
K + 1

Instruction
K

Instruction
K + 6

Instruction
K + 4

Instruction
K + 2

Result
K

Pipeline U

Pipeline V

Cycle
+ 4n

Figures 12.8(a) and (b) show the register set of a Pentium processor. The Pentium has the same register sets

as the 80386 processor, but it is clear from Fig 12.8(b) that two new registers CR4 and TR12 are added in the

register set of Pentium processor.

The control register CR4 controls the Pentium processors extensions for virtual-8086 mode operation.

The CR4 register is also used for debugger support and it is used to support up to 4 Mbyte pages. The test

control register TR12 enables the selective activation of new features of Pentium processors such as branch

prediction, and superscalar operation, etc.

Three new flags are also added in the EFLAGS register of Pentium processor. Two flags are used to sup-

port virtual 8086 mode operation and the third flag indicates if the processor supports the CPU ID instruction.

When the processor can set and clear the ID flag, it can execute the CPUID instruction.

ECX

EAX

EBX

EDX

ESI

EDI

EBP

ESP

31 16 15 8 7 0

General Purpose Registers

ALAH

BLBH

CLCH

DLDH

SI

DI

BP

SP

Instruction Pointer

31 16 15 0

IPEIP

15 0

Segment Registers

CS

SS

DS

ES

FS

GS

EFLAG FLAG

EFLAG Register

31 16 15 0

GDTR

IDRT

GDT Base Address

IDT Base Address

LDT Base Address

TSS Base Address

LDTSS Selector

TSS SelectorTR

LDTR

15 0 31 0 19 0

TR12

TR7

CR0

CR1

31 16 15 0
Test Registers

CR2

CR3

31 1615 0

Control Registers

31 16 15 0
Debug Registers

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DR0

GDT Limit

IDT Limit

LDT Limit

TSS Limit

TR6

CR4

The Pentium processor architecture supports three operating modes such as protected mode, real-address

mode and System Management Mode (SMM) and one ‘quasi-operating mode’ or virtual-8086 mode. In this

section, all operating modes are explained in detail.

The protected mode is the local operating mode of the processor. In this mode, all

instructions and architectural features are available; the processor is able to provide the highest performance

capability.

The real-address operating mode provides the programming environment of

the 8086 processor incorporating the ability to switch to the protected mode or system management mode.

The system management mode of the Pentium processor

provides an operating system with a transparent mechanism for implementing power management. When an

external system interrupt pin (SMI#) is activated, a System Management Interrupt (SMI) is generated and

the processor has to be entered in the system management mode. In this mode, the processor switches to a

separate address space while saving the context of the currently running program or task. Then the system

management mode’s specific code can be executed transparently. Upon returning from SMM, the processor

can be back to the real-address-mode state, or protected-mode state or virtual 8086 mode state from the

system management mode by using RESET or RSM signal.

When the processor operates in protected mode, it can support a quasi-

operating mode known as virtual 8086 mode. This mode allows the processor to execute 8086 software in a

protected as well as multitasking environment.

Figure 12.9 shows how the processor changes the operating modes. Initially, the Pentium processor

enters the real-address mode through a power-up or a reset operation. After that, the PE flag in the control

register CR0 controls whether the processor is in real-address or protected mode. The switching between

real-address mode and protected mode requires

some initialization before the mode is changed.

When PE = 1, the processor operating mode

changes from real address mode to protected

mode.

The VM flag in the EFLAGS register

decides whether the processor will be operated

in protected mode or virtual 8086 mode. The

transitions from protected mode to virtual 8086

mode are generally carried out as part of a task

switch or a return from an interrupt or excep-

tion handler. When VM = 1, the processor-

operating mode changes from protected mode

to virtual 8086 mode.

The Pentium processor can support real mode

for backward compatibility with the 8086

Protected
Mode

Real Address
Mode

Reset
or

PE = 0
PE = 1

Reset
or

RSM

SMI #

SMI #

RSM

System
Management

Mode

SMI #

RSM

Virtual 8086
Mode

VM = 0 VM = 1

Reset

microprocessor. In real mode, the processor computes the physical addresses from the content of CS and IP

registers just like the 8086. But the difference is that while the 8086 had a 20-bit adder, the Pentium proces-

sors have a 32-bit adder. Therefore, in real mode, the IA processors can address over 1 MB with a 21-bit

address bus. Hence in real mode, the only extra memory that is available from 100000H to 10FFEFH can-

not be used in full 21-bit address. Figure 12.10 shows the real-mode operation of 32-bit IA processors. The

physical address computation is given below when the content of segment register is FFFFH and offset is

equal to FFFFH.

Content of segment register × 24 = FFFFH × 24 = FFFF0 H

+ Offset = FFFF H

Physical address = 10FFEF H

In case of 8086, the leading ‘1’ will be lost as a carry and the address that appears on the 20-bit address

bus is 0FFEFH. This is a case of wrap around. In the 32-bit IA/Pentium processors, the address that appears

is 10FFEFH. Consequently, in real mode, Pentium processor can access addresses greater than 1 MB causing

a pseudo-protection exception and software interrupt.

FFFFH

Segment Register

FFFFH

Segment Register

FFFFH

Offset

8086

FFFFFH
FFFFH

Offset

0FFEFH

0H

65520 bytes

65520 bytes
10FFEFH

100000H

FFFFFFFFH

Main memory
of 32-bit IA processor

32-bit IA processor/
Pentium processor

The protected-mode operation of the Pentium processor protects different tasks in multitasking operating

systems from invalid accesses. The processor hardware checks all accesses of a program to code and data and

provides access rights based on four different privilege levels. Task switching is very fast in protected mode.

During protected-mode operation of the Pentium

processor, memory management is done in two different ways, namely, segmentation and paging.

Segmentation issued to isolate individual code, data, and stack modules so that multiple

programs can run on the same processor without interfering with other programs.

Paging is one of the memory management techniques which allows the processor to

address a range of virtual memory that is greater than the physical memory that can be addressed using the

processor’s address bus alone. This is done by swapping pages in and out of the main memory and on and

off the disk.

In protected mode, segmentation cannot be disabled but the use of paging is optional.

Actually, segmentation divides the processor’s addressable memory space into small protected address

spaces called segments. This address space is also known as the linear address space. Usually, segments are

used to hold the code, data, and stack for a program or it can also hold system data. Whenever more than

one program is executed on a processor, each program must be assigned its own set of segments. Then the

processor enforces the boundaries between these segments so that one program does not interfere with the

execution of other programs.

All segments must be exist in the processor’s linear address space. The logical address is used to locate a

byte in a particular segment. The logical address is also called a far pointer. Figure 12.11 shows the memory

management of a Pentium processor in protected mode. It is clear from Fig. 12.11 that the logical address

consists of a segment selector and an offset.

Each segment has a unique segment selector and it provides an offset into the Global Descriptor Table

(GDT) to a data structure called a segment descriptor. The segment descriptor is used to specify the size of the

segment, the access rights and privilege level for the segment, the segment type, and the location of the first

byte of the segment in the linear address space which is known as the base address of the segment. The offset

part of the logical address or far pointer must be added to the base address of the segment and generates an

address to locate a byte within the segment. In this way, the addition of base address and the offset determines

a linear address in the Pentium processor’s linear address space as depicted in Fig. 12.11.

When the paging technique is not used in memory management, the linear address space of the processor

is mapped directly into the physical address space of the processor. Then the physical address space can be

described as the range of addresses that the Pentium processor can generate on its address bus.

When the paging technique is used, IA-32 bit Pentium processors have a linear address space. A linear

address is stored in the linear address space. Actually, the linear address consists of page directory, page table

Segment
Descriptor

Segment
Selector

+

Offset

OffsetSegment
Selector

Logical Address
or

(Far Pointer)

Global Descriptor
Table (GDT)

Segment
Base Address

Linear Address Space

Segment

Linear Address

Page

Entry

Page Directory

Entry

Page Table
Page

Physical Address

Physical Address
Space

OffsetTableDirectory

Linear Address

Segmentation Paging

and offset. The physical address is computed by using the contents of page directory, page table and offset to

locate a memory location in the physical memory as depicted in Fig. 12.11. In fact, paging supports a ‘virtual

memory’ environment where a large linear address space is replicated with a small size of physical memory,

which is either RAM or ROM or disk storage. With application of paging, each segment must be divided into

pages and each page size is about 4 Kbytes, which can be stored either in physical memory or on the disk.

When segmentation is used in memory management of the Pentium processor, the processor’s linear address

space is broken up into a set of segments. Each segment must be specified

by a segment descriptor, which defines the base address of the segment,

the size or limit of the segment and its access rights. Figure 12.12 shows

the simplified representation of the segment descriptor and Fig. 12.13

shows how the segment descriptor is used to define a segment.

Using different settings of the segmenta-

tion registers, the processor’s linear address

space can be organized into three different

memory models such basic flat model, pro-

tected flat model, and multisegment model.

Paging can be operated with any of the seg-

mentation models. In this section, all three

modes are discussed elaborately.

The most simple memory model for a

Pentium system is the basic flat model. In

this system model, the operating system and

application programs use a continuous, unseg-

mented address space. Usually, the basic flat

model hides the segmentation mechanism

from both the system designer as well as the

application programmer. The segmentation

cannot be disabled. To use the segmenta-

tion, proper setting up of the segmentation

registers is required. For implementation of

basic flat memory model, at least two seg-

ment descriptors are required, one for a code

segment and the other for a data segment.

Subsequently, both code and data segments

can be used to map the entire linear address

spaces as shown in Fig. 12.14. The entire

linear address spaces have the same base

address value of 00000000H and the segment

limit of FFFFFFFFH or 4 Gbytes.

Access Limit

Base Address

Segment Descriptor

Limit

Limit

Limit

Base

Base

Base

Base

Base

Base + Limit

Main Memory

Described
Segment

Segment
Registers

CS

SS

DS

ES

ES

GS

Base Address

LimitAccess Data and
Stack

Not
Present

Code FFFFFFFFH

00000000H

Code Segment
Descriptors and
Data Segment

Descriptors

Linear Address Space
(Physical Memory)

Figure 12.15 shows the protected flat memory

model for a system. The protected flat model

is just like the basic flat model, except the seg-

ment limits are set to include only the range of

addresses for which physical memory actually

exists. The general-protection exception, GP
(#GP) is generated when any attempt has been

taken to access non-existent memory. This

model provides a minimum level of hardware

protection against program bugs. If the pro-

tected flat model is combined with the paging

mechanism, a higher level of protection can be

achieved. Usually, Network Technology (NT)

uses this technique to get a high level of protection.

Figure 12.16 shows the multisegment memory

model for a system. The multi-segment model has

the segmentation capabilities to provide hardware-

enforced protection of code, data structures, and

programs and tasks. Each program (or task) should

have its own table of segment descriptors and its

own segments. The segments will be completely

private to their corresponding assigned programs.

Access to all segments of the system and the execu-

tion environments of all individual programs run-

ning on the system are hardware controlled.

The access check operations are used to protect

against referencing an address outside the limit of

a segment, and also against performing disallowed

operations in certain segments. Usually, code seg-

ments are read-only segments. As a result, hard-

ware can prevent writes into code segments. The

access rights information can also be used to set up

protection levels. Actually, the protection levels are

used to protect operating-system procedures from

any unauthorized access by application programs.

In protected mode, the Intel Architecture (IA) 32-bit processors/Pentium processors provide a usual physical

address space of 232 bytes or 4 Gbytes. Therefore, the processor can address up to 4 Gbytes memory locations

Segment
Registers

CS

SS

DS

ES

ES

GS

Base Address

LimitAccess
Data and

Stack

Not
Present

Code FFFFFFFFH

00000000H

Code Segment
Descriptors

Linear Address Space
(Physical Memory)

Base Address

LimitAccess

Memory
I/OSegment Descriptors

Base Address

Access Limit

Segment DescriptorsSegment
Registers

Base Address

Access Limit

Base Address

Access Limit

Base Address

Access Limit

Base Address

Access Limit

Base Address

Access Limit

Base Address

Access Limit

Base Address

Access Limit

CS

SS

DS

ES

FS

GS

Linear Address Space
(Physical Memory)

Stack

Code

Data

Data

Data

Data

through its address bus. This 4 Gbytes address space is a basic flat model of memory and these address

spaces are unsegmented. The address range or memory map of 4 Gbytes address space is from 00000000H

to FFFFFFFFH.

The memory mapping divides the 4 Gbytes physical memory into different segments and pages. When

paging technique is used for memory management, the paging unit takes the output of the segmentation unit,

which is called the linear address, and subsequently converts the linear address into a physical address. If

paging is not in use, the linear address simply maps directly onto the physical address.

During protected mode, the segmentation unit gener-

ates a linear address from a logical address. Each byte

which is stored in the processor’s address space, can

be accessed with a logical address. The logical address

consists of a 16-bit segment selector and a 32-bit offset

as depicted in Fig. 12.17. The segment selector is used

to identify the segment descriptor which provides the

base address of the segment. The offset specifies the

location of the byte in the segment relative to the base

address of the segment. The segment descriptor has a

limit field. When the linear address is outside the size

of the segment, an exception will be generated. Hence,

the segments will be protected from invalid accesses.

A linear address is a 32-bit address in the processor’s linear address space. Just like the physical address

space, the linear address space is also a flat memory model and it is unsegmented. The linear address space

consists of all the segments and system tables which are used to define a system. The linear address space is

232 bytes or 4 Gbytes of address spaces. The address range

of linear address spaces is from 00000000H to FFFFFFFFH.

The IA-32 bit Pentium processors convert each logical

address into a linear address. There are three steps to trans-

late a logical address into a physical address.

Step 1 Find the index field from the segment selector and

the use the index field to locate the segment descriptor for

the segment in the Global Descriptor Table (GDT) or Local

Descriptor Table (LDT). This step is required in the proces-

sor whenever a new segment selector is loaded into a seg-

ment register.

Step 2 After that, test the access and limit fields of the

descriptor to make sure that the segment is accessible and the offset is within the limits of the segment.

Step 3 The base address of the segment will be obtained from the segment descriptor. Then the base address

of the segment will be added to the offset to determine a linear address.

When the paging is not used in the system, the processor maps the linear address directly to a physi-

cal address. Therefore, the linear address directly placed on the processor’s address bus when paging is not

used. If the paging is incorporated in the linear address space, a second level of address translation is used to

translate the linear address into a physical address. Figure 12.18 shows the physical address generation from

logical and linear addresses.

Segment Selector

Descriptor Table

+Segment
Descriptor

Base Address

Linear Address

31 0

Logical Address

31 015 0

Offset

Logical Address

Segmentation

Linear Address

Physical Address

Paging

In protected mode, the segment registers or segment selectors

consist of index filed, table indicator and RPL (Requested

Privilege Level) as depicted in Fig. 12.19. The segment reg-

isters are used as segment selectors rather than segment base

addresses.

The index field (bit 15 to bit 3) is used to locate into

the current table of segment descriptors. IA-32 Pentium

processors can hold segment descriptors either in a Global

Descriptor Table (GDT) or in a Local Descriptor Tables

(LDT).

The Table Indicator (TI) field or bit 2 of the segment

selector decides which table to be used. When TI = 0, the Global Descriptor Table (GDT) is selected. If TI =

1, the Local Descriptor Table (LDT) is selected. Actually, GDT and LDT are in the processor’s linear address

space. The LDTR (Local Descriptor Table Register) and GDTR (Global Descriptor Table Register) hold the

base addresses for the local and global descriptor tables respectively.

The Requested Privilege Level (RPL) bits ‘1’ and ‘0’ are used to find out the privilege level of a program

which must be accessed by the segment. These bits are called the current privilege level and these bits are

used to define the privilege level of the currently active program. There are four different privilege levels (PL)

from 0 to 3. The privilege level ‘0’ has the highest priority and the privilege level ‘3’ has the lowest priority.

Application programs with lower privilege levels can only access a segment; whereas programs with a

higher privilege level, by using special gates, can access to higher privilege segments. The Operating System

(OS) or kernel has the highest privilege level as PL = 0 and application programs have the lowest privilege

level as PL = 3. For example, the instruction LGDT (Load Global Descriptor Table) can only execute when

the current program has a privilege level ‘0’.

Selector

Segment register
(CS, DS, SS)

Base [31 : 24]

Base [15 : 0] Lim [15 : 0]

7

3

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

0

4Base [23 : 16]TypeDTDPLPG DB R AV Lim [19:16]

Base [31:24], Base [23:16], Segment Base G Granularity
Base [15:0]

Limit [19:16], Limit [15:0] Segment limit DB Segment size (Default/Big)
DB = 0, 16 bit
operand/address (Default)
DB = 1, 32-bit operand/
address (Big)

P Segment present R Reserved

DPL Descriptor privilege DT Descriptor type
level 00 = PL 0, DT = 0, system segment
11 = PL3 DT = 0, Application

segment

Type Type of system or
application segment

Index TI RPL

15 3 2 1 0

Index Index to global descriptor table(GDT) or
local descriptor table (LDT)

TI TI is table indicator. If TI=0, GDT is

selected. If TI=1, LDT is selected.

RPL Request privilege level
00 = most privilege level and
11 = lowest privilege level

The global descriptor table (GDT) is a list in memory which

describes the segment sizes and addresses in memory in terms

of segment descriptors. Each segment descriptor has 8 bytes as

shown in Fig. 12.20. The global descriptor table holds segments

available to all tasks, but the local descriptor table (LDT) is

only available to the currently active task. The segment descrip-

tor provides the 32-bits segment base address (Base [31:24],

Base [23:16], and Base [15:0]) and 20-bits limit (Limit [19:16]

and Limit [15:0]) for the size of the segment. The function of

other fields of the segment descriptor are given in Fig. 12.21.

The 20-bits of the limit field can be used to represent either a

memory size of up to 1 MByte or up to 4 GByte, depending on

the granularity (G) bit. When G = 0, byte granularity means that

the 20 bits represent 1 Mbyte. If G = 1, the granularity is 4K

in size and it represents 20 bits × 4K = 4 Gbyte. The DB bit is

used to make instructions as either 32-bit instructions or 16-bit

instructions. For example, a 32-bit instruction is mov eax, mem32 when DB = 0 and a 16-bit instruction is

mov ax, mem32 if DB=1.

During accessing memory, if the processor does not want to use the descriptor tables frequently then the

processor loads the base address and limit for a given selector into a cache register which is associated with

each selector. Figure 12.21 shows the 64-bit segment descriptor cache registers. Whenever the contents of a

segment register change, the local descriptor table (LDT) or global descriptor table (GDT) is accessed for the

base address and limit. After that, the base addresses and limits are placed in the segment descriptor cache

register. Subsequently, the cache register is used for the base addresses and limits.

In protected mode of IA 32-bit Pentium

processors, the interrupt vector table is an

Interrupt Descriptor Table (IDT). The inter-

rupt descriptor table works in the same way

to the segment descriptors. The IDT is able to

hold up to 256 interrupt levels. However, each

interrupt level can be accessed through an

interrupt gate rather than an interrupt vector.

Usually, the interrupt type number is

located at the interrupt descriptor table. The

IDT may be located anywhere in the memory

system where the first 1K hold the interrupt

vectors as depicted in Fig. 12.22. The content

of IDT is interrupt or trap gate. The format of

an interrupt or gate descriptor is shown in Fig.

12.23. The segment selector is used to locate

Acess Base Address Limit

Acess Base Address Limit

Acess Base Address Limit

Acess Base Address Limit

Acess Base Address Limit

Acess Base Address Limit

CS

SS

DS

ES

FS

GS

Segment
Registers

64-bit Segment Descriptor
cache Registers

Segment Selector

GDT / LDT

Segment
Descriptor

Interrupt or
Trap Gate

Interrupt Procedure

Destination Code SegmentIDT

+Interrupt
Vector

Base Address

Offset

segment descriptor on the global descriptor table or the local descriptor table and generates base address. The

base address and offset are combined to find interrupt procedure at the destination code segment.

The task state segment descriptor consists of information about the location, size and privilege level of the

task state segment. Usually, the task state segment is described by the TSS descriptor and it does not contain

code or data. Actually, the TSS holds the state of the task and linkage so that tasks may be nested during

operation. Figure 12.24 shows the task state segment.

Offset [31:16]

Selector Offset [15:0]

Word count
C4 – C0

31 16 15 14 13 12 11 8 7 0

7

3

4

0

Offset

P DPL Type0 0 0 0

EDI
ESI

EBP
ESP
EBX
EDX

ECX
EAX
EFLAGs
EIP

CR3(PDBR)

SS2
ESP2

ESP1

ESP0

SS1

SS0

Previous Task Link

GS

LDT Segment Selector

SS

DS

FS

CS
ES

T

31 16 15 0

I/O Map Base Address

The virtual 8086 mode is a special operating mode of the Pentium processor and it is a subset of protected

mode. In this mode, two 8086 application programs can be executed at the same time. During virtual 8086

mode operation, the segment registers are used in the similar way as in real mode. Consequently, the seg-

ment and an offset address are used to address 1 Mbyte memory locations starting from 00000H to FFFFFH.

After incorporating paging, any program can use addresses below 1 Mbyte memory space, but the Pentium

processor is able to use any address in the 4 Gbyte physical memory. When the VM bit of the EFLAG register

is 1 or VM = 1, the processor becomes enabled to operate in virtual 8086 mode.

The paging technique supports ‘virtual memory’ and a large linear address space is simulated with a

small amount of physical memory such as RAM and ROM and disk storage. With the application of paging,

each segment is divided into pages. Usually each page size is 4 Kbytes, which are stored either in physical

memory or on the disk.

The operating system always maintains a page directory and a set of page tables to keep track of the

pages.

Whenever a program tries to access an address location in the linear address space, the Pentium proces-

sors use the page directory and page tables to convert the linear address into a physical address. Then proces-

sors perform the read or write operation on the specified memory location. When the page being accessed

is not presently available in physical memory, the processor interrupts the execution of the program and

generates a page-fault exception signal. After that, the operating system reads the page into physical memory

from the disk and then executes the program. The swapping or exchange of pages between the physical

memory and the disk must be transparent. The programs written for Intel Architecture 16-bit processors can

be paged when these programs are executed in virtual 8086 mode. The concept of segmentation and paging

in protected mode is already explained in Section 12.3.2. In this section, paging of virtual 8086 mode had

been discussed.

In virtual 8086 mode, control registers CR0 to CR4 control the paging unit. Figure 12.25 shows the

control registers CR4, CR3, CR2, CR1 and CR0. The 31 bits of CR0 (PG) is used to turn paging ON (1) or

OFF (0). When the paging is OFF, the linear address becomes the physical address. If paging is ON, the lin-

ear address must be converted into the physical address by the Paging Unit (PU). The Page Size Extensions

(PSE) flag is bit-4 of CR4 and it is used to enable 4 Mbyte pages. If the PSE flag is clear, the common page

length of 4 Kbytes is used. The page directory base address is stored in CR3. CR3 also holds the memory

interface bits PCD and PWT. These bits are used to control the cache operation in IA-32 Pentium processor.

PAGE DIRECTORY BASE ADDRESS

CR4

CR3

CR2

CR1

CR0

M

C

E

P

S

E

D

E

T

S

D

P

V

I

V

M

E

P

C

D

P

W

T

PAGE FAULT LINEAR ADDRESS

RESERVED

P

G

C

D

N

W

A

M

W

P

N

E

E

T

T

S

E

M

M

P

P

E

31 0

The linear address consists of the page directory entry, the page table entry and the page-offset address.

Figure 12.26 shows the page-translation process from linear address to physical address in memory pages.

The page directory has an array of 32-bit page-directory entries restricted in a 4 Kbyte page. The maximum

1024 page-directory entries can be held in a page directory.

Page table is an array of 32-bit page-table entries restricted in a 4 Kbyte page. About 1024 page-table

entries can be held in a page table. The page tables cannot be used for 2 Mbyte or 4 Mbyte pages. The

2 Mbyte or 4 MByte page sizes are mapped directly from one or more page-directory entries.

Usually the page directory is about 1K × 4 bytes or 4 Kbytes. Each page table is also 4 Kbytes. As there

are 1024 (1K) possible page tables, a fully paged Pentium system requires 4 Mbytes + 4K to express the pag-

ing. But most of the operating systems do not use a fully paged memory system. Pentium processors support

the 4M paging. When the Pentium processor supports 4M paging, there is no need of page tables and the

page directory can be used to addresses a 4 Mbyte memory page. Figure 12.27 shows the 4M memory page

supported by Pentium processors.

Base
+

CR3

Page
Directory

+

Dir Page Offset

31 22 21 12 11 0

Page
Table

+

Memory Pages

Base
+

CR3

Page
Directory

Dir Offset

31 22 21 0

+

4M Memory Pages

It is clear from the paging system of Pentium processor that two memory accesses are required before address-

ing the specified physical address. This is a huge bottleneck of a paging technique. To improve the paging

system, IA-32 Pentium processors use a Translation Look-aside Buffer (TLB), which is a cache of recently

used page translations. When a page-table entry is in the TLB, the paging unit uses the TLB to implement the

paging system. If a page-table entry is not present in the TLB, it is required to read memory to get the page

directory and page-table contents which are needed for the translation. Usually, TLBs are smaller than normal

caches. The Pentium processors have separate TLBs for code cache and data cache.

The Pentium’s memory and I/O interfaces are more advanced than the simple models. They are very different

from the 8086 bus interfaces. Figure 12.28(a) shows the Pentium processor and the schematic pin diagram of

Pentium processor with most signals depicted in Fig. 12.28(b). The pin functions of the Pentium processor

are described below:

Pentium

Processor

D –D
63 0

DP –D
7 0

P

FERR#

PCHK#

CPUTYPE

BOFF#

CACHE#

HIT#

KEN#

FLUSH#

INTR/LINT0

NMI/LINT1

WB/WT#

SMI#

SMIACT#

CLK

A –A
31 3

BE7#–BE0

ADS#

A20M#

AP

APCHK#

EADS#

NA#

BRDY#

M/IO#

D/C#

HOLD

HLDA

BREQ

LOCK#

W/R#

The address bus (A31–A3) is used to drive an external memory, I/O devices and

decoders. Generally, the address buses A31–A3 are used along with the byte enables signals BE7#–BE0#.

The address status signal (ADS#) shows that a new valid bus cycle is driven by the

Pentium processor.

Whenever the address bit 20 mask (A20/M#) pin is asserted, the Pentium imitates the

address wrap-around of the 8086. The A20/M#signal is only used in real mode.

When the Pentium processor has detected address parity errors on an inquire or

snooping cycle, the Address Parity Check (APCHK#) status signal is asserted 2 clock cycles after EADS#.

The Address Parity (AP) signal provides an even parity information for all address

cycles of Pentium processor. This signal can also be used along with APCHK# and EADS# for snooping

cycles.

The byte enable signals BE7#–BE0# are used with address buses A31–A3 to

indicate the bytes which will be written to the external memory.

For the duration of reset, BF1–BF0 pins are sampled and fix the ratio of the external

and internal clocks.

The Back-Off (BOFF#) input signal terminates all uncompleted bus cycles. The Pentium

floats the pins normally affected by a bus hold, a clock cycle after BOFF#. When BOFF# signal is removed,

the Pentium restarts all uncompleted bus cycles in their entirety.

The Burst Ready (BRDY#) input signal is used to indicate an external device which has

currently completed the read or write when BRDY#=0. If BRDY#=1, an external device needs more time.

Usually this signal is sampled in the T2, T12 and T2P cycles.

The Bus Request (BREQ) output signal informs the external system that the Pentium

processor has generated a bus request internally.

The Bus Check (BUSCHK#) input signal allows the external system so that a bus

cycle becomes unsuccessful. Therefore, a machine check exception will be generated depending on the state

of CR4.

When the Pentium processor initiates a cycle’s operation, the cache (CACHE#)

output signal indicates that the current read cycle is internally cacheable. This signal is also used to indicate

a burst write back cycle for a write cycle operation.

The 64-bit data bus of the Pentium processor is D63–D0. D63–D56 lines are the

most significant byte and D7–D0 lines are the least significant byte.

The DP7–DP0 lines are called data parity bits. Actually, there is one bit for each byte of the

data bus. For example, DP7 is used for D63–D56 and DP0 is used for D7–D0. During a write operation, the

Pentium processor generates even parity in the same cycle. But during a read operation, the external system

has to drive even parity back into the Pentium.

The clock (CLK) input gives the fundamental timing for Pentium cycles. All timings signal

except the JTAG signals are always referred to the clock input.

 In a single-processor based system, CPUTYPE is connected to ground. In a dual-processor

based system, the primary processor’s CPUTYPE will be connected to ground and the secondary processor’s

CPUTYPE must be connected to +VCC.

 The Parity Check (PCHK#) output signal is used to indicate the result of a parity

check on a specified data read.

The Parity Enable (PEN#) input signal is used with CR4MCE to determine whether a

machine cycle exception can be taken as a result of a parity error on a read cycle.

The W/R# signal is used to differentiate the read and write operations.

If W/R# =1, this signal represents a write operation. When W/R#=0, this signal represents read operations.

The D/C# output signal is used to represent data or code. If D/C# =1, this signal

represents data. When D/C# =0, this signal represents a code/special cycle. Actually, D/C#=0, M/IO#=0,

W/R#=1 and the BE7#–BE0# signals are used to identify the exact type of a special cycle.

The M/IO# signal is used to distinguish the memory and input/output

related operations. If M/IO# =1, this signal represents memory-related operation. When M/IO# =0, this signal

represents input/output device related operations.

The EADS# signal determines that a valid external address has been driven into the

Pentium processor for a snooping or inquire cycle.

When the FLUSH# input signal becomes low, the Pentium processor writes back to

memory all changed cache lines and invalidates its code and data internal caches.

The hit signal provides the result of a snooping or inquiry cycle. When HIT# is low, it

indicates a hit. If HIT# is high, it indicates a miss.

The bus hold request (HOLD) is used for bus arbitration.

The bus hold acknowledges (HLDA) is used for bus arbitration. When an external bus

master asserts HOLD, the Pentium processor tri-states its output and input/output lines and also asserts

HLDA after completing all outstanding bus cycles. Then external bus master releases HOLD and the Pentium

leaves bus hold and release HLDA.

When the Lock (LOCK#) is active low, the Pentium processor does not recognize

HOLD request signal.

The Cache Enable (KEN#) input signal is used to verify whether the current cycle is

cacheable or not cacheable.

The Next Address (N/A#) input decides whether any external system is ready to accept a

new address even though all the current bus cycles have not completed. This is used to speed up memory

access cycles significantly.

When INTR input signal is high, it indicates a maskable interrupt request from an

external device. If the IE flag is set in the EFLAG register, the processor will accept the interrupt. The LINT0

states local interrupt 0 when the on-chip APIC is used in the Pentium processor.

NMI stands for nonmaskable interrupt. The LINT1 states local interrupt 1 when the

on-chip APIC is used in a Pentium processor.

When Reset is high, it forces the Pentium processor to start execution at a known state

and all internal caches are invalidated.

If the System Management Interrupt (SMI#) input signal is low, the Pentium processor

enters the system management mode.

When the System Management Interrupt Active (SMIACT#) output signal goes

low, it indicates that the processor is in System Management Mode (SMM).

The Write-Back/Write-Through (WB/WT#) input signal is used to define whether a

data cache line may be used as write-back (1) or write-through (0) on a line-by-line basis. This signal also

decides whether a cache line is initially in the S or E state in the data cache. Usually, it is used with the PWT

bit.

The Pentium processors can support the following addressing modes:

 Register mode

 Immediate mode

 Register direct mode

 Direct mode

 Base displacement mode

 Base indexed mode

 PC relative mode

The effective address can be computed as

Effective address = Base Register +Index register x Scaling factor + displacement

where,

 base registers are EAX, EBX, ECX, EDX, ESP, and EBP

 Index register is EDI, and ESI

 Scaling factor is 1, 2, 4 and 8

For example, the addressing mode looks like

[EBX] [EDI x2] +FF

In this mode, the operand is in a register. For example, MOV EAX, EBX. The content

of EBX register is copied to EAX register.

In this mode, the operand is in effective-address-use-register direct mode. For

example, MOV EAX, [ESP]. The content of the EBX register is copied to the EAX register.

In this mode, the operand is in the instruction. For Example, MOV EAX, 88.

In direct address mode, the effective address is within the instruction. For example, MOV

EAX, address. The content of the effective address will be copied into the register EAX.

The effective address is the sum of the contents of the register and a

constant. For example, MOV EAX, [ESP+4]. The contents of memory location specified by the effective

address must be copied into the EAX register.

The effective address is the sum of the contents of two registers. For example,

MOV EAX, [ESP][ESI]. The contents of ESP and ESI registers are added to generate the effective address of

the memory location. The content of the memory location specified by the effective address must be copied

into the EAX register.

In this addressing mode, the effective address is computed by the sum of the

contents of PC and a constant within the instruction. For example, JMP address. The contents of the program

counter are added with an offset which is existing within the instruction. The computed result of addition is

placed into the program counter (PC).

The Pentium processor has a 64-bit data bus which increases data transfer rates over previous generation

processors, and the processor bus is used for connection to a fast L2-cache. The Pentium processor is able to

address bytes, words and double words as processor instruction set supports bytes, words and double-word

type data. This processor uses the byte enable signals, BE7#–BE0#. Each bus cycle uses address lines A31–

A3 to access up to 8 bytes at a time. The byte enable signals BE7#–BE0# is able to address individual bytes

as shown in Fig. 12.29.

A –A
31 3

Address

D –D
63 56

FFFFFFFFH

FFFFFFF7H

.

.

.

.

.

.

.

.

.

.

.

.

.

0000000FH

00000007H

BE7#

D –D
55 48

FFFFFFFEH

FFFFFFF6H

.

.

.

.

.

.

.

.

.

.

.

.

.

0000000EH

00000006H

BE6#

D –D
47 40

FFFFFFFDH

FFFFFFF5H

.

.

.

.

.

.

.

.

.

.

.

.

.

0000000DH

00000005H

BE5#

D –D
39 32

FFFFFFFCH

FFFFFFF4H

.

.

.

.

.

.

.

.

.

.

.

.

.

0000000CH

00000004H

BE4#

D –D
31 24

FFFFFFFBH

FFFFFFF3H

.

.

.

.

.

.

.

.

.

.

.

.

.

0000000BH

00000003H

BE3#

D –D
23 16

FFFFFFFAH

FFFFFFF2H

.

.

.

.

.

.

.

.

.

.

.

.

.

0000000AH

00000002H

BE2#

D –D
15 8

FFFFFFF9H

FFFFFFF1H

.

.

.

.

.

.

.

.

.

.

.

.

.

00000009H

00000001H

BE1#

D –D
7 0

FFFFFFF8H

FFFFFFF0H

.

.

.

.

.

.

.

.

.

.

.

.

.

00000008H

00000000H

BE0#

Data

The Pentium performs the memory accesses as a cache line fills or write-backs. The Pentium proces-

sor requires single transfer cycles to I/O device addresses and noncacheable memory areas. Usually, the

I/O device address space is 32 bytes wide as I/O device accesses do not work through the D-cache. The I/O

subsystem generates A2–A0 signals from BE7#–BE0# for I/O devices which requires address bits A2–A0.

In a single transfer read or write cycle, 8 bits, 16 bits, 32 bits or 64 bits of data are transferred to or from the

Pentium processor. When the Pentium processor holds CACHE# line at logic level high, it indicates that no

line fill operation will be performed. Figure 12.30 shows the single transfer cycle of Pentium processor.

It is clear from Fig. 12.30 that a no-wait single cycle transfer takes at least two CLK cycles. The Pentium

processor starts a bus cycle by asserting the Address Status Signal (ADS#) during the first clock pulse (T1)

as depicted in Fig. 12.30. The Address Status (ADS#) output signal determines a valid bus cycle and address

will be available on the cycle definition pins and the address bus. If the CACHE# output signal is high, the

bus cycle will be a single transfer cycle.

During the second clock pulse of the bus cycle, BRDY# is returned by the external system for a zero

wait state transfer. The BRDY# signal is used to detect that the external system has valid data on the data

pins due to a read operation, or the external system has received valid data due to a write operation. Actually,

the Pentium processor samples the BRDY# input during second clock pulse and subsequent clock pulses of

a bus cycle.

The timing diagram of the parity check (PCHK#) output signal and the data parity input are shown in

Fig. 12.30. The Pentium processor drives the Data Parity (DP) and returns to the Pentium processor in the

same clock as the data. After two clock pulses from BRDY# are returned for reads with the results of the

parity, the PCHK# becomes low.

When the Pentium processor is not ready to drive or receive data, wait states must be added to the

bus cycle and the BRDY# will not be returned to the processor at the end of the second clock. Figure 12.31

shows a bus cycles with one and two wait states. At the end of the second clock pulse, BRDY# must be driven

inactive. Any number of wait states can be added to Pentium processor bus cycles when BRDY# signal is

inactive.

Invalid address

To CPU From CPUCP

To CPU From CPUDATA

PCHK#

BRDY#

W/R#

CACHE#

NA#

ADS#

ADDR Valid address
Invalid addressValid address

CLOCK

T
1

T
2

T
i

T
1

T
2

T
i

T
1

If there is a requirement to transfer more than a single data using cacheable and write-back bus cycles, the

Pentium processors generally use the burst data transfer technique. During the burst transfers, a new data

item can be sampled or driven by the Pentium processor in consecutive clock pulses. The 64-bit data bus of

Pentium processors represents 8 bytes. Therefore, a burst is able to transfer 32 bytes within four cycles. The

data are contiguous and must be aligned to 32-byte boundaries, equivalent to an internal Pentium processor

cache line. Figure 12.32 shows the burst cycle of a Pentium processor.

In the burst read cycle, the CACHE# signal becomes low to indicate the memory subsystem that Pentium

processor wants to transfer the address into the cache. When the KEN# signal is returned by the memory

subsystem as an active low then the Pentium processor extends the single transfer to a cache line fill to store

a complete block of data in the on-chip cache.

The burst cycle is also limited to a 32-byte boundary. Therefore, when the first address of data has been

sent out, the other three addresses of the next three data are already fixed. This means that the subsystem can

independently calculate the other three burst addresses without decoding any other bus addresses from the

CP

DATA

PCHK#

BRDY#

W/R#

CACHE#

NA#

ADS#

ADDR

CLOCK

To CPU From CPU

To CPU From CPU

T
1

T
2

T
2

T
i

T
1

T
2

T
2

Valid address
Valid address

Pentium processor. Hence, the speed of data transfer will be increased considerably. During the burst cycle,

the Pentium processor sends the address ADDR and BEX# signal in the first clock cycle and these signals are

not changed after the first clock pulse.

The first address which is sent out by the processor will not inevitably lie on a 32-byte boundary, but can

be anywhere in the memory. In the first transfer of the data, the KEN# signal identifies that a burst transfer is

going to happen. During the burst transfer stage, the first 8 bytes have already moved out. As a result, the next

three cycles should come in a fixed sequence. Actually, the sequence is optimized for the 2-way interleaving

of DRAM memory and then the subsystem sends data in a defined order without changing addresses of the

processor.

The fastest burst cycle possible needs two clock pulses for the first data item to be returned and all suc-

ceeding data items will be returned on each clock pulse. Figure 12.32 shows a burst read cycle without wait

or pipelining. When BRDY# is high at the right time, wait states may be inserted into each part of the data

transfer.

CP

DATA

PCHK#

BRDY#

W/R#

CACHE#

ADS#

ADDR

CLOCK

KEN#

T
1

T
2

T
2

T
2

T
iT

2

Valid address

To CPU To CPU To CPU To CPU

To CPU To CPU To CPU To CPU

Burst write cycles are always write-backs of modified lines in the data cache. The burst writes always

follow the sequence 00H"08H"10H"18H. A burst write is depicted in Fig. 12.33. If there are no wait

states, the Pentium processor is able to transfer four bytes in five clocks, called a 2-1-1-1 burst as shown

in Fig. 12.33. When a wait state is added in each cycle of data transfer, the burst writes will be known as a

3-2-2-2 burst.

In the Pentium processors, address pipelining can be used to further increase data throughput. For this func-

tion, the Pentium uses the NA# signal. Then the first cycle in a bus cycle can be reduced to one clock pulse.

The NA# input is used to indicate the Pentium processor that it can drive another cycle before the current one

is completed.

When the memory subsystem has already decoded an address, it is ready to take the next cache-line fill

address for decoding if the memory subsystem asserts the NA# signals to the Pentium processor. Then the

Pentium processor sends the next address and the subsystem starts the decoding operation of the new address

although the third data transfer is still going on. Hence two burst cycles can be done as depicted in Fig. 12.34.

CP

DATA
From CPU

From CPU

From CPU

From CPU

From CPU

From CPU

From CPU

From CPU

BRDY#

PCHK#

CACHE#

ADS#

ADDR

CLOCK

WR#

Valid address

T
1

T
2

T
2

T
2

T
i

T
2

The Pentium processors use control signals to indicate that a special cycle is in progress. The system control

signals are D/C#=0, M/IO#=0 and W/R#=1. Usually, the identity of the special cycle is sent out on the byte

enable signals BE7#–BE0#. Table 12.1 shows the special cycles of a Pentium processor. When the BRDY#

is active low, the external system must take care of special cycles such as Shutdown, Halt/ Stop, Flush, Flush

Acknowledge, Write-back and Branch Trace Message. INVD and WBINVD instructions are used for flush

bus cycle, the WBINVD instruction is applied for write-back bus cycle and FLUSH# must be active low for

flush acknowledge bus cycle.

 Byte Enable Signals Special Bus Cycles

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0#

1 1 1 1 1 1 1 0 Shutdown

1 1 1 1 1 1 0 1 Flush

1 1 1 1 1 0 1 1 Halt/ Stop

1 1 1 1 0 1 1 1 Write-back

1 1 1 0 1 1 1 1 Flush acknowledge

1 1 0 1 1 1 1 1 Branch trace message

Valid address Valid address

T
1 T

2

T
12 T

2T
2

T
2

T
2P

T
2

A A A A A A

T
2

CLOCK

ADDR

ADS#

CACHE#

WR#

BRDY#

DATA

KEN#

NA#

A
B

Generally, multiprocessor-based systems use inquiry or snooping cycles to realize the MESI (Modified,

Exclusive, Shared, Invalid) protocol. The external unit can be used to check whether data at a specified

address is available in the on-chip cache of the Pentium processor. The external unit can invalidate the stored

data and it can also invalidate the whole corresponding cache line.

Usually, any inquire cycle is performed by asserting a HOLD to force the Pentium processor to float

its address bus, waiting two clocks, and then driving the inquire address and INV and asserting EADS#.

Inquire cycles can be executed if the Pentium processor is forced off the bus due to HLDA or BOFF# signal.

Forcefully, the entire cache line is affected by an inquire cycle; address lines A31–A5 will be driven with the

valid inquire address. The INV pin must be driven along with the inquire address to indicate whether the line

is invalidated or marked as shared. If INV is 1 (high), the line is invalidated. When INV is 0 (low), the line is

marked as shared during an inquire hit operation.

When the Pentium processor finds out that the inquire cycle hits a line either in internal code or data

cache, it drives the HIT# pin. Two clocks after EADS# is asserted, HIT# is asserted (0 or low) if the inquire

cycle hit a line in the code or data cache as shown in Fig. 12.35. HIT# is de-asserted or high, two clocks after

EADS# is asserted if the inquire cycle missed in internal code and data caches. Due to an inquire cycle, the

CLOCK

ADS#

WR#

BRDY#

DATA

AHOLD

EADS#

ADDR

INV

HIT#

HITM#

APCKH#

From CPU To CPU From CPU

To CPU

T
2

T
iT

1
T

2
T

i
T

1
T

2

HIT# output changes its value. But HIT# retains its value between inquire cycles. Usually, the HITM# pin is

asserted just two clocks after EADS# when the inquire cycle hits a modified line in the data cache. HITM# is

low to indicate to the external system that the Pentium processor holds the most recent copy of the data and

any device wants to read that data.

In system management mode, the high power is used up by the Pentium processors. In this mode, the Pentium

processors use SMI# (input) and SMIACT# (output) signals. The Pentium can only leave SMM after execu-

tion of RSM instruction. In SMM, the SMI# is used as an interrupt.

Generally, the system management mode uses a battery-backed up SRAM

at addresses 30000H to 3FFFFH. Usually, this covers up some DRAM

addresses. Whenever the SRAM is used, the DRAM must be disabled in the

system management mode and the SRAM must be disabled after exiting

the system management mode. The SMIACT# signal may be used for this

purpose. Figure 12.36 shows the SMM structure supported by the Pentium.

In this operating mode, the Pentium processor operates in an extended

real mode. The difference between the normal real mode and an extended

real mode is that the SMM address space is not limited to 1 Mbyte, as the

offset registers can use 32-bit length. NMI and INTR will not provide any

service until SMM has been exited.

Figure 12.37 shows the dual processing of two Pentium processors. It is clear from Fig. 12.37 that the private

bus between two CPUs consists of PBREQ#, PBGNT#, PHIT# and PHITM# signals. The control bus has

CACHE#, KEN#, PHIT# and PHITM# signals. The processor address bus consists of BEX# and A31–A3.

D63–D0 are used as processor data bus. During dual processing, one processor is used as the primary Pentium,

the other processor is the secondary or dual Pentium. After reset, only the primary Pentium processor starts to

execute. After that, the primary Pentium processor checks the presence of the secondary Pentium processor

in the system. If the secondary Pentium processor is present, the primary Pentium processor can enable the

private bus and on-chip APICs.

One Pentium processor is used as the Most Recent Master (MRM) and the other

Pentium processor is the Least Recent Master (LRM). When the LRM wants to use the bus, the following

sequence of operations will happen:

Step 1 The least recent master asserts PBREQ# signal.

Step 2 The most recent master completes any pending bus cycles and grants the bus.

Step 3 The most recent master asserts PBGNT# signal.

Step 4 The least recent master becomes the new MRM. After that LRM controls the signals to the common

L2-cache, main memory and I/O devices.

SMI handler
code and data

32-KByte SMM RAM
Extension (optional)

Processor register dump

Each Pentium processor has

an on-chip Advanced Programmable Interrupt Controller (APIC), which is enabled by the active high voltage

level on the APICEN pin during reset. Before using the APIC, the BIOS must be used to initialize the APIC.

In a dual Pentium system, the APICs of primary and secondary Pentium processors must be enabled. The

interrupt subsystems of the two Pentiums appear as a single interrupt system to the computer system.

Two APICs of primary and secondary Pentium processors are communicated by the PIC bus, which

consists of PICD0, PICD1, and PICCLK signals as depicted in Fig. 12.38. Usually, external interrupt request

signals are fed to the 8259A PIC (Programmable Interrupt Controller) and after that interrupts are applied to

the external I/O APIC (82489DX). The output signals of I/O APIC are distributed to the on-chip APICs of pri-

mary and secondary Pentium processors. The 8259A (PIC) is only incorporated in the circuit for compatibility

CACHE#, KEN#
BRDY#, ADS#

PBREQ#, PBGNT#
PHIT#, PHITM#

SMI# STPCLK#

APIC

A31–A3, BEx#

D –D64 0

Primary
Pentium Processor

APIC Bus

CACHE#, KEN#
BRDY#, ADS#

PBREQ#, PBGNT#
PHIT#, PHITM#

SMI# STPCLK#

APIC

A31–A3, BEx#

D –D64 0

Secondary Dual
Pentium Processor

APIC Bus

Processor Address Bus

Processor Data Bus

Processor Control Bus

Processor Private Bus

APIC

LINT0 LINT1

Primary
Pentium Processor

APIC

LINT0 LINT1

Secondary or Dual
Pentium Processor

External Interrupts

I/O APIC

APIC Bus APIC Bus

APIC Bus

features. The local APICs process local interrupts on the LINT0 and LINT1 pins. Actually, LINT0 and LINT1

pins are NMI and INTR in a single processor system.

The Pentium has a time stamp counter, a control and

event select register, and two programmable event counters. These counters have specific pins associated with

them and allow programmers to measure the code execution time and performance parameters.

Pentium processors operate at very high clock speeds to provide very good performance. But reading and

writing memory off-chip is much slower than accessing CPU registers on-chip. Therefore, the access time

of the memory in a system has a critical effect on the system’s performance. Presently, two types of read

and write memories, such as dynamic RAMs (DRAMs) and static RAMs (SRAMs), are commonly used in

computer systems. DRAMs are very large in size and are relatively cheap. DRAMs are slower as compared to

the clock frequency of Pentium processors and it is very difficult to make DRAMs faster. SRAMs are much

faster, but they are small in size and more expensive per byte than DRAMs. SRAMs have less access time as

compared to the bus speed of the processor. To achieve the benefit of fast access times and also large memory

capability in a system, a combination of SRAMs and DRAMs are used. Consequently, the system designer

designs a memory system using a compromise combination of SRAMs and DRAMs. The SRAMs within the

larger memory system of any computer system is known as the cache memory.

The SRAM is used as cache memory in the system and DRAM is used within the large memory system.

A cache memory is small in size and very easily accessible. Usually, SRAMs are used to hold copies of

recently executed instructions and data. The SRAM always operates transparently to the programmer. The

cache may be on-chip or off-chip. The on-chip caches are too much faster as the signal delay is much shorter.

Therefore, cache memory works as most successive memory accesses affect only a very small address area.

This is called locality. Consequently, at any time the program can be executing the same instructions over

and over in a loop or accessing the same areas of data. In this way, the reduced access time over many cycles

improves system performance significantly.

Therefore, code and data should not be placed in the slower main memory. Figure 12.39 shows the block

diagram of SRAM cache interfacing with the CPU and cache controller. It is clear from Fig. 12.39 that the

CPU
of

Processor

Cache
Controller

DRAM

DRAM

Cache Memory
SRAM Cache

SRAM Cache

SRAM Cache

DRAM DRAM

DRAM DRAM DRAM

DRAM DRAM DRAM

fast SRAM cache is placed between the CPU and the slower DRAM through a cache controller. The SRAM

cache is used to hold the most frequently accessed instructions as well as data and make it available very

quickly. The cache controller controls the complete process. The cache controller uses different strategies

such as write-through, write buffering, or modified write-through, and write back to maintain the data in the

cache and the main memory.

There are two types of cache organization at the highest levels of memory organization. The first is uni-

fied cache and other is separate instruction and data caches. The unified cache is commonly used for instruc-

tions and data in the 80486. The unified cache is very efficient in terms of the use of the available cache, but

it is slower. Pentium and later IA-32 processors use separate instructions and data caches called a Harvard

cache. Figure 12.40 shows the separate code and data caches (Harvard cache).

When the Pentium processor wants to read data, it sends out the memory address of desired data. Then

cache controller decides whether the address of data is in the SRAM cache or in the main memory. When

the data is in the cache, it is called a cache hit and the address is passed to cache memory without delay.

The effectiveness of a cache memory is measured in terms of % cache hits measured against total memory

accesses. In case of tightly written code, the cache hit rate can be about 90%. When the processor sends out

an address of data which does not exist in the cache memory, it is called a cache miss. Subsequently, the

cache controller must go out to the main memory. The proportion of memory accesses which are satisfied

by the cache is know as the cache hit rate, and the proportion of memory accesses which are not satisfied by

the cache is called the cache miss rate. Usually, the miss rate of a Pentium processor will be a few per cent

to remove the memory bottleneck.

Instructions

Cache for Instructions

Registers

Pentium Processor

Data

Data Cache

Data

Instructions

Memory

Address

Instructions

Data

Address

AddressData

Instructions

Address

When there is a hit, the cache controller reads data from the fast SRAM cache and sends the data to the

CPU without any wait states. If there is a cache miss, the cache controller first reads the main memory, so that

the read is switched to the main memory. This operation requires wait states so that the cache controller must

de-assert the RDY# signal. Subsequently, the processor will insert wait states until the data is available. The

cache controller simultaneously controls the cache and main memory. When a cache miss occurs, not only the

requested data bytes but also a small block of data, called the cache line, will be read from the main memory

into the cache memory. This process is known as cache line fill. To get best performance, the data bytes which

are requested by the CPU for read, must be passed on before the cache line fill is completed.

Generally, cache lines are 32 bytes in size, as data and code exist in blocks within memory. The cache

controllers use a burst mode to read cache lines and multiple bus cycles are used to read a large number of

bytes. Actually, burst mode almost doubles the bus transfer rate. As a result, a cache line can be read quicker

than single values. In this way, cache lines improve the system performance.

When the Pentium processor does a write operation, the cache controller always checks if the data

is available in the cache. If so, the data is written to the cache. It is also required to write data in the main

memory. For the case of a cache hit, two different strategies such as write-through and write-back are used

for this purpose.

In a write-through strategy, the CPU always stores data to the main

memory for any write operation even though there is a cache hit. All writes are switched through to the main

memory as depicted in Fig. 12.41(a). When there is a cache hit, the cache memory will be updated with the

new data. The disadvantage of a write-through strategy is that all writes go to the main memory and wait

states are inevitable. Therefore, the writing speed becomes slower. By using write buffers (FIFO), the writing

speed can be increased up to a certain extent as shown in Fig. 1.1(b). But this process works until the buffers

fill up. After filling the FIFO buffer, multiple write operations enter wait states.

Cache Memory

Write Buffer
(FIFO)

Main Memory

Processor

Processor

Cache Memory

Main Memory

(a)

(b)

Figure 12.42 shows the write-back strategy. In a write-back strategy, the

cache memory receives all the write operations and updates the cache entry only. The cache lines always

remember that they have been modified using a dirty bit on each line. The cache line which has been already

changed is only written to the main memory after some specific events. Hence, Pentium processor updates

the main memory by the following ways:

 (i) When WBINVD (write-back and invalidate data cache) instruction is executed

 (ii) Though hardware signal FLUSH#

 (ii) When there is a cache miss, a new cache line is replaced

by an old one

 (iii) Whenever an internal or external inquiry cycle is

executed

The disadvantage of a write-back strategy is that exchang-

ing cache lines takes longer time during exchanging data, as data

will be written to the main memory before the new memory is

loaded into the cache memory.

In the write-allocate approach, if data

is being written out to main memory, the cache controller should

try to cache it even in the case of a cache miss. Consequently, the

latest data will be waiting in the cache the next time it is required. Therefore, the cache controller allocates

a new cache entry for the write cycle. After that, if the cache is fully used, the new allocation may displace

a more useful old cache entry. The main application of the write-allocate strategy is for bus snooping. But

the fact is that if there are some cache misses, most caches simply switch through to main memory and just

ignore the cache.

When the processors or DMA controllers can

access the main memory, the cache controller must

allow the cache that its data become invalid, when

the other devices want to write to the main memory.

This process is known as cache invalidation. Figure

12.43 shows the invalid write cycles without cach-

ing. While the cache controller uses a write-back

strategy, there are certain times when the contents

of the cache memory have to be transferred to main

memory. For example, a DMA controller wants to

write data from the main memory out to a periph-

eral, but the latest data is only in the cache. This case

is called a cache flush.

A cache memory is used to store both the data and the address where the data is stored in the main memory.

There are methods of cache organization such as direct mapped cache and two-way set-associative cache. In

this section, both direct mapped cache and two-way set-associative cache are discussed elaborately.

The simplest cache organization is the direct mapped cache as shown in

Fig. 12.44. The features of a direct-mapped cache are given below:

 (i) A specified data or a memory item is stored in a unique location in the cache memory and two

items with the same cache address will compete for use of that location. For example, when a

cache line is already placed at an address in the cache memory, we also want to put another cache

line at another address in the cache memory. These two addresses should have the same A12–A4

address bits all the time. Therefore, these addresses cannot both be placed in the cache at the

same time. This is known as contention.

Cache Memory

Main Memory

Processor

Cache Memory

Main Memory

Processor

Invalid

 (ii) Those bits are not used to select within the line or to address the cache RAM, these bits will be

stored in the tag field.

 (iii) The tag and data access can be performed simultaneously and also provide the fastest cache access

time of any organization.

 (iv) The tag RAM is always smaller than the data RAM. Hence, the access time of the tag RAM is

shorter than data RAM and the tag comparison can be completed within the data access time.

 (v) The direct mapped cache organization can store 8 Kbytes in 16-byte cache lines. The direct mapped

cache has 9 address bits A12–A4 or 512 lines. The first 4bits (A3–A0) of the 32-bit address bus

A31–A0 are used to address the bytes within the line and there are 19 tag bits (A31–A13). Therefore,

512 × 19 (9728) bits are required for storing the tag.

 (vi) While data is loaded into the cache memory, a block of data will be fetched from memory us-

ing burst cycles. Normally, line size is not smaller than the block size. When the block size is

smaller than the line size, a valid bit will be used to indicate each block within the line. To get

the simplest cache organization, the line will be equal to block size.

To reduce the problems due to contention, the set-associative

cache is used by allowing a particular memory item to store in more than one cache location. Figure 12.45

shows the 2-way set-associative cache organization. In this cache organization, two direct-mapped caches

work in parallel. The address applied to the cache may find its data and each memory address can be stored

in one of the two places. Each of the two items, which were in contention for a single location in the direct-

mapped cache organization, may be stored at one of the two places after allowing the cache to hit on both.

The two-way set-associative caches have 8 Kbyte caches with 16-byte cache lines and eight address bits

A11–A4 and 256 lines in either half of the cache. Therefore, four bits of the 32-bit address, A3–A0, are used

to select a byte from the cache line and eight bits A11–A4 are used to select one line from each half of the

Tag

A31 A13 A12 A4
A3 A0

Set Byte Address

A –A12 4

Decoder

Tag RAM

Compare

HIT DATA

MUX

Data RAM

cache. Consequently, there are 20 address bits A31–A12 for the address tag. The access time of a two-way

set-associative cache is slightly larger than the direct-mapped cache as the extra time is required to perform

the multiplexing operation.

The cache consistency problem occurs when data can be modified by more than one source. When a copy of

data is held in both main memory and a cache memory, one copy is changed and the other copy is stale and

the system consistency will be lost. If there are two caches in the system, the problem becomes very com-

plicated. Assume a multiprocessor system consists of two processors, namely, Pentium-A and Pentium-B.

If the secondary Pentium processor (Pentium-B) overwrites a common memory location, the other proces-

sor (Pentium-A) should know that this has occurred. Usually, the MESI protocol for cache lines is used in

Pentium and advanced processors to ensure cache consistency. Figure 12.46 shows the bus snooping when

two processors each with a local cache have access to a common main memory.

Compare

A31 A A12 11 A A4 3 A0

Byte AddressSetTag

A – A11 4

Tag RAM

Decoder

Compare

Tag RAM

Decoder

HIT

Data RAM

MUX

DATA

MUX

Data RAM

The abbreviation of MESI is Modified, Exclusive, Shared, and Invalid, which are the four possible states of

a cache line. The MESI protocol is a general mechanism to control cache consistency, using snooping tech-

niques. The Pentium processors can change the state of a cache line through read or write cycles or internal

snooping and other devices such as L2-cache controller can change the state through external snooping. The

MESI protocol provides each cache line that can be one of the four states, and the MESI protocol is man-

aged by the two MESI bits. Figure 12.47 shows the state transition diagram of MESI protocol. The modified,

exclusive, shared, and invalid stages of the protocol are explained in this section.

When the data of a cache line is marked as modified (M), it is available in a single cache

of the complete system only. This cache line can be read or written to without an external cycle.

The exclusive (E) cache line is always stored in only one of the caches in a computer

system, though it has not been modified. Hence its values are the same as in the rest of the system. The cache

line can be read or written to without an external cycle. Once it is written, to the cache line should be set to

modify.

4

Pentium
Processor - A

Pentium
Processor - B

CPU
+

Registers

4Cache

Shared
Unmodified

Main
Memory

Snooped Invalid

Cache

CPU
+

Registers

4

4

Pentium
Processor - A

Pentium
Processor - B

CPU
+

Registers

4Cache

Shared
Unmodified

Main
Memory

Invalid

Cache

CPU
+

Registers

4

4

4

Snooped

4

Pentium
Processor - A

Pentium
Processor - B

CPU
+

Registers

3Cache

Shared
Unmodified

Main
Memory

Snooped Invalid

Cache

CPU
+

Registers

34

The shared (S) line can be stored

in other caches of the system. The shared line

always has the current value so that read accesses

can be obtained from the cache. Write accesses

to a shared cache line are switched through the

external data bus, whenever any cache write

strategy is used. Therefore, the shared cache

lines in the other caches are invalidated.

The cache line which is marked

as invalid is not available in the cache. The catch

lines marked as invalid (I) lines might be empty

or could have invalid data in the cache. Each

access to an invalid cache line generates a cache

miss. During read access, the cache controller

starts a catch line fill and the cache controller

switches the write through to the external bus,

rather than a write-allocate.

It is clear from the state transition diagram of MESI protocol that there are six read access states, R1to

R6; five write access states, W1 to W5, and seven inquiry or snooping states S1 to S7. The function of each

state is given below:

 R1 Read access leads to a hit. Data is available in the cache and it is transferred to the CPU of

Pentium processor (M M).

 R2 Read access leads to a hit. Data is available in the cache and it is transferred to the CPU of

Pentium processor (E E).

 R3 Read access leads to a hit. Data is available in the cache and it is transferred to the CPU of

Pentium processor (S S).

 R4 Read access leads to a miss. Data is not available in the cache. The cache controller performs

an external read and a line fill (E I).

 R5 Read access leads to a miss. Data is not available in the cache. The cache controller performs

an external read and a line fill (S I).

 R6 Read access leads to a miss. Data is not available in the cache. The cache controller is not able

to perform a line fill and the cache line remains invalid (I I).

 W1 Write access leads to a hit. Data is available in the cache. As MESI protocol operates with

write-back cache strategy, no write cycle is sent to the external bus (M M).

 W2 Write access leads to a hit. Data is available in the cache and it was not previously overwritten.

As MESI protocol operates with write-back cache strategy, no write cycle is sent to the external bus

(M E).

 W3 Write access leads to a hit. Data is available in the cache but it was shared. The cache control-

ler sends a write cycle to the external bus. Then cache line is used in one cache. The main memory is

updated, and the cache becomes exclusive (E S).

W5

R3

R2R1

W1

M E

W4S

S5R6

I

S7

W2

S2

S4

R1

W3 S3

S1
R5

S6

 W4 Write access leads to a hit. This state will operate for a write-through cache. At this time, all

writes switched to external bus and the cache line stay as shared (S S).

 W5 Write access leads to a miss. Data will be written to the main memory, but not in the cache.

The cache line remains invalid (I I).

 S1 The snooping (inquiry) cycle hits a modified cache line. The reference cache line will be written

back to main memory (S M).

 S2 The snooping (inquiry) cycle hits a modified cache line and this state becomes invalidated. The

reference cache line is written back to main memory anyway (I M).

 S3 The snooping (inquiry) cycle hits an exclusive cache line. This state has not been modified and

it does not require writing back to main memory. The content of main memory is written to another

cache line and the previously exclusive line is now shared (S E).

 S4 This snooping (inquiry) cycle hits an exclusive cache line. This state has not been modified and

does not need to write back to main memory. The content of the main memory is written to another

cache line. Due to some reason, this line becomes invalidated (I E).

 S5 The snooping (inquiry) cycle hits a shared cache line. This snooping cycle informs the system

that this cache line is available in the cache (S S).

 S6 The snooping (inquiry) cycle hits a shared cache line. For some reason, this line will be invali-

dated (I S).

 S7 The snooping (inquiry) cycle hit an invalid cache line (I S).

Generally, L1 caches are small in size and available as local. L2 caches are larger in size but a little bit slower.

Presently, L2 caches are available on-chip Pentium processors. For example, L1 cache of Pentium-II proces-

sor can provide data in one cycle, but L2 cache takes two

cycles to supply data. The Modified, Exclusive, Shared, and

Invalid (MESI) protocols can be applied to the multicache

system. The cache consistency can be achieved when all

the addresses in the L1 cache are available in the L2 cache

as depicted in Fig. 12.48. The data in the two caches may

not be the same as the L1cache may be a write-back cache.

The data transfer between the CPU and main memory

takes place over the L2 cache. The MESI protocol can be

performed over the three stages such as (i) L1 cache, (ii)

L2 cache, and (iii) main memory. The MESI state of an

L2 cache line always operates one step ahead of the MESI

state of the related L1cache line. An inquiry or snooping cycle is used by the L2 cache to decide whether a

certain cache line is available in the L1cache and it has been changed. If there is an inquiry cycle in a modified

line, the L2 cache will be updated by a write-back cycle to the L2 cache. After that, the L2 cache can also ask

for a back-invalidation cycle and this can indicate to the hit line being made invalid. Figure 12.49 shows the

caches of IA-32 bit Pentium processors.

L2 Cache L1 Caches

The Pentium processor supports an 8 Kbyte data cache and an 8 Kbyte code cache. The data cache (D-cache)

is used to store data and the instructions are stored in code cache (I-cache). The code and data caches are

two-way set-associative. Both D and I caches can be accessed simultaneously. The code cache provides up to

32 bytes of opcodes, but the data cache provides data for two data references in the same clock pulse. Both

caches are parity protected. The cache page size is 4K or 128 lines and the cache line size is 32 bytes. Each

cache line is filled by a burst of four read cycles though the processor’s 64-bit data bus. The two-way set-

associate scheme consists of two different ways such as Way 0 and Way 1 as shown in Fig 12.50. Each cache

way contains 128 cache lines.

Physical Memory

External
System Bus

System Bus
L2 Cache Memory

Cache Bus

L1 Data Cache Unit

Instruction Fetch Unit L1 Instruction Cache Unit

Data TLBs

Instruction TLBs

Write Buffer

Bus Interface Unit (BIU)

Line 0

Line 127

Line 127

Page m

Line 0
Page 1

Line 127

Page 0

Line 0

4K

4K

Main Memory
Pages

4K

4K 4K

Cache Memory

Way 0 Way 1

Line 0

Line 127 Line 127

The code cache is write-protected to prevent code corruption. The code cache can support the two states

of the MESI protocol, namely, the S and I states. The data cache fully supports the MESI protocol. The data

cache is configurable as write-back or write-through strategy. Memory areas can be defined as noncacheable

by external hardware or software. Cache

line consistency as well as replacement can

be done using hardware. Usually, the LRU

method is used for cache line replacement

in both the data-cache and code-cache.

This LRU method requires one bit per

set in each of the caches. Figure 12.51(a)

shows the data cache and the code cache is

depicted in Fig. 12.51(b).

Data

cache and code cache can be accessed by

a physical address. Therefore, each cache

has its own TLB to translate linear addresses to physical addresses. For example, the data cache has separate

TLBs for 4 Kbyte and 4 Mbyte pages, but the code cache has only one TLB for both 4 Kbyte and 4 Mbyte

pages. Actually, the TLBs are 4-way set associative caches.

The cache operating modes are controlled by the CD and NW bits of

CR0 register. For normal operation and best performance, CD = 0 and NW = 0. When both CD and NW bits

are set to 1 after reset. When both CD and NW are 0, the cache performs the following operation:

 (i) Read hits access the cache.

 (ii) Read misses cause line fills.

 (iii) Enter the Exclusive (E) or Shared (S) state under the control of the WB/WT# signal.

 (iv) Write hits update the cache.

 (v) Write to shared lines and write misses will appear externally.

 (vi) Write to shared lines will be changed to the Exclusive (E) state under the control of WB/WT#

signal.

 (vi) Inquire or snooping cycles are performed.

To disable the cache, the following operations are required:

 (i) Set the CD and NW bits. Therefore CD = 1 and NW = 1.

 (ii) Flush the caches.

Figure 12.52 shows the format of a page directory or page-table entry. To

control page-cache ability, page directory and page table entries have two bits, namely, PWT (Page Write

Through) and PCD (Page Cache Disable). The states

of these bits are placed on the PWT and PCD pins

during memory access cycles. The PWT bit controls

write strategy for the external L2 caches. When PWT

= 1, a write through strategy for the current page is

used. If PWT = 0, a write-back strategy is used for

the current page. The PCD bit controls cache ability

on a page-by-page basis. The PCD bit is logically ANDed with the KEN# signal to control cache-ability on

a cycle-by-cycle basis. When PCD = 0, this bit enables page caching operation. If PCD = 1, it disables page

caching operation. The Cache line fills are enabled if PCD = 0 and KEN# = 0.

Set

Way 0 Way 1

Tag Address

Set Bit (S or l)

(b)

Set

Way 0 Way 1

LRUTag Address

MESI State

(a)

Tag Address

MESI State

LRU Tag Address

Set Bit (S or l)

31 12 6 5 4 3 2 1 0

D A PCD PWT U W PAddress

Intel has developed

a 82496 cache controller for the Pentium processors

to operate with the cache SRAM modules (82491)

which work as an L2cache in the system. The

82496 cache controller is used to implement the

MESI Protocol for the L2 caches. This cache

controller may be configured as an L2 cache with

256 Kbyte or 512 Kbyte size. The 82496 cache

controller implements a two-way set-associative

cache organization which can support cache line

sizes of 32, 64 and 128 bytes.

MMX stands for Multimedia Extension, Multiple Math Extension, or Matrix Math Extension. The MMX is

a Single Instruction Multiple Data (SIMD) instruction and it was designed by Intel in 1996. The MMX TM

technology has the following new extensions in Intel Architecture 32-bit Pentium processor:

 (i) It has eight MMX registers such as MM0–MM7.

 (ii) Four MMX data types such as packed bytes, packed words, packed double words and quad words.

In packed bytes, eight bytes are packed into one 64-bit quantity. In packed words, four 16 bit words

are packed into one 64-bit quantity. In packed double words, two 32-bit double words packed into

one 64-bit quantity. The quad word is one 64-bit quantity.

 (iii) It has a 57 MMX instruction set.

 (iv) MMX technology supports saturating arithmetic and wraparound mode.

In 1997, Intel developed Pentium MMX processor incorporating the multimedia extension (MMX) tech-

nology for different multimedia applications such as 2D and 3D image processing. In multimedia applica-

tions, most of the operations involve pixels. During representation of a color image, one pixel consists of

three components such as red, green and blue. Each component of a pixel is an 8-bit integer. The intensity of

each component of a pixel can be varied from 0 to 255. The image processing and image compression opera-

tions require matrix multiplication and matrix convolution type computations and also require operations on

multiple numbers of pixels simultaneously. Therefore, all multimedia applications need a Single Instruction

Multiple Data (SIMD) type architecture.

The Pentium MMX processor has eight 64-bit MMX registers known as MM0 through MM7. The MMX

instructions access the MMX registers directly. These registers can be used to perform computations with

MMX data types. Intel provides a set of 57 MMX instructions which are used for improving graphic perfor-

mance in image processing, image filtering, image enhancement and coding, etc. Pentium processors (P5)

can operate on two pixels simultaneously, whereas MMX instructions of Pentium MMX processor can oper-

ate eight pixels at the same time. The Pentium MMX processor has the following drawbacks:

 (i) MMX instructions work with integers only, though 2D and 3D graphics often require floating

point arithmetic operations.

 (ii) MMX instructions and floating-point unit instructions can share registers, but MMX and FPU

instructions do not work simultaneously.

Memory Controller

CPU
of Pentium
Processor

Cache
Controller
82496

Cache
SRAM

L2 – Cache
SRAM 82491

The Pentium Pro is a sixth-generation x86 microprocessor and it was introduced by Intel in 1995. This

processor was developed based on the P6 micro-architecture. The Pentium and Pentium MMX processors

have 3.1 and 4.5 million transistors respectively, but the Pentium Pro consists of 5.5 million transistors. The

Pentium Pro is capable of both dual-processor and quad-processor configurations. The common features of

Pentium Pro are given below:

 The Pentium Pro has a 12-stage decoupled super pipeline architecture which uses an instruction pool.

 It has extra decoded stages to dynamically translate IA-32 instructions into a sequence of buffered

micro-operations.

 It has speculative execution through register renaming with 40 registers.

 It has dynamic program execution.

 Pentium Pro has a 36-bit address bus.

 It has an 8 KByte instruction cache. It has separate L1 code and data caches with write back strategy.

 It has data forwarding and dynamic branch prediction.

 The Pentium Pro has two integer units and one floating-point unit. One of the integer units shares the

same ports as the FPU.

 It has an integrated L2 cache into processor core connected over a dedicated bus running at the CPU

clock pulse (half or full).

 In the Pentium Pro processor, x86 instructions are decoded into 118-bit micro-operations (micro-ops).

 The Pentium Pro processor clock speeds are 150, 166, 180 or 200 MHz with a 60 or 66 MHz external

bus clock.

 This processor is very popular in multiprocessing configuration.

 P6 architecture operates with 32-bit OS such as Mindows NT 3.5, Unix and OS/2.

 It is packaged in ceramic multi-chip modules (MCM). The MCM has 387 pins which is approxi-

mately half of pin grid array (PGA) package. The MCM package was designed for Socket 8.

 Pentium Pro processor core operates at 3.1 V to 3.3 V.

 Pentium Pro is fabricated in a 0.6 µm BiCMOS process for 133 MHz operating frequency, in a 0.5 µm

BiCMOS process for 150 MHz, and in a 0.35 µm BiCMOS process for 166, 180, and 200 MHz.

After the Pentium Pro processor, Pentium II was developed by Intel in 1997. Pentium II is manufactured

based on P6 micro-architecture and it is a sixth-generation x86compatible microprocessors. This proces-

sor core contains 7.5 million transistors and it is an improved version of the first P6-generation core of the

Pentium Pro. All features of the Pentium Pro have been incorporated with Pentium II. This processor has a

larger cache. As this processor can operate at 2.8 V, the power consumption is reduced significantly. Pentium

II can support MMX instructions for enhanced floating-point operation. The features of Pentium II processor

are given below:

 The L2 cache size is increased to 512 KB from the 256 KB on the Pentium Pro. The L2 cache oper-

ates at half of the processor’s clock frequency, whereas the L2 cache of Pentium Pro operates at the

same frequency as the processor.

 The Pentium II has a 32 KB L1 cache which is double of the Pentium Pro. This processor has sepa-

rate 16 KB L1 data and 16 KB L1 instruction caches.

 The 16-bit code execution performance is available on the Pentium II processor.

 The Pentium II is a consumer-oriented version of the Pentium Pro. It is cheaper to manufacture

because of the separate slower L2 cache memory.

 The improved 16-bit performance and MMX support make it suitable for Windows operating sys-

tems and multimedia applications.

 The Pentium II is packaged in a slot-based module rather than a CPU socket.

 The Pentium II processor clock speeds are 233, 266, 300, 350, 400 or 450 MHz with a 66 MHz front

side bus.

 Pentium II Klamath (80522) processor core operates at 2.8 V, and Pentium II Deschutes (80523)

processor core operates at 2.0 V.

 Pentium II Klamath is fabricated in a 0.35 µm CMOS process and Pentium II Deschutes is fabricated

in a 0.25 µm CMOS process.

After the Pentium II, the next version of the Pentium processor is Pentium III. This processor was developed

by Intel in 1999. Pentium III is a sixth-generation x86-compatible microprocessor and it was manufactured

based on P6 micro-architecture. This processor core contains 9.5 to 28 million transistors. All features of the

Pentium II have been added with Pentium III. This processor is used for high-performance desktop comput-

ers and servers which can operate Windows NT, Unix and Windows 98 operating systems. This processor

is suitable for audio and video processing, image processing, and Internet and multimedia applications. The

new features of the Pentium III processor are given below:

 Pentium III can operate in multiple branch prediction algorithms.

 70 new instructions are added to the Pentium III for multimedia and advanced image processing

applications. This processor has SSE (streaming SIMD) extensions.

 It can support dynamic execution technology.

 Pentium III has eight 64-bit Intel MMX registers and 57 MMX instructions for multimedia

applications.

 It has an on-die 512 Kbyte L2 cache.

 This processor is available at operating frequencies of 450 MHz to 1.4 GHz with 100 MHz to 133

MHz front side bus.

 Pentium III can operate at 2.0 V to 1.45 V.

 Pentium III Katmai is fabricated in a 0.25 µm CMOS process, Pentium III Coppermine is fabricated

in a 0.15 µm CMOS process and Pentium III Tualatin is fabricated in a 0.13 µm CMOS process.

In this section, the internal architecture, instruction pool, 36-bit address bus and paging mechanism of P6

family processors are discussed elaborately.

The block diagram representation of internal architecture P6 family processors is depicted in Fig. 12.54. It

is clear from Fig. 12.54 that the P6 family processor has a Bus Interface Unit (BIU), L1 data cache, L1 code

cache, instruction fetch unit, instruction decoder, Branch Target Buffer (BTB), Register Alias Table (RAT),

Reservation Station (RS), retire unit and on-chip Advanced Programmable Interrupt Controller (APIC).

The bus interface unit is used to interface between system bus, 64-bit

dedicated cache bus and L1 code and L1 data caches.

The L1 data cache is organized as two-way set-associative cache organization.

Pentium Pro processor has 8 Kbyte data cache but Pentium II and Pentium III processors have 16 Kbyte

data cache with two access ports. The write access (write port) and a read access (read port) can be occurred

simultaneously. The data cache can support all 4 MESI protocol states.

The L1 cache is also organized in two-way set-associative cache organization.

The pentium Pro processor an has 8 Kbyte code cache whereas Pentium II and Pentium III processors have

16 Kbyte code cache. The code cache supports only two states of 4 MESI protocol states, i.e., S and I states.

In the instruction fetch stage, instructions are fetched from

the instruction cache. After that instructions are decoded. There are 3 decode units in the instruction decoder

System Bus

32-bit Address
Bus

64-bit Dedicated
Data Cache Bus

L2 - Cache
SRAM

Bus Interface Unit (BIU)

Data Cache 8K bytes Instruction fetch and L1 Instruction cache

BTB

U-code

Simple
Instructions

Simple
Instructions

Complex
Instructions

Register Alias Table (RAT)

Reservation Station

Integer
Unit - I

Integer
Unit - II

Floating Point
Unit - I

Floating Point
Unit - II

Memory
Unit

Retire Unit

APIC

and they are operating in parallel. Two decode units are used to decode simple instructions that microcodes

are not required for simple instructions and the third decoder is used to decode CISC or complex instructions

that require a microcode. Usually, instructions are decoded into sequences of µ-ops.

The branch target buffer is used to store 512 branch targets along

with information to predict branches correctly. The BTB is also required for speculative execution due to the

length of the pipeline.

The P6 family, such as Pentium Pro, Pentium II and Pentium III processors

have 40 internal registers. These processors use these registers in place of the x86 registers. Actually, the

Register Alias Table (RAT) remaps the x86 registers from the instruction to the 40 internal registers by using

the register-renaming technique.

In P6 processors, there are five execution units

which consist of two integer units INT-I and INT-II, two floating-point units FPU-I and FPU-II, and a Memory

Unit (MU). The reservation station is used to sends instructions to the above five execution units. All five

execution units work independently. In best conditions, execution of five instructions can be completed in

one clock pulse.

The retire unit resolves data dependencies. This unit can verify branches

and writes to the x86 architectural registers. The on-chip advanced programmable interrupt controller supports

multiprocessing with up to 4 processors.

The P6 family Pentium processors have 3 pipelines and each pipeline has 12 stages. The 12 stages generate

data-dependency problems and pipeline stalls. The P6 processors have decoupled pipelines and the simple

execution stage is replaced by the two decoupled phases, namely, dispatch/execute unit and retire unit. In the

decoupling method, the instructions in the pipelines are executed independently. Therefore, the instructions

can be executed out-of-order in the Instruction Pool. Figure 12.55 shows the instruction pool of P6 family

processors.

The

instruction fetch (IF)/decode unit reads the

sequence of instructions from the instruction cache

and decode them. The pre-fetching is performed

in a speculative manner. Actually, IF/Decode unit

reads 32 bytes or one cache line per clock from the

L1 cache. This unit marks the start and end of the

instructions and carries out branch prediction. After

that, the IF unit transfers 16 byte to the decode unit

The decoder unit has three parallel decoders. Two decoders are used for simple

instructions and one decoder is used for complex instructions. The decoders accept the stream of fetched

instructions and decode them. Actually, the decoders translate × 86 instructions into micro-operations

(µ-ops). Each micro-operation consists of two logical sources and a logical destination. Simple instructions

are translated into single µ-ops and complex instructions are converted into a string of up to 4 µ-ops. The

Instruction Pool (IP)

Fetch Unit (FU)
or

Decode Unit

Dispatch Unit
or

Execute Unit (EU)

Retire Unit (RU)

decoder generates up to 6 µ-ops in each clock pulse. The decoder maps references to available x86 and P6

registers. Only micro-operations (µ-ops) are executed in the execution units. Therefore, µ-ops are stored in the

Register Alias Table (RAT). The RAT translates the logical register references to the physical register, which

are available in P6 processors. Translation is performed in order in the IF/Decode unit. The IF/Decode unit

transfers µ-ops to the instruction pool. The pool of instructions is stored as an array of content addressable

memory, which is known as reorder buffer. After that dynamic execution starts.

Dynamic execution of instructions states that instructions are stored in any order, but execution will be

completed in the programmed order. Instruction pool is commonly available to the following three units: (i)

start-in order, (ii) middle-out of order, and (iii) end-in order.

The dispatch/execution unit does the scheduling of instructions and

controls dynamic instruction. This unit distributes µ-ops to the five execution units and a maximum of 5 µ-ops

can be issued per clock cycle.

The instruction pool has normally 20 to 30 µ-ops awaiting execution. Each

micro-operation assigned information is used to indicate preparation, execution and final result states. A

µ-ops is ready for execution whenever it is ready with operands. The instruction pool starts execution by

transferring the ready µ-ops to the dispatch/execute unit. When an instruction is not ready, the instruction

pool looks for another instruction which is ready. Results of 20–30 foresightedly executed instructions are

stored in the registers of P6 processors. µ-ops can also be speculatively executed after a branch and results

are returned to the instruction pool.

The retirement of instructions does not occur until execution of the instruction has

been completed and their results are written back to the x86 registers. The retire unit reads instruction pool

for completed instructions and removes the micro-operations, which have been already executed from the

instruction pool. Maximum 3 µ-ops can be retired and removed from the instruction pool per clock.

To support the 32-bit physical addresses, the paging data structure has the following changes:

 (i) The page-table entries have been

increased to 64 bits to incorporate

36-bit physical address as depicted

in Fig. 12.56. There are 512 entries

for page directory and page table.

Each page size is 4 Kbytes.

 (ii) A new table, namely, the page-di-

rectory pointer table has been added

to the linear address translation. The

page directory pointer table has 4

entries and each entry contains 64

bits. This lies above the page direc-

tory in the hierarchy.

 (iii) The 20-bit page directory base addresses in the CR3 register is replaced by a 27-bit page directory

pointer table base address A31–A5 as shown in Fig. 12.57. The page-directory-pointer table base

address field provides the 27 most significant bits of the physical address of the first byte of the

page-directory-pointer table. The table must be located on a 32-byte boundary.

Base A –A
31 12

D A PCD UPWT W P

31 12 6 5 4 3 2 1 0

Base A –A
35 32

63 36 25 32

Reserved

31 5 4 3 2 1 0

Page Directory Pointer Table Base Address PCDPWT 0 0 0

 (iv) The linear address translation has been changed to allow mapping 32-bit linear address into larger

physical address space.

Figure 12.58 shows the page-directory pointer, page directory and page table during mapping linear

address up to 4 Kbyte pages. A31–A30 of linear address are used for directory pointer to locate directory

pointer entry in page directory pointer table. A29–A21 of linear address are used for directory to indicate

directory entry of page directory. The page table entry is located by A20–A12 of the linear address and physi-

cal address is specified with the help of offset address A11–A0 with respect to page table entry. This paging

technique can be used to address up to 220 pages and linear address space of 4 GB or 232 bytes. The 220 pages

are computed from the following expression:

 4 PDPTE × 512 PDE × 512 PTE = 220 pages

where, PDPTE = Page directory pointer table entry

 PDE = Page directory entry

 PTE = Page table entry

Figure 12.59 shows that the page-directory pointer and page directories can amplify linear address to 4

MByte or 2 MByte pages. It is clear from Fig. 12.59 that A31–A30 of linear address are used to locate directory

pointer entry in the page-directory pointer table. Directory entry is addressed by A29–A21 of linear address

and the physical address is located by the offset address of linear address A20–A0 with respect to directory

entry. This paging method can be used to map up to 2048 pages and 4 GB linear address space. The computa-

tion of 2048 pages is given below:

 4 PDPTE × 512 PDE = 2048 pages

where, PDPTE = Page directory pointer table entry and PDE = Page directory entry

Page Directory

Directory
Pointer

Directory Table Offset

Linear Address

31 30 29 21 20 12 11 0

CR3

Directory
Pointer Entry

Page Directory
Pointer Table

Directory
Pointer Entry

Page Table
Entry

Physical
Address

Page Table

4 KB Page

The comparison between Pentium and Pentium-Pro processor is given Table 12.2.

Pentium Processor Pentium-Pro processor

The Pentium processor is the fifth-generation processor The Pentium-Pro processor is the sixth-generation

 80586 and it is represented by P5. This processor was processor and it is represented by the P6 family

developed in 1993 by Intel. processors. This processor was developed in 1995 by Intel.

This is a 5 V processor and it was fabricated in Pentium-Pro processor core operates at 3.1 V to 3.3 V and

0.8-micron BiCMOS technology it is fabricated in a 0.6 µm BiCMOS process.

Pentium runs at a clock frequency of 60 MHz or The Pentium-Pro processor’s clock speeds are 150, 166,

66 MHz. 180 or 200 MHz with a 60 or 66 MHz external bus clock.

Pentium has 3.1 million transistors. Pentium-Pro consists of 5.5 million transistors.

Pentium has 2 × 8 Kbyte L1 cache, but there is no Pentium-Pro has 2 × 8 Kbyte L1 cache, and a 256 Kbyte

L2 cache. L2 cache.

Pentium has a 32-bit address bus. Pentium-Pro has a 36-bit address bus.

It has two instruction units. It has six instruction units.

It has superscalar pipeline. It has two independent The Pentium-Pro has a 12-stage decoupled super pipeline

integer pipelines and a floating point pipeline. architecture which uses an instruction pool.

 It has speculative execution through register renaming

 with 40 registers.

Page Directory

Directory
Pointer

Directory Offset

Linear Address

31 30 29 21 20 0

CR3

Directory
Pointer Entry

Page Directory
Pointer Table

Directory
Entry

Physical
Address

2MByte or
4-MByte Pages

The Pentium 4 processor was developed by Intel using Intel Netburst architecture in 2000. It was commonly

used in desktop and laptop central processing units (CPUs). It is the 7thgeneration x 86 micro-architecture,

called NetBurst. NetBurst differed from the preceding P6 family (6th generation x 86 micro-architecture) pro-

cessors by featuring a very deep instruction pipeline to achieve very high clock speeds of up to 3.8 GHz. The

Pentium 4 processor’s NetBurst architecture incorporates all the features of the previous P6 architecture of

Pentium II and Pentium III and some new features are added. The new features of Pentium 4 are given below:

 Pentium 4 was developed base on NetBurst micro-architecture.

 It consists of 42 million transistors.

 Clock speed of Pentium 4 varies from 1.3 GHz to 3.8 GHz.

 It operates in hyper-pipelined technology and it has a 20-stage pipeline.

 Pentium 4 has on-die 256 Kb non-blocking, 8-way set associative L2 cache. The L2 cache uses a

256-bit interface that transports data-transfer rates of 48 GB/s at 1.5 GHz.

 The instruction set of the Pentium 4 processor is compatible with x86 (i386), x 86-64, MMX, SSE,

SSE2, and SSE3 instructions. These instructions include 128-bit SIMD integer arithmetic and 128-

bit SIMD double-precision floating-point operations.

 It has 8 KB L1 data cache and an execution trace cache to store up to 12 K decoded micro-operations

(µ-ops) in the order of program execution.

 It supports faster system bus at 400 MHz to 1066 MHz with 3.2 GB/s of bandwidth.

 The Pentium 4 processor has two arithmetic logic units (ALUs) which are operated at twice the core

processor frequency.

 It is fabricated in 0.18 micron CMOS process.

 It has advanced dynamic execution.

 It has enhanced branch prediction.

 It has a rapid execution engine.

 It has enhanced floating point/multimedia applications.

In the next section, Pentium 4 NetBurst architecture, hyper-threading technology and SSE instructions

are discussed.

The simplified block diagram of internal architecture of the Pentium 4 processor is shown in Fig. 12.60 and

the detailed internal architecture of Pentium 4 is depicted in Fig. 12.61. Generally, the Pentium 4 architecture

consists of a Bus Interface Unit (BIU), Instruction Fetch and Decoder Unit, Trace Cache (TC), Microcode

ROM, Branch Target Buffer (BTB), Branch Prediction, Instruction Translation Look-aside Buffer (ITLB),

Execution Unit, and Rapid Execution Module. It is clear from Fig. 12.60 that The Pentium 4 architecture

has four different modules such as (i) memory subsystem module, (ii) front-end module, (iii) integer/floating

point execution unit, and (iv) out-of-order execution unit. The memory subsystem module contains a Bus

Interface Unit (BIU) and L3 cache (optional). The front-end module consists of instruction decoder, Trace

Cache (TC), microcode ROM, Branch Target Buffer (BTB) and branch prediction. Integer/Floating point

execution unit has the L1 data cache and execution unit. The out-of-order execution unit consists of execu-

tion unit and retirement. In this section, the detailed internal architecture of Pentium 4 has been discussed

elaborately.

The Bus Interface Unit (BIU) is used to communicate with the system

bus, cache bus, L2 cache, L1 data cache and L1 code cache.

The instruction decoder is used to decode all instructions of the Pentium

4 processor concurrently and translate them into micro-operations (µ-ops). One instruction decoder decodes

one instruction per clock cycle. Simple instructions are translated into one µ-ops, but other instructions are

translated into multiple numbers of µ-ops. Usually, a complex instruction requires more than four µ-ops.

Therefore, the decoder cannot decode complex instructions and it transfers the task to a Microcode ROM.

After translation of instructions into micro-operations (µ-ops) by using an

instruction decoder, the streams of decoded instructions are fed to an Ll instruction cache, which is known

as trace cache. The Ll cache can store only the decoded stream of instructions, which are actually micro-

operations (µ-ops). Hence, the speed of execution will be increased significantly. In a Pentium 4 processor,

the trace cache can store up to 12 K µ-ops. Normally, the cache assembles the decoded µ-ops in order of

sequence, called traces. A single trace contains many trace lines and each trace line has six µ-ops.

As complex instructions perform string and interrupt operations, etc., the trace

cache transfers the control operation of complex instructions to a micro-code ROM. Then microcode ROM

is used to generate the micro-operations (µ-ops) of complex instructions. After the micro-operations (µ-ops)

are issued by the microcode ROM, the control again returns back to the trace cache. Subsequently, µ-ops of

complex instructions delivered by the trace cache as well as the microcode ROM will be buffered in a queue

in order of sequence. Then the µ-ops are fed to the execution unit for execution.

The branch prediction logic unit predicts the memory locations from where

the next instruction will be fetched. Usually, the predictions are performed using the past information of the

program execution. The sixth-generation Pentium processors use simple branching strategy. If the processors

Bus Interface Unit

System Bus

Memory Subsystem

Level 3 Cache
(optional)

Instruction Fetch
and

Decoding Unit

Trace Cache

Microcode ROM

Branch Target Buffer /
Branch Prediction

Front End Module

Retirement

Out of order
Execution Unit

Out of order Execution Unit

Level 1 Data Cache 4-way

Execution Unit

Integer / Floating Point
Execution Unit

come across a branch instruction, the branch condition will be evaluated by complex mathematical and

logical computations which require some time and the processors have to wait till the branch condition is

completely evaluated. To reduce the wait time, Pentium P4 processors use the speculative execution strategy.

The branch prediction can be done by static prediction and dynamic prediction. The static prediction is

fast and simple, as it does not require any look-up tables or calculations. The dynamic predictions use two

types of tables, namely, the Branch History Table (BHT) and the Branch Target Buffer (BTB), to record

information about outcomes of branches, which have already been executed.

When a trace cache miss occurs,

instruction bytes are required to be fetched from the L2 cache. These instruction bytes are decoded into

micro-operations (µ-ops) to be placed in the trace cache. If the Instruction Translation Look-aside Buffer

(ITLB) receives any request from the trace cache to send new instructions, ITLB translates the next instruction

pointer address to a physical address. After that, a request will be sent to the L2 cache and instruction bytes

will be available from the L2 cache. These instruction bytes are stored in streaming buffers until they are

decoded. As there are two logical processors in Pentium 4, there are two ITLBs. Each logical processor has

its own ITLB and a set of two 64-byte streaming buffers, which store the instruction bytes. After that, these

instruction bytes are sent to the instruction decode stage.

A superscalar processor has multiple parallel execution units, which can process

the instructions simultaneously. Actually, the executions of instructions are sequentially dependant on

Bus
Interface
Unit

64 Bit
133 MHz
3.2 GB/s
bandwidth

L2 Cache

L2 Cache
Control Unit

Hardware data
prefetch

Micro-code
ROM/ Micro
Instruction
Sequencer

Instruction Cache, 16 Kbyte
4 way 32 entry TLB

Dynamic Branch Predictor
4096 Entry

Instruction Decoder

Execution Trace Cache
Trace Cache
Branch Prediction

Resource Allocation Rename Registers

Integer/Floating point -op queuem Memory -op queuem

Integer Schedulers

Slow Int. Fast Int. Fast Int. Memory

Integer Register File
Bypass Network

Floating point Schedulers

FP Gen FP Mem

Floating point Register file

FP store
FP Move

F Mul
Fadd

SSE
SSE2

MMXSlow
ALU

Complex

2 X ALU

Simple
Instruction

2 X AGU

Store
Address
Unit

2 X AGU

Load
Address
Unit

L1 data cache 8K Byte 4 way dual port

each other. Therefore, the result of one instruction depends on the result of its preceding instructions and

the processor cannot execute instructions concurrently. The concept of out-of-order execution has been

developed to solve the problem of parallel execution of instructions. The out-of-order execution consists of

the allocation, register renaming, scheduling, and execution functions.

The allocator accepts micro-operations (µ-ops) from the µ-ops queue and allocates the

key machine buffers to execute micro-operations. The allocator has 126 re-order buffer entries, 128 integer

and 128 floating-point physical registers, 48 load and 24 store buffer entries. Since there are two logical

processors in Pentium 4, each logical processor can use at most half the entries that is 63 re-order buffer

entries, 24 buffers, and 12 store buffer entries.

The register rename logic is used to rename the registers of Intel Architecture 32-bit

Pentium processors onto the machine’s physical registers. The register rename is possible in the 8 general-use

IA-32 integer registers to be dynamically expanded to 128 physical registers. A Register Alias Table (RAT)

is used to track the current status of registers and it is also used to inform the next instructions from where to

get their input operands. As there are two logical processors in Pentium 4, there should be two RATs—one

for each logical processor. Usually, the register renaming process is performed in parallel to the allocator.

The instruction scheduler is used to schedule micro-operations (µ-ops) to an

appropriate execution unit. There are five instruction schedulers to schedule micro-operations in different

execution units. Therefore, multiple numbers of µ-ops can be distributed in each clock cycle. Any micro-

operation can be executed only whenever the operands of instruction are available and the specific execution

unit must be available for execution of µ-ops. In this way, the scheduling strategy distributes all µ-ops

whenever the operands are ready and the execution units are available for execution. Each scheduler should

have its own scheduler queue of eight to twelve entries from which the scheduler selects µ-ops to transmit to

the execution units.

There are two ALUs (Arithmetic Logic Unit) and two AGUs (Address

Generation Unit) in a Pentium 4 processor. The ALU and AGU units operate at twice the processor speed. For

example, if the processor works at 1.4 GHz, the ALUs can operate at 2.8 GHz. Hence, twice the numbers of

instructions are executed per clock cycle. All integer calculations such as addition, subtraction, multiplication,

division and logical operations are performed in the arithmetic and logic unit. AGUs are used to resolve

indirect mode of memory addressing. The ALUs and AGUs are very useful for high-speed processing.

The virtual memory and paging technique are used in memory-subsystem

representation. The linear address space can be mapped into the processor’s physical address space, either

directly or using a paging technique. In direct mapping, paging is disabled and each linear address represents

a physical address. Then linear address bits are sent out on the processor’s address lines without translation.

When the paging mechanism becomes enabled, the linear address space is divided into pages. Actually,

pages are used to map into virtual memory. After that the pages of virtual memory are mapped into physical

memory. The paging mechanism is transparent to programmers for any program. The Pentium 4 processor

supports Intel Architecture 32-bit paging mechanism. The Page Address Extension (PAE) is used to address

physical address space greater than 4 Gbytes. The Page Size Extension (PSE) is used to map a linear address

to physical address in 4 M bytes pages.

Traditional P6 micro-architecture approaches to processor design have focused on higher clock speeds,

super pipelining, Instruction-Level Parallelism (ILP) and caches. Super pipelining is a way to achieve higher

clock speeds by having finer granularities. By using this technique, it is possible to execute more and more

instructions within a second. As there are far more instructions in-fly, handling such events like cache misses,

interrupts and branch-miss prediction will be costly. The instruction-level parallelism technique is used to

increase the number of instructions executed within a cycle. The superscalar processor has multiple parallel

executions units for different instruction sets. The main problem is to find enough instructions for execution.

Therefore, the out-of-order execution has been accepted where this new technique has additional burden on

the system design. A cache hierarchy is used to reduce the latency originating from memory accesses where

smaller and faster units are located closer to the processor than the bigger and slower ones. Although fast

memories are used in the system, there will be always some events when instructions and data-cache misses

occur.

For the last few decades, Internet and telecommunication industries have had an unprecedented growth.

To fulfill the requirements of up coming telecommunication industries, the traditional micro-architecture is

not sufficient for processor design. Therefore, processor designers are looking for another architecture where

the ratio between cost and gain is more reasonable. Hyper-threading (HT) technology is one solution. This

technology was first implemented in Pentium® 4 Xeon processor in 2002. The features of hyper-threading

technology are given below:

 HT makes a single physical processor appear as multiple logical processors.

 Each logical processor has its own architecture state where a set of single execution units are shared

between logical processors.

 HT allows a single processor to fetch and execute two separate code streams simultaneously.

 In most of the applications, the physical unit is shared by two logical units.

It is well known to us that each process has a context in which all the information related with the current

state of execution of the process are described. In any process, the contents of the CPU registers, the program

counter, the flag register are used as context. Each process should have at least one thread and sometimes

more than one thread is present in a process. Each threads has its own local context. Sometimes the context

of a process is shared by the other threads in that process. The common features of threads are as follows:

 The threads can be independent in a process.

 The threads can be bunched together into a process.

 The threads may be simple in structure and can be used to increase the speed of operation of the

process.

Many processes may run on different processors in a multiprocessor system. Different threads of the

same process can be shared and run on different processors. Therefore, multiple threads improve the perfor-

mance of a multiprocessor system. In Intel’s hyper-threading technology, the concepts of simultaneous multi-

threading to the Intel architecture have been introduced. The hyper-threading technology makes a single

processor appear as two logical processors; the physical execution resources are shared and the Architecture

State (AS) is duplicated for two logical processors. HT means that the operating system and user programs

can schedule processes or threads to logical processors as they would on multiple physical processors. On

the other hand, micro-architecture perspective states that both processors execute simultaneously on shared

resources.

Presently, the trend is to run multi-threaded applications on multi-processor systems. The most com-

mon multi-threaded applications are Symmetric Multi-Processor (SMP) and Chip Multi-Processing (CMP).

Although a symmetric multi-processor has better performance, the die-size is still significantly large which

causes higher costs and power consumptions. The chip multi-processing puts two processors on a single die.

Each processor has a full set of execution and architectural resources. The processors can share an on-chip

cache. CMP is orthogonal to conventional multiprocessor systems. The cost of a CMP processor is still high

as the die size is larger than the size of a single core-chip and power consumption is also high.

A single processor with multi-processing/multi-threading or CMP can be supported in different ways

such as Time-Sliced Multi-threading (TSM), Switch-on Event multi-threading (SEM) and Simultaneous

Multi-Threading (SM).

In time-sliced multi-threading, the processor switches

from one task to another after a fixed amount of time has passed. This technique is also called real multi-

tasking. As there is only one processor, there will be always some loss of execution cycles in the time-slice

multi-threading. But each thread must be get the attention of the processor whenever its turn comes. When

there is a cache miss, the processor will switch to another thread automatically.

The processor could be designed to switch to

another task whenever a cache miss occurs.

In simultaneous multi-threading or hyper-threading,

multiple threads may be executed on a single processor without switching. When multiple threads are

executed simultaneously, it leads to better use of resources. Actually, hyper-threading (HT) technology brings

the SM into life in Intel architecture.

Figure 12.62 shows a system in which there are

two physical processors without hyper-threading

technology. On the other hand, Fig. 12.63 shows a

two-processor system where each unit is capable of

hyper-threading technology. Therefore, the system

in Fig. 12.63 can be implemented as 4 CPU systems.

This scheme has the same performance gains but the

cost increase is only 5% due to about 5% die-area size

increase.

Hyper-threading

technology was introduced on the Intel Pentium 4 Xeon

TM processor. In this processor, there are two logical

processors in a single physical processor. Each logical

processor has a complete set of the architecture state.

The architecture state has the following registers:

 Registers including the general-purpose registers

 Control register

 Advanced Programmable Interrupt Controller (APIC) registers

 Machine state registers

Since two architecture states are present in a single physical processor, the processor acts as two proces-

sors with respect to software perspective. There are three types of resources in hyper-threading technology

such as replicated resources, shared resources, and shared/ replicated resources.

Each processor has general-purpose registers, control registers, flags,

time stamp counters, and APIC registers. The content of these registers are used as replicated resources.

Memory and range registers can be independently read/write. Therefore, memory,

range registers and data buses are used as shared resources.

Architecture State
(AS)

Program Execution
Resources

IA - 32
Processor Core

Program Execution
Resources

IA - 32
Processor Core

System Bus

Architecture State
(AS)

The caches

and queues in the hyper-threading pipeline can be

shared or not shared according to the situation.

Logical processors share resources on the physi-

cal processor, such as caches, execution units, branch

predictors, control logic, and data buses. Each logical

processor has its own advanced programmable inter-

rupt controller. Usually, interrupts are sent to a spe-

cific logical processor for proper handling.

In most of the applications, multiple numbers of

processes or threads may be executed in parallel. This

kind of parallel execution is called thread-level par-

allelism, and these give better performance in online

applications such as the server system and Internet

applications.

When the current executing process is completed

in time-sliced multi-threading, its context will be saved into the memory. Whenever the process starts execu-

tion again, the context of the process is again restored to exactly the same state. Therefore, this process con-

sists of the following operations:

 Save the context of the currently executing process after the time slice is over.

 Flush the CPU of the same process.

 Load the context of the new next process, known as context switch.

When the process consists of m number of threads, the total time for context switching will be m times

that of a single thread context-switching time. Hence, context switching requires a number of CPU cycles. If

multiple numbers of threads are present, system performance will be improved. But a large number of threads

consume more time in context switching.

To improve the system performances, the following methods are used:

 Reduce the number of context switches.

 Provide more CPU execution time to each process.

 Execute more than one process at the same time by increasing the number of CPUs.

 In multiple number of processor systems, the scheduler can schedule two processes to two different

CPUs for execution simultaneously. Hence, the process will not be waiting for a long duration to get

executed.

In hyper-threading, the concept of simultaneous multi-threading is used. Hence, there is an improvement

in the Intel micro-architecture. With increasing the cost of less than 5% in the die area, the system perfor-

mance is increased by about 25 per cent.

The major advantage of this architecture is appropriate resource sharing of each shared resource. The

most commonly used sharing strategies are partitioned resources, threshold sharing, and full sharing. Usually,

the sharing strategy is selected based on the traffic pattern, size of the resource, potential deadlock probabili-

ties and other considerations.

To share the resources, there should be one copy of the architecture state for each logical processor, and

the logical processors must share a single set of physical resources. Consequently, the operating systems and

user programs can schedule processes or threads to logical processors as these processors behave as conven-

tional physical processors in a multi-processor system. According to micro-architecture perspective, instruc-

tions from logical processors will carry on execution simultaneously after sharing resources.

Architecture
State (AS)

Architecture
State (AS)

Program Execution
Resources

IA - 32
Processor Core

Architecture
State (AS)

Architecture
State (AS)

Program Execution
Resources

IA - 32
Processor Core

System Bus

When the MMX instructions are extended incorporating floating-point instructions, the extended instructions

are called Streaming SIMD Extensions (SSE) instructions. Initially, SSE instructions are used in Pentium III

and then the SSE instruction set has further been enhanced in Pentium 4. The features of SSE instructions

are given below:

 SSE instructions are SIMD instructions for single-precision floating-point numbers.
 SSE instructions can be operate on four 32-bit floating points in parallel.

 A set of eight new SIMD floating-point registers are specifically defined for SSE. The SSE registers

are named XMM0 through XMM7.

 Each register for SSE is 128 bits long allowing 4 × 32 bit numbers to be handled in parallel.

 As different registers have been allocated, it is possible to execute both fixed-point and floating-point

operations simultaneously.

 The SSE instructions can execute non-SIMD floating-point and SIMD floating-point instructions

concurrently.

 The SSE instructions can operate on packed data or on scalar data and increase the speed of manipu-

lation of 128-bit SIMD integer operations.

 The SSE instructions can be grouped as data-transfer instructions, data-type conversion instructions,

arithmetic, logic and comparison group of instructions, jump or branch group of instruction, data

management and ordering instructions, shuffle instructions, cache-ability instructions and state-man-

agement instructions.

In Pentium 4, the pipeline depth is

increased significantly, and execution rate for all instructions are improved. About 144 new instructions are

added with SSE instructions set which allow up to 4 Internet/multimedia based operations in the Pentium

4 processor and these will be executed simultaneously. These new instructions and the other improvements

are called Streaming SIMD Extension 2 (SSE2) instructions. The SSE2 instructions support new data types,

namely, double-precision floating points. The Intel NetBurst micro-architecture has extended the SIMD

capabilities after adding SSE 2.

The Streaming SIMD Extensions 3

(SSE3) instructions have been introduced in the next-generation Pentium 4 processor. This version was

developed by Intel in 2004, when the latest version of Pentium 4, the Prescot was released. Actually, the SSE

2 instruction set was extended to SSE3 after adding 13 additional SIMD instructions over SSE2. The SSE3

instructions are used for the following operations:

 Complex arithmetic operations

 Floating-point-to-integer conversion

 Video encoding

 Thread synchronization

 SIMD floating-point operations using array-of-structures format

The comparison between Pentium III and Pentium 4 processor is given Table 12.3.

Pentium III Processor Pentium IV Processor

Pentium III processor is a sixth-generation processor Pentium 4 processor is the seventh generation processor.

and it is represented by the P6 family processor. This processor was developed in 2000 by Intel.

This processor was developed in 1999 by Intel.

Pentium III processor was manufactured based on Pentium 4 was manufactured base on NetBurst

the P6 micro-architecture. micro-architecture.

This processor core contains 9.5 to 28 million This processor core contains 42 million transistors.

transistors.

Pentium III operates at 2.0 V to 1.45 V. Pentium 4 operates at 1.40 V to 1.25 V.

This processor is available at operating frequencies Clock speed of Pentium 4 varies from 1.3 GHz to 3.8 GHz.

of 450 MHz to 1.4 GHz.

It supports faster system bus at 100 MHz to 133 MHz. It supports faster system bus at 400 MHz to 1066 MHz

 with 3.2 GB/s of bandwidth.

Pentium III Katmai was fabricated in a 0.25 µm It is fabricated in 0.18 micron CMOS process.

CMOS process.

Pentium III has 32 Kbyte L1 cache–16 Kb for Pentium 4 has 12 Kb L1 cache for code and 8 Kb for data.

instruction and 16 Kb for data.

It has on-die 0 to 512 Kb L2 cache It has on-die 512 Kb L2 cache.

This processor has SSE (streaming SIMD) The instruction set of Pentium 4 processor is compatible

extensions. It can support dynamic execution with x86 (i386), x86-64, MMX, SSE, SSE2, and SSE3

technology. 70 new instructions are added to the instructions. These instructions include 128-bit SIMD

Pentium III for multimedia and advanced image integer arithmetic and 128-bit SIMD double-precision

processing applications. floating-point operations.

In the previous sections, CISC processors were discussed elaborately. CISC is pronounced sisk, and it stands

for Complex Instruction Set Computer. Most desktop computers and laptops use CPUs based on this archi-

tecture. Usually, CISC ICs have a large amount of different and complex instructions. The philosophy behind

CISC processors is that hardware is always faster than software. Therefore, one should make a powerful

instruction set, which provides programmers with assembly instructions to do a lot of tasks with very short

programs. The example of CSIC microprocessors are Intel 80486, Pentium, Pentium Pro, Pentium II, Celeron

and Pentium III, etc. The common features of CISC processors are as follows:

 A CISC processor supports extensive complex instructions.

 It has complex and efficient machine instructions.

 It supports micro-encoding of the machine instructions.

 It has extensive addressing capabilities of memory operations.

 The CISC processor has less number of very useful CPU registers.

 The CISC processors can operate at relatively slow speed.

With incorporating the more and more complex instructions in a CISC, more and more sophisticated

processors were developed, manufactured and used as CPUs of personal computers (PCs) for marketing.

As a result, the processor die size was increased to accommodate the large numbers of microcode of the

complex instructions. Due to large die size, CISC consumed more silicon and the chip size was increased.

Consequently, the power consumption also increased, more heat sink was required for better cooling arrange-

ment and cost of the system became high.

When a processor supports a set of simple instructions, it does not require complex decoding and the

design process of the processor becomes very simple. Accordingly, costs of the system as well as power

consumption are reduced significantly. The execution of the simple instructions is also very fast. In the

mid-1970s, John Cocke at IBM research demonstrated that on microcoded implementations of CISC archi-

tectures, complex operations using complex instructions tended to be slower than a sequence of simpler

operations doing the same thing. Processor designers also realized that in many cases, most of the complex

instructions of a CISC processor’s instruction set are not actually used. In a typical CISC processor program,

about 20% of the instruction set will perform about 80% operations of the program. Sometimes the execution

of simple instructions is quicker than single complex machine instruction. Actually, the complex instructions

will take a long time to decode, but simple instructions take less time to decode and execute faster. Therefore,

simple instructions are most commonly used in programs and complex instructions are very rarely used.

Subsequently, RISC chips evolved around the mid-1980s as a reaction at CISC chips. RISC is pro-

nounced risk, and it stands for Reduced Instruction Set Computer. The design philosophy behind RISC is that

almost no one uses complex assembly-language instructions as used by CISC, and programmers mostly use

compilers which never use complex instructions. RISC utilizes a set of fewer, simpler and faster instructions,

rather than a more specialized set of instructions. However, more instructions are needed to accomplish a

task in RISC. Generally, each instruction is executed within a single clock after it is fetched and decoded. To

achieve this, RISC reduces decode and execute logic replacing microcode by hardwired logic gates and uses

instruction pipelining techniques extensively. In a CISC, a lot of disc space is consumed by microcodes. As

microcode is replaced by hardwired logic in RISC, the size of RISC processors becomes smaller than CISC

and it consume less power.

The first attempt was taken to make a chip-based RISC CPU at IBM in 1975. After that, UC Berkeley

and Stanford started work to design and develop RISC processors. After a long research, the IBM 801 was

eventually developed in a single-chip form in 1981. After that Stanford MIPS (Microprocessor without inter-

locking Pipeline Stages), Berkeley RISC-I and RISC-II processors were developed. The examples of other

microprocessors are DECs Alpha, power PC 601, 602, 603 and Ultra SPARC, etc. The common features of

RISC processors are given below:

In a RISC processor, the instruction set consists of simple and basic

instructions. The complex instructions can be composed using simple and basic instructions.

Less numbers of instructions are used to simplify instruction decoding.

In RISC, microcode is replaced by hardwired logic gates. Hence all

execution units are hardwired.

Each instruction is of the same length.

The execution of instructions complete in one machine cycle,

which allows the processor to handle several instructions at the same time.

Usually, massive pipelining is used in a RISC processor. Due to pipelined instruction

decoding and executing, more operations are performed in parallel. Therefore, the speed of RISC processors

is increased.

RISC processors have very few addressing modes and it supports few

formats.

In RISC processors, only the load and store instructions are used to

access memory. Other instructions of the processor work with the internal registers of the processor.

The RISC processors have a larger number of registers to reduce the

interactions between the processor and memory.

The performance of a computer is computered by the following equation:

Program
Time

Cycle
Time

Instruction

Cycle
Program
Instruction

To get better performance, the CISC processors are designed to minimize the number of instructions

per program sacrificing the number of cycles per instruction, but RISC processors are designed reducing

the cycles per instruction at the cost of instructions per program. The comparison between RISC and CISC

processors are given in Table 12.4.

RISC Processor CISC Processor

In RISC, emphasis is given on software. In CISC, emphasis is given on hardware.

Reduced and simple instructions are used. Large number of instructions including complex

 instructions are used.

Each instruction is executed within a single clock. Multi-clocks are required to execute complex instructions.

For register-to-register data movement, LOAD and For memory-to-memory data movement, LOAD and

STORE instructions are independently operated. STORE instructions are incorporated in instructions.

There are large code sizes for a program, but the It has small code sizes for a program, but the number of

number of cycles per instruction is low. cycles per instruction is high.

RISC spends more transistors on memory registers. Transistors are used for storing complex instructions.

The IBM POWER (Performance Optimized with Enhance RISC) architecture is used as the base of Power

PC architecture and RISC single-chip vector processor is the base of the 601 microprocessor. The Power PC

601 microprocessor is the first implementation of Power PC architecture and it was developed jointly by IBM

and Motorola in 1993. The Power PC 601 is a 32-bit Power PC architecture processor. This processor has

three instruction units, namely, Branch Processor Unit (BPU), Fixed-Point Unit (FXU), and Floating-Point

Unit (FPU). These three execution units are used to support superscalar dispatch of instructions. The simpli-

fied block diagram of a Power PC 601 is shown in Fig. 12.64. The branch processor unit is a subpart of the

main instruction unit and is used for fetching and prefecting instructions. A maximum of 8 instructions can

be stored in the instruction fetch queue. The instruction unit can fetch instructions in the branch processor

unit, fixed-point unit and, floating-point unit simultaneously and execute instructions in parallel on each unit.

The RISC processor pipeline operates in such a way that some operations may be carried out in parallel,

although the stages in the pipeline are different. Though different processors have different number of steps to

execute instructions, there are five steps that will be required when a processor executes an instruction. Figure

12.65 shows the pipeline structure of Power PC 601.

Step 1 Instruction fetch phase: Read

the instruction from the memory or the

prefetch queue.

Step 2 Decode phase: Read register

and decode the instruction.

Step 3 Operand fetch phase: Fetch

the operand whenever required for the

instruction.

Step 4 Execute phase: Execute the

instruction.

Step 5 Write-back phase: Write the result into the register.

The Power PC 601 has a 32 Kbyte unified L1 cache. The instruction queue and dispatch logic unit buffer

instructions from 32 Kbyte unified cache and dispatch up to three instructions on each cycle: one each to the

BPU, the FXU and the FPU. The fixed point unit communicates with the sequencer unit to control most fre-

quently used instructions. The FXU interfaces with Memory Management Unit (MMU) for cache accesses.

The 32 Kbyte unified cache provides a 256-bit interface with instruction queue and memory queue, a 64-bit

interface to the FPU and a 32-bit interface to the FXU. The Power PC 601 has a 32-bit address bus and a

64-bit data bus. This processor supports a Common On-chip Processor (COP) unit through a COP bus and an

asynchronous serial port for debugging and test features.

Instruction Queue and Dispatch Logic

System Bus

32 Address Bus 64 Data Bus

Memory Queue and Bus Interface

32 256

32
32

32

32

Cache Tags

Instruction Fetch

Branch Processor
Unit (BPU)

Sequencer
Unit

Memory
Management
Unit (MMU)

B2 K Byte
Cache Data

32 32

32

32
64

256

Common On-chip
Processor Unit (COP) COP Bus

Fixed Point
Unit (FXU)

Floating Point
Unit (PFU)

256

Branch Instructions

Fetch

Integer Instructions

Load/store Instructions

Floating-point Instructions

Dispatch, Decode, execute and Predict

Fetch Dispatch, Decode Execute Write Back

Dispatch, DecodeFetch

Fetch Dispatch Decode Execute 1 Execute 2 Write Back

Write BackAddress Generation Cache

MIPS stands for ‘Microprocessor without Interlocked Pipeline Stages’. MIPS is a RISC architecture proces-

sor. The MIPS processor has 32 registers and each register is 32 bits wide. The instruction set of a MIPS pro-

cessor consists 111 instructions such as 15 load instructions, 10 store instructions, 21 arithmetic instructions,

8 logic instructions, 12 comparison instructions, 8 bit-manipulation instructions, 8 move instructions, 25

branch/jump instructions and 4 miscellaneous instructions. The addressing modes as well as instruction set

of RISC microprocessors are simpler and much less in numbers compared to the CISC microprocessors. All

arithmetic and logical instructions operate in register mode of addressing and the operands are stored in the

set of 32-bit registers. The load and store instructions are used as data-transfer instructions to store data in the

register from memory and vice versa. The base displacement addressing mode is also used for data-transfer

instructions. In this case, the effective address is generated by addition of the content of a base register and a

displacement which already exists in the instruction.

The SPARC (Scalable Processor Architecture) is a unique RISC instruction set architecture. It was developed

by Sun Microsystems and introduced in mid-1987. This processor consists of an integer unit, a floating-point

unit, and an optional co-processor. Usually, the SPARC processor contains about 160 general-purpose reg-

isters but only 32 of them are immediately visible to software at any point of time. Among the 32 registers,

eight registers are a set of global registers and the other 24 registers are local registers and are used as the

stack of registers. These 24 registers form a register window. During function call and return, this window is

moved up and down the register stack. Each window consists of 8 local registers and shares 8 registers with

each of the adjacent windows. Generally, the shared registers are used for passing function parameters and

returning values, but the local registers are used for storing local values across function calls. The different

versions of Sun Ultra SPARC microprocessors are Ultra SPARC T1, Ultra SPARC T2, SPARC V8, SPARC

V9, SPARC64 VI , SPARC64 VII, and SPARC T3, etc. The common features of SPARC architecture are

given below:

 The SPARC processor has a 14-stage nonstalling pipeline.

 It has six execution units which consist of two integer units, two floating-point units, one LOAD/

STORE unit and one address generation unit.

 This processor has a large number of buffers.

 As there is only one LOAD/STORE unit, it dispatches one instruction at a time.

 The ULTRA SPARC 3 processor has a 32 KB L1 code cache, a 64 KB L1 data cache, a 1 MB on chip

L2 cache, a 2 KB prefetch cache and a 2 KB write cache.

 The SPARC system operates at low speed compared to other processors.

 ULTRA SPARC supports a pipelined floating-point processor:

This processor supports multimedia instructions just like Pentium MMX. Hence, this can be used for

multimedia and image-processing applications.

The Chip-level Multiprocessor (CMP) or multi-core CPU merges two or more independent cores into a

single package integrated circuit, called a die. A processor with two or more cores on a single die is called

a monolithic processor. A multi-core microprocessor provides multiprocessing in a single physical package.

In this processor, each ‘core’ independently implements

superscalar execution, pipelining, and multithreading.

A dual-core processor is a single chip that

contains two distinct processors or cores in the same

integrated circuit. Figure 12.66 shows an Intel Core 2

dual-core processor, with CPU-local Level 1 caches,

and a shared, on-die Level 2 cache. This processor is

introduced in 2006. The processor performance depends

on the core and front-side bus clock frequency and

amount of second-level cache. Core 2 Duo processors

typically use the full L2 cache of 2, 3, 4 or 6 MB avail-

able in the chip. Core 2 Duo is widely used in embedded

processors, network processors and digital signal proces-

sors, desktop computers, mobile Core 2 processor and in GPUs.

A quad-core processor contains four cores and it is represented by Core 2 Quad which is introduced by

Intel in 2007. Actually, Core 2 Quad processors consist of two Core 2 Duo dies in a single die. Therefore,

the performance of a Core 2 Quad is increased by two times from dual-core processors at the same clock

frequency.

 This chapter starts with an introduction of the Pentium microprocessor. The architecture, register

set, operating modes—protected mode, real-address mode, system management mode (SMM) and

virtual-8086 mode, addressing modes, physical address, linear address and logical address, bus

interfacing and memory management—of Pentium processors have been discussed elaborately. The

pin diagram of Pentium microprocessors and function of some specified pins are incorporated in this

chapter.

 The function of cache memory, cache organization, cache consistency and bus snooping, MESI

(modified, exclusive, shared, invalid) Protocol, L2 caches of Pentium and other higher version

processors are discussed in detail.

 In this chapter, the features of the Pentium MMX processor are explained briefly. The features of

advanced Pentium processors such as Pentium Pro, Pentium II and Pentium III: P6 family processors

are included. The internal architecture, instruction pool, 36-bit address bus and paging mechanism of

P6 family processors are elaborately discussed.

 Intel NetBurst micro-architecture of Pentium 4 supports some special features such as dynamic

execution, trace cache, rapid execution engine and SSE instructions. The internal architecture of

Pentium 4 processor, Hyper-Threading (HT) technology, Streaming SIMD Extension (SSE), Extension

2 (SSE2) and Extension 3 (SSE3) instructions are explained in detail.

 In this chapter, the features of CISC and RISC processors are presented. The comparison between

CISC and RISC processors, internal architecture of RISC processors such as Power PC 601, MIPS and

SUN Ultra SPARC and Core processors are also incorporated in this chapter.

CPU Core
and

L1 Caches

CPU Core
and

L1 Caches

Bus Interface and L2 Caches

System Bus

12.1 The Pentium processor has

 (a) 32-bit address bus and 64-bit data bus

 (b) 32-bit address bus and 32-bit data bus

 (c) 32-bit address bus and 16-bit data bus

 (d) 16-bit address bus and 24-bit data bus

12.2 The Pentium processor has

 (a) NetBurst architecture

 (b) Superscalar super-pipelined architecture

 (c) P6 architecture

 (d) 64-bit core architecture

12.3 The Pentium processor consists of

 (a) two independent integer pipelines and

 a floating-point pipeline

 (b) one integer pipeline and a floating-point

 pipeline

 (c) two integer pipelines

 (d) one floating-point pipeline

12.4 The Pentium processor has

 (a) six-stage pipelines

 (b) four-stage pipelines

 (c) five-stage pipelines

 (d) three-stage pipelines

12.5 The Pentium processor core consists of

 (a) 21 million transistors

 (b) 7.5 million transistors

 (c) 42 million transistors

 (d) 3.1 million transistors

12.6 The Pentium MMX processor has

 (a) 57 MMX instructions

 (b) 56 MMX instructions

 (c) 55 MMX instructions

 (d) 54 MMX instructions

12.7 SSE2 instructions are compatible with

 (a) Pentium processor

 (b) Pentium Pro processor

 (c) Pentium 4 processor

 (d) Pentium II processor

12.8 The P6 family Pentium processor has

 (a) 36-bit address bus

 (b) 32-bit address bus

 (c) 24-bit address bus

 (d) 20-bit address bus

12.9 The Pentium MMX processor has

 (a) seven MMX registers MM1 to MM7

 (b) eight MMX registers MM0 to MM7

 (c) six MMX registers MM1 to MM6

 (d) five MMX registers MM0 to MM4

12.10 SSE instructions use

 (a) 8 128-bit registers XMM0 to XMM7

 (b) 6 128-bit registers XMM0 to XMM5

 (c) 5 128-bit registers XMM0 to XMM4

 (d) 7 128-bit registers XMM1 to XMM7

12.11 In Hyper-Threading (HT) technology,

 (a) a single processor appears as one

 logical processors

 (b) a single processor appears as four

 logical processors

 (c) a single processor appears as three

 logical processors

 (d) a single processor appears as two

 logical processors

12.12 The ________ is a CISC processor.

 (a) IBM 801 (b) SUN SPARC

 (c) Pentium 4 (d) Power PC 601

12.13 The ________ is a RISC processor.

 (a) R600 (b) Pentium

 (c) Pentium III (d) Pentium MMX and

 Celeron

12.14 Pentium 4 operates at

 (a) 5 V (b) 1.25–1.40 V

 (c) 2.5 V (d) 1.6 V

12.15 The Pentium 4 has a

 (a) 20-stage pipeline

 (b) 14-stage pipeline

 (c) 10-stage pipeline

 (d) 6-stage pipeline

12.16 The front side bus speed of Pentium 4 is

 (a) 400 MHz (b) 50 MHz

 (c) 60 MHz (d) 133 MHz

12.1 Write the length of address and data bus of the following processors:

 (i) Pentium (ii) Power PC 601 (iii) Pentium 4 (iv) Pentium Pro and Pentium III

12.2 What are the different registers of the Pentium microprocessor?

12.3 What are the different types of operating modes of the Pentium microprocessor?

12.4 How many new instructions are available in Pentium MMX with respect to Pentium?

12.5 What are the different features of Pentium 4 processor?

12.6 What are the different addressing modes of Pentium?

12.7 Write the difference between RISC and CISC

12.8 What is superscalar technology?

12.9 What is register starvation in Pentium?

12.10 What is hyper-threading technology? What is the difference between Core 2 dual and Quad core?

12.11 What do you mean by paging? What are the advantages of paging in Pentium?

12.12 What are the new features of Pentium III over Pentium?

12.13 How advanced is Pentium 4 over Pentium III?

12.14 What is the name of the first processor to support multimedia applications?

12.15 What do you mean by MMX?

12.1. Write the architectural difference between 80486 and Pentium processors.

12.2. Draw the internal architecture of the Pentium microprocessor and explain its operation.

12.3. Write the features of the following processors:

 (i) Pentium (ii) Pentium Pro (iii) Pentium MMX (iv) Pentium 4

12.4 Explain superscalar organization of the Pentium processor.

12.5 Draw and explain the register set of the Pentium processor.

12.6 Discuss integer pipeline and floating-point pipeline in the Pentium processor.

12.7 Draw a block diagram to represent different operating modes of the Pentium processor and explain

each operating mode. If the Pentium processor operates in real address mode, how can it operate

in virtual 8086 mode?

12.8 Explain memory management of the Pentium microprocessor.

12.9 Define physical address, linear address and logical address. What are the difference between physi-

cal address, linear address and logical address?

12.10 Explain the paging mechanism of the Pentium processor in detail.

12.11 Write short notes on the following:

 (i) Floating-Point Unit (FPU) of the Pentium processor

 (ii) Instruction pairing of Pentium processor

 (iii) Segment selector

 (iv) Segment descriptors

 (v) System-management mode

 (vi) Real mode

12.12 Draw the schematic pin diagram of the Pentium processor. Write the function of the following

pins of the Pentium processor.

 (i) ADS# (ii) BE7#–BE0# (iii) APCHK# (iv) DP7–DP0 (v) EADS#

12.13 Discuss different addressing modes of the Pentium microprocessor with suitable examples.

12.14 Discuss bus interfacing of the Pentium processor with a suitable diagram.

12.15 Draw and explain the following timing diagram of the Pentium processor.

 (i) Single transfer cycle (ii) Burst read cycle (iii) Inquire cycle

12.16 Explain Intel architecture of caches in Pentium processors.

12.17 What are the different cache memories in microprocessors? Explain the advantages of separate

code and data caches of the Pentium processor.

12.18 What are the different types of cache organization? Explain two-way set associative cache.

12.19 Write short notes on the following:

 (i) Cache consistency (ii) Cache controller (iii) MESI Protocol (iv) L2 cache in a Pentium

12.20 Define cache hit, cache miss, cache hit rate and cache miss rate.

12.21 Write a short note on the Pentium MMX processor.

12.22 Draw the internal architecture of Pentium Pro: P6 family processors and discuss in detail.

12.23 Discuss 36-bit address bus and paging mechanism of P6 family processors.

12.24 Write the difference between

 (i) Pentium and Pentium Pro: P6 family processors

 (ii) Pentium II and Pentium 4

12.25 Draw the internal architecture of Pentium 4 processors and explain in detail.

12.26 Write short notes on the following:

 (i) Translation Look aside Buffer (TLB) (ii) Trace cache

 (iii) Hyper-threading (iv) Branch prediction

 (vi) Out-of-order execution (vii) Branch prediction

 (viii) SSE instructions

12.27 (a) Enlist the special features of CISC and RISC processors.

 (b) Write the difference between CISC and RISC processors.

 (c) Give a list of CISC and RISC processors.

12.28 Draw the internal architecture of Power PC 601 microprocessor and discuss its operation briefly.

12.29 Explain briefly the following RISC architecture:

 (i) MIPS (b) Sun Ultra SPARC

12.30 Discuss (a) Register rename (b) Instruction parallelism (c) Architecture state

 12.1 (a) 12.2 (b) 12.3 (a) 12.4 (c) 12.5 (d) 12.6 (a) 12.7 (c) 12.8 (a) 12.9 (b)

 12.10 (a) 12.11 (d) 12.12 (c) 12.13 (a) 12.14 (b) 12.15 (a) 12.16 (a)

The microprocessor is the core of any computer system, but the microprocessor by itself is completely use-
less, until external peripheral devices are connected with it to help it interact with the outside world. The
microcontroller is a single-chip microprocessor system which consists of CPU, data and program memory,
serial and parallel I/O ports, timers and external as well as internal interrupts. Actually, a microcontroller is an
entire computer manufactured on a single chip. Figure 13.1 shows the schematic block diagram of a micro-
controller. The comparison between a microprocessor and microcontroller is given in Table 13.1. Single-chip
microcontrollers are used in instrumentation and process control, automation, remote control, office automa-
tion such as printers, fax machines, intelligent telephones, CD players and some sophisticated communica-
tion equipments. Due to integration of all function blocks on a single-chip microcontroller IC, the sizes of
control board and power consumption are reduced, system reliability is increased which also provides more
flexibility. The other advantages of microcontroller based systems are easy troubleshooting and maintenance;
ability to do interfacing for additional peripherals, and better software security.

REGISTERS
MICROCONTROLLER

I/O PORTSALU

MEMORY

RAM

ROM

TIMERS/COUNTERS INTERRUPTS

REGISTERS
MICROCONTROLLER

I/O PORTSALU

MEMORY

RAM

ROM

TIMERS/COUNTERS INTERRUPTS

MICROPROCESSOR

RAM ROM

DATA BUS

TIMERS

I/O

PORTS

CONTROL BUS

ADDRESS BUS

 Microprocessor Microcontroller

The microprocessor is a single-chip CPU. The block The microcontroller is a single-chip microcomputer sys-

diagram of microprocessor is given below. tem as given below.

It consists of an ALU to perform arithmetic and logic It consists of a CPU, data and program memory, serial

manipulations, registers and a control unit. and parallel I/O, timers, external and internal interrupts.

It has address bus, data bus and control bus for interfacing Microcontroller communicates with the outside world

with the outside world. through P0, P1, P2 and P3 ports. Ports can be used as

 address and data bus depending upon control signals.

RAM and ROM are not incorporated within chip. RAM is smaller, but it is enough for small applications.

 If it is not sufficient, then external memory may be

 added in the microcontroller-based system.

Microprocessors are used as the CPU in the Microcontrollers are used in small embedded system

microcomputer systems. products to perform control-oriented functions.

Microprocessor instructions perform operations based Microcontroller instructions are able to perform bit-level

on nibbles and bytes. operations and other operations such as based on

 nibbles, bytes, words, or even double words.

Microprocessors are available from 4-bit to 64-bit. 4-bit Microcontrollers are available from 4-bit to 32-bit. 4-bit

microprocessors are used for simple applications. microcontrollers are used for simple applications. 16-bit

8-bit microprocessors are most commonly used in and 32-bit microcontrollers are used for high speed

different applications. 16-bit, 32-bit and 64-bit micro- applications. 8-bit microcontrollers are most commonly

processors are used for personal computers and used in different applications.

high-speed applications.

4-bit to 32-bit microcontrollers are available in the market. Based on the number of bits, microcontrollers
are classified into 4-bit microcontrollers, 8-bit microcontrollers, 16-bit microcontrollers and 32-bit micro-
controllers. 4-bit microcontrollers are extensively used in electronic toys and examples of 4-bit microcon-
trollers are illustrated in Table 13.2. Generally, 8-bit microcontrollers are used in various control applications
such as speed control, position control, and any process control system. Table 13.3 shows the different 8-bit
microcontroller ICs with their features. The 16-bit microcontrollers are developed for high-speed control
applications such as servo control systems, robotics etc. These microcontrollers can be programmed in high-
level programming languages as well as in assembly-language programming. Some 16-bit microcontrollers
are given in Table 13.4. The 32-bit microcontrollers are used for very high-speed operations in robotics,
image processing, automobiles, intelligent control system, and telecommunications. Commonly used 32-bit
microcontrollers are 80960 and MC683xx. Microcontrollers are most commonly used in consumer products,

(Contd.)

automotive systems, different industrial applications and high-speed data processing. A list of microcon-
troller applications is given below:

Washing machines, microwaveovens, printers, copiers, compressors, AC machines

dc and ac motor drives, control power electronics circuits, speed and position
control, and motion control, etc.

Antilock braking systems, electronic power steering systems, etc.

Video conference, image processing, video processing, real-time
compression systems and security, etc.

 On-chip

 No. of data

 No. of I/O memory On-chip program Extra

IC Pins Pins RAM memory, ROM Counters features

TLCS 47 42 35 128 bytes 2K ROM Serial I/O

TMS1000 28 23 64 bytes 1K ROM LED display

COP 420 28 23 64 bytes 1K ROM 1 Serial I/O

MSM6411 16 11 32 bytes 1K ROM

HMCS 40 28 10 32 bytes 512 ROM

 On-chip

 On-chip program No. of

 No. of No. of data memory, memory, No. of 16-bit vectored Extra

IC Pins I/O Pins RAM ROM timers/counters interrupts features

8031 40 32 128 bytes None 2 5 Full duplex serial I/O

8032 40 32 256 bytes None 3 6 Full duplex serial I/O

8051 40 32 128 bytes 4K ROM 2 5 Full duplex serial I/O

8052 40 32 256 bytes 8K ROM 3 6 Full duplex serial I/O

8751 40 32 128 bytes 4K ROM 2 5 Full duplex serial I/O

8752 40 32 256 bytes 8K ROM 3 6 Full duplex serial I/O

 On-chip

 On-chip program No. of

 No. of No. of data memory, memory, No. of 16-bit vectored Extra

IC Pins I/O Pins RAM ROM timers/counters interrupts features

HPC 60 52 512 bytes 16 Kbytes 4 8 External memory

46164 ROM up to 64 K, full

 duplex UART, ADC

8096 68 40 256 bytes 8 Kbytes 2 7 External memory up

 ROM to 64 K

8094 48 24 256 bytes – 2 7 External memory up
to 64 K

8097 68 24 256 bytes – 2 8 External memory up
to 64 K

8095 48 20 256 bytes – 2 8 External memory up
to 64 K

8397 68 24 256 bytes 8 Kbytes 2 8 External memory up
 ROM to 64 K

8395 48 20 256 bytes 8 Kbytes 2 8 External memory up
 ROM to 64 K

80C196 160 83 1K bytes 8 Kbytes 4 16 External memory up
EA register ROM to 2MB, Serial I/O,
 RAM ADC
 3 K bytes

 code RAM

Intel developed the 8051 microcontroller in 1980’s. This microcontroller IC consists of standard on-chip periph-
erals, i.e., timers, counters, and UART, 4 Kbytes of on-chip program memory and 128 bytes of data memory.
The 8051 has separate address spaces for program memory and data memory with the help of modified
Harvard architecture. The program memory can be increased to 64 KB. Approximately, 4 Kbytes of program
instructions can be stored in the internal memory of the 8051. The 8051 can address up to 64 KB of external
data memory. The 8051 memory architecture includes 128 bytes of data memory that are accessible directly
by its instructions. A 32-byte segment of this 128-byte memory block is bit addressable by a subset of the 8051
instructions, namely, the bit instructions. For this reason, the 8051 microcontroller is known as a Boolean
processor and is used to deal with binary input and output conditions very efficiently.

In addition, the device has a low-power static design, which offers a wide range of operating frequencies
down to zero. Two software-selectable modes of power reduction—idle mode and power-down mode—are
available. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system
to continue functioning. The power-down mode saves the RAM contents but freezes the oscillators.

This IC has the following features:

 technology with operation from 2.7 V to 5.5 V –64 K ROM and 64 K RAM

 – 4K × 8 ROM – Idle mode

 – 128 × 8 RAM – Power-down mode

 16 MHz operation

(Contd.)

Figure 13.2 shows the simplified block diagram of the 8051 microcontroller. The detailed architecture
of the 8051 microcontroller has been depicted in Fig. 13.3 which consists of ALU, control and timing unit,
RAM/EPROM/ROM, registers, latches and drivers for ports P0, P1, P2, and P3. The operation of each block
has been explained in this section.

128 byte
RAM

4 K byte
ROM

Interrupt
Control

Timer 1
Timer 0

CPU

Oscillator

External
Interrupts

Four I/O Ports
Bus

Control
Serial
Port

Counter
Inputs

T × D R × D

Address/Data

P0 P2 P1 P3

ALE RST
PSEN EA

The accumulator register (ACC) acts as an operand register. The accumulator
may be referred as implicit or specified in the instruction by its SFR address 0E0H. ACC is commonly used
for data transfer and arithmetic instructions. The accumulator is also bit addressable. ACC.2 states the bit 2
of ACC register. After any arithmetic operations, the result is stored in ACC.

The B register is used during multiply and divide operations to store the second operands
for multiply and divide instructions MUL AB and DIV AB respectively. After multiplication and division, a
part of the result such as upper 8 bits of multiplication result and remainder in case of division are stored in
the B register. This register is commonly used as a temporary register and can also be accessed through its
SFR address of 0F0H. This register is also bit addressable. It can be used as a general-purpose register except
for MUL and IDIV instructions.

This is a special function register. This register consists of the
different status bits that reflect the current state of microcontroller. Figure 13.4 shows the PSW which resides
in the SFR space. It contains the Carry (CY), the Auxiliary Carry(AC), the two register bank select bits (RS1
and RS0), the Overflow flag (OV), a Parity bit(P), and two user-definable status flags. The carry bit serves the
function of a carry bit in arithmetic operations and it also serves as the accumulator for a number of Boolean
operations. The auxiliary carry bit is used in addition of BCD numbers. This bit is set if a carry is generated
out of bit 3 into bit 4. F0 is a general-purpose flag bit available for user applications. The program status bits
and their functions are given in Table 13.5. The bits RS1 and RS0 are used to select the register bank from
four register banks as depicted in Table 13.6. The overflow flag is used for signed arithmetic operation to
determine whether the result is out of range after a signed arithmetic operation. When the result is greater
than +127 or less than –128, the OV flag bit is set.

Port 0 drivers Port 2 drivers

P2.0–P2.7P0.0–P0.7

16-BIT ADDRESS BUS

8-BIT DATA BUS

EPROM/ROM Port 0 Latch

8-BIT DATA BUS

Port 2 Latch RAM
RAM Address

Register

TMP 1 TMP 2 STACK POINTER

ACC
B-

REGISTER

ALU

PSW

TIMING
AND

CONTROL

INSTRUCTION
REGISTER

OSCILLATOR

8-BIT DATA BUS

PORT 1
LATCH

PORT 1
DRIVER

INTERRUPT, SERIAL PORT
AND TIMER BLOCK

PCON SCON TMOD TCON

TH0 TL0 TH1 TL1

SBUF IE IP T2CON

P1.0 P 1.7–

Program
Address
Register

Buffer

PC
incrementer

Program
Counter

Vcc

GND

8-BIT DATA BUS

DPTR

PORT 3
LATCH

PORT 3
DRIVER

P3.0 – P 3.7

PSEN
ALE

RST
EA

The parity bit reflects the number of 1s in the accumulator. When the accumulator contains an odd num-
ber of 1s, P = 1. If the accumulator contains an even number of 1s, P = 0.

CY AC FO RS1 RS0 OV P

PSW 7
PSW 6

PSW 5
PSW 3

PSW 2

PSW 0
PSW 1
User-definable flag

PSW 4

Symbol Position Address Function

 CY PSW.7 D7H Carry flag.

 AC PSW.6 D6H Auxiliary carry flag.

 F0 PSW.5 D5H Flag 0. Available to the user for general purpose.

 RS1 PSW.4 D4H Register bank selector bit 1. Set by software to select the register bank

which will be used.

 RS0 PSW.3 D3H Register bank selector bit 0. Set by software to select the register bank

which will be used.

 OV PSW.2 D2H Overflow flag.

 – PSW.1 D1H Usable as a general-purpose flag.

 P PSW.0 D0H Parity flag. Set/cleared by hardware each instruction cycle to indicate

an odd/even number of ‘1’ in the accumulator.

 RS1 RS0 Register Bank Address Range

 0 0 0 00H – 07H

 0 1 1 08H – 0FH

 1 0 2 10H – 17H

 1 1 3 18H – 1FH

This is an 8-bit register. SP is incremented before the data is stored onto the
stack using PUSH/CALL instructions execution. During a PUSH operation, first increment SP and the copy
data. In a POP operation, initially copy data and then decrement SP. The 8-bit address of the stack top is
stored in this register. The stack can be located anywhere in the on-chip 128-byte RAM. Initially, the stack
pointer is initialized to 07H after a reset operation. Hence, the stack begins at locations 08H. The stack can
be relocated by setting SP to the upper memory area in 30H to 7FH.

DTPR is 16-bit register. It consists of a higher byte (DPH) and a lower
byte (DPL) of a 16-bit external data RAM address. It can be accessed as two 8-bit registers or a 16-bit
register. DTPR has been given two addresses in the special function register bank. DPTR is very useful
for string operations and look-up table operations. With 16-bit DPTR, a maximum of 64 K of off-chip data
memory and a maximum of 64 K of off-chip program memory can be addressed. For this, a 16-bit memory
location address will be stored in DPTR through MOV DPTR, #XXXX instruction. To read data from the
memory location and write data in the memory location, MOVX R0, @DPTR and MOVX @DPTR, #XX are
used respectively. This can be used as a general-purpose register also. To increment the contents of DPTR, the
INC DPTR instruction is executed. But, there is no such instruction in 8051 to decrement the DPTR.

Each latch and corresponding driver
of ports 0–3 is allotted to the corresponding on-chip I/O port. All ports are bidirectional input/output ports of
8 bits each. The addresses of latches are stored in the special function register bank. Using these addresses,
Ports 0–3 can communicate with other ICs and all input/output signals. The output drivers of ports 0 and 2,
and the input buffers of Port 0, are used in accesses to external memory. In this case, Port 0 outputs the low

byte of the external memory address, and Port 2 outputs the higher byte of the external memory address. P1
can be used as input/output port and it acts an important role in programming of internal memory of 8051.
P3 can also be used as an I/O port. The pins of Port 3 have alternate functions such as serial input line (P3.0),
serial output line (P3.1), external interrupt lines (P3.2, P3.3), external timer input lines (P3.4, P3.5), external
data memory write strobe (P3.6) and external data memory read strobe (P3.7).

The port registers specify the value to be output on the specific output port or read value from the speci-
fied input port. Ports are also used as bit addressable. The first bit of the port has the same address as the
register. Suppose the port address of P1 is 90H in SFR. The address of P1.0 is 90H and the port address of
P1.7 is 97H.

The serial port data buffer internally consists of two independent
registers such as transmit buffer and receive buffer at the same location. The transmit buffer is a parallel-in
serial-out register. The serial data receive buffer is a serial-in parallel-out register. The serial data buffer is
identified as SBUF. If data is moved to SBUF, it goes to the transmit buffer and sets serial transmission. When
data is moved from SBUF, it receives serial data from the receive buffer.

There are two 16-bit timing registers in 8051. The 16-bit timer register can
be accessed as their lower and upper bytes. The TH0 and TL0 represent the lower byte and higher byte of
the timing register 0 respectively. In the same way, TH1 and TL1 represent the lower byte and higher byte of
the timing register 1 respectively. All timing registers can be accessed by using the four different addresses
allotted to them. The addresses of registers have been stored in the Special Function Registers (SFR) from
80H to FF. In the 8052, one more pair (TH2 and TL2) exists for Timer/Counter 2. The operation of the timing
register may be timing or counting. There is a Timer Control (TCON) and a Timer Mode (TMOD) Registers
to configure all timers/counters in various modes. These timers can be used to measure pulse width from 1ms
to 65 ms, generate longer time delays and time intervals also.

The control register consists of special function registers such as Interrupt
Priority (IP), Interrupt Enable (IE), Timer Mode (TMOD), Timer Control (TCON), Serial Port Control
(SCON) and Power Control (PCON). All of these registers have allotted addresses in the special function
register bank of the 8051 microcontroller.

Register pairs RCAP2H and RCAP2L exist only in the 8052. Actually these
are the capture registers for Timer-2. When Timer-2 operates in capture-mode operation, a transition at the
8052 T2EX pin causes TH2 and TL2 to be copied into RCAP2H and RCAP2L. Timer-2 has a 16-bit auto-
reload mode and RCAP2H and RCAP2L hold the reload value for this mode operation.

The timing and control unit generates all the necessary timing and
control signals required for the internal operation of the microcontroller. This unit also generates necessary
control signals ALE, PSEN, RD and WR to control the external system bus.

The oscillator circuit generates the basic timing clock signal for the operation of the
microcontroller using a crystal oscillator. The 80C51 microcontroller operates at about 12 MHz frequency.
In this microcontroller, only the quartz crystal oscillator is connected with microcontroller externally and the
remaining oscillator circuit components are incorporated in the chip.

This register is used to decode the opcode of any instruction to
be executed. After decoding, this register sends the decoded information to the timing and control unit to
generate necessary signals for the execution of the specified instruction.

This is an on-chip EPROM and a basic circuit mechanism
to internally address it. EPROM is available in 8051, 8052, 8751 and 8752 microcontrollers and it is not
available in 8031 and 8032 microcontrollers. This block provides internal 128 bytes of RAM.

The RAM address register is used to generate address of RAM internally.

The ALU performs 8-bit arithmetic and logical operations
when the operands are held at the temporary registers TMP1 and TMP2. These temporary registers cannot be
accessed by users. The output of the ALU is stored in the accumulator in most of the arithmetic and logical
operations with few exceptions. Apart from addition and subtraction operations, the 8051 microcontroller
also performs multiplication and division operations. The logical operations such as AND, OR, NOT, Ex-OR
operations are also performed in ALU.

This register bank is a set of registers, which can be
addressed using their respective addresses in the range of 80H to FFH.

The 80C51 microcontroller has separate
address spaces for program memory as well
as data memory. Figures 13.5 and 13.6 show
the program and data memory respectively.
The logical separation of program and data
memory allows the data memory to be
accessed by 8-bit addresses and this 8-bit
memory access can be stored quickly and
manipulated by an 8-bit CPU. The 16-bit
data memory addresses can also be generated
through the DPTR register and data can be
read from external memory.

The program memory can be read only
such as ROM and EPROM. There can be up to 64 Kbytes of program memory. In the 80C51, the lowest 4K
bytes of program are exist on-chip and 60 K bytes program memory is external memory. In the ROMless
versions of the microcontroller, program memory is external and its capacity is about 64 K. The read strobe
for external program memory is the PSEN (Program Store Enable). Depending on the instructions, the same
address can refer to two logically and physically different memory locations.

64 K
Bytes
External

60 K
Bytes
External

4 K Bytes
Internal

AND

FFFF

0000

1000

0FFF

FFFF

0000

OR

The data memory has a separate address space from program memory. In the 80C51 microcontroller,
the lowest 128 bytes of data memory are available on-chip and maximum 64 K bytes of external RAM can
be addressed in the external data memory space. In ROMless versions of the microcontroller, the lowest
128 bytes are on-chip. The CPU of the microcontroller generates read and write signals during external data
memory accesses.

A map of the lower
part of the program memory is shown in Fig. 13.7
After reset, the microcontroller starts fetching
instructions from 0000H and the CPU also starts
execution from location 0000H. This can be either
on-chip memory or external memory depending
on the value of the EA pin. When EA is low, the
program memory is external. If EA is high, the
address from 0000H to 0FFFH will refer to on-
chip memory and the address from 1000H to
FFFFH can refer to external memory as depicted
in Fig. 13.5.

It is clear from Fig. 13.7 that each interrupt
is assigned a fixed location in program memory.
When any interrupt is executed, the CPU will jump
to that specified location and it starts execution of the service routine. For example, external interrupt 0 is
assigned to memory location 0003H. When external interrupt 0 is going to be used, its service routine must
start at the location 0003H. If the interrupt is not going to be used, its service location is available as general-
purpose program memory.

Usually, the interrupt service locations are available at 8-byte intervals: 0003H for external interrupt0,
000BH for Timer-0, 0013H for external interrupt1, and 001BH for Timer-1, etc. When the interrupt service
routine is short, it can reside entirely within that 8-byte interval. But the longer service routines can use a
jump instruction to skip over subsequent interrupt locations.

The lowest 4K bytes of program memory will be either in the on-chip ROM or in an external ROM. The
internal or external program memory selection can be made by EA (External Access) pin. In the 80C51, if

64 K
Bytes

External

Upper 128 Bytes
Internal RAM

Direct and Indirect
Addressing

Lower 128-
Byte

7F

00

FF

80

0000

AND

FFFF

0023H

001BH

0013H

000BH

0003H

0000H

8 Bytes

Reset

Interrupt
Locations

the EA pin is VCC then the program fetches to internal ROM addresses 0000H through 0FFFH. In this case,
program fetches to addresses 1000H through FFFFH are directed to external ROM.

When the EA pin is grounded, all program fetches are directed to external ROM.

The read strobe to external ROM, PSEN is used for all external program fetches. The PSEN is not acti-
vated for internal program fetches.

Figure 13.8 shows the hardware configuration for external program execution. Program memory
addresses are always 16 bits wide. Ports 0 and 2 are dedicated to bus functions during external program
memory fetches. Port 0 serves as a time multiplexed address/data bus. When the ALE (Address Latch Enable)
signal is high, Port 0 is used as the low byte of the Program Counter (PCL) as an address. Port 2 emits the
high byte of the Program Counter (PCH). Then PSEN strobes the EPROM and the code byte is read into the
microcontroller.

EPROM

ADDRESS

LATCH
80C51

ALE

P2

P
0

EA

PSEN OE

The hardware configuration for accessing up to 2 K bytes of external RAM is
shown in Fig. 13.9. The MOVX instruction is used to access the external data memory. The CPU in this case
is executing from internal ROM. Port 0 acts as a time multiplexed address/data bus to the RAM and 3 lines
of Port 2 are being used to page the RAM. The CPU of the microcontroller generates RD and RW signals
as required during external RAM accesses. The CPU can be used to access up to 64 K bytes of external
data memory. The external data memory addresses can be either 1 or 2 bytes wide. One-byte addresses are
frequently used in conjunction with one or more other I/O lines to page the RAM. Two-byte addresses can
also be used, in which case the high-address byte is emitted at Port 2.

The internal and external data memory spaces available to the 80C51 user are given in Fig. 13.10. The
80C51 microcontroller has 256 bytes of RAM on the chip. Among them, only the lower 128 bytes are used
for internal data storage. The upper 128 bytes are used as the special function registers (SFR). The detail of
the lower 128 bytes is illustrated in Fig. 13.11. The lower 128 bytes of RAM which can be accessed by both
direct and indirect addressing can be divided into three segments as listed below:

The lowest 32 bytes (00H to 1FH) of the on-chip RAM occupied as 4 banks
of 8 registers each as depicted in Fig. 13.12. The bank is selected by setting 2 bits in PSW. Only one bank is
active at a time. By default, Bank-0 is selected and its register addresses 00H to 07H. Each bank consists of
eight 1-byte registers R0 to R7.

Reset initializes the stack pointer to location 07H and it is incremented once to start from location 08H,
which is the first register (R0) of the second register bank. Therefore, in order to use more than one register
bank, the SP should be initialized to a different location of the RAM.

The next 16 bytes contain 20H–2FH form a block that can be addressed
as either bytes or individual bits. The bytes can be addressed from 20H to 2FH. The bits can be addressed
from 00H to 7FH as depicted in Fig. 13.13. For accessing the bits, specific instructions are used. Hence, bits
0–7 can also be referred to as bits 20.0–20.7 and bits 8–FH are the same as 21.00–21.7, and so on. Each of
the 16 bytes in this segment can also be addressed as a byte.

EA

RD

WR
WE OE

80C51

V
CC

ALE

P
0

P2P3

I/O

LATCH

ADDRESS

RAM

Ports,
Status and
Control Bits,
Timer,
Stack Pointer,
Accumulator

Accessible
by Indirect
Addressing

Only

Accessible
by Direct

and Indirect
Addressing

Accessible
by Direct
Addressing

FFH

80H

7FH

0

Lower
128

Upper
128

FFH

80H

Special
Function
Registers
(SFR)

The memory locations 30H–7FH are general-purpose RAM. On the other
hand, if the stack pointer has been initialized to this area, enough bytes should be left aside to prevent SP data
destruction.

78

70

68

60

58

50

48

40

38

30

28

20

18

10

08

00

7F

77

6F

67

5F

57

4F

47

3F

37

2F

27

1F

17

0F

07

8 BYTES

SCRATCH

PAD

AREA

BIT

ADDRESSABLE

SEGMENT

REGISTER

BANKS

3

2

1

0

0...

...7F

07H

06H

05H

04H

03H

02H

01H

00H

0FH

0EH

0DH

0CH

0BH

0AH

09H

08H

17H

16H

15H

14H

13H

12H

11H

10H

1FH

1EH

1DH

1CH

1BH

1AH

19H

18H

R7

R6

R5

R4

R3

R2

R1

R0

R7

R6

R5

R4

R3

R2

R1

R0

R7

R6

R5

R4

R3

R2

R1

R0

R7

R6

R5

R4

R3

R2

R1

R0

Bank-0 Bank-1 Bank-2 Bank-3

The upper 128 bytes of the on-chip RAM are used for special function registers (SFR) as shown in
Fig. 13.14. Actually, only 25 of these bytes are used. The other bytes are reserved for advanced versions of the
microcontroller. These bytes are associated with registers which are used for different functions and operations
of the microcontroller. Some of these registers are bit addressable and some of these byte addressable.

The 8051 microcontroller is available in DIP, QFP and LLC packages. This is a 40-pin IC. There are four

8-bit ports P0, P1, P2 and P4. Therefore, a total of 32 pins are covered for 4 ports. The remaining 8 pins are

VCC (power supply), VSS (ground), crystal oscillator pins XTAL1 and XTAL2, RST (Reset), PSEN (Program

Store Enable), ALE (Address Latch Enable), and EA (External Access) respectively. The pin diagram of 8051

microcontroller is depicted in Fig. 13.15 and schematic pin diagram is illustrated in Fig.13.16. The brief dis-

cussions of all these pins are explained in this section.

V
cc

 This pin is connected to +5 V supply voltage. A 125 mA current is drawn from supply for 8051/8031

microcontroller and the maximum power dissipation rating is about 1W.

V
ss

 This is a ground pin for supply. All the voltages are specified with respect to this pin.

2F

2E

2D

2C

2B

2A

29

28

27

26

25

24

23

22

21

20

7F

77

6F

67

5F

57

4F

47

3F

37

2F

27

1F

17

0F

07

7E

76

6E

66

5E

56

4E

46

3E

36

2E

26

1E

16

0E

06

7D

75

6D

65

5D

55

4D

45

3D

35

2D

25

1D

15

0D

05

7C

74

6C

64

5C

54

4C

44

3C

34

2C

24

1C

14

0C

04

7B

73

6B

63

5B

53

4B

43

3B

33

2B

23

1B

13

0B

03

7A

72

6A

62

5A

52

4A

42

3A

32

2A

22

1A

12

0A

02

79

71

69

61

59

51

49

41

39

31

29

21

19

11

09

01

78

70

68

60

58

50

48

40

38

30

28

20

18

10

08

00

FF

F7

EF

E7

DF

D7

CF

C7

BF

B7

AF

A7

9F

97

8F

87

F8

F0

E8

E0

D8

D0

C8

C0

B8

B0

A8

A0

98

90

88

80

B

ACC

PSW

IP

P3

IE

P2

SCON

P1

TCON

P0

TMOD

SP

TL0

DPL

TL1

DPH

TH0 TH1

PCON

The RST input pin resets the 8051, only when the RST pin is high for two or more
machine cycles. There are two ways to reset the 8051 microcontroller such as power-on reset and manual
reset. When the microcontroller is reset, all values in the register are lost. So the reset values of PC,
ACC, B, PSW and DPTR are 0000H and the content of SP is 0007H. The power on a reset circuit diagram
is shown in Fig. 13.17. A pull-down resistance of 8.2K is connected between RST and ground terminals.
A 10 μF capacitance is also connected from VCC to RST pin. These components provide a delay of about
24 clock cycles. Figure 13.18 shows the manual reset circuit. A push-button switch is added across the
10 μF capacitor.

ALE is used for demultiplexing the address and data bus when
the 8051 microcontroller is interfacing with external memory. Port 0 provides the low-byte of address bus
A7 to A0 and data bus D7 to D0. When ALE = 1, Port 0 used as address bus A7 to A0. If ALE = 0, Port 0 is
used as the data bus. Usually, ALE is activated periodically with a constant rate of one-sixth of the oscillator
frequency.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

T2/P1.0

T2EX/P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

RST

R x D/P3.0

T x D/P3.1

/P3.2

/P3.3

T0/P3.4

T1/P3.5

/P3.6

/P3.7

XTAL2

XTAL1

ss

INT0

INT1

WR

RD

V

8
0
5
1
M
ic
ro

c
o
n
tr
o
ll
e
r

Vcc

P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

P0.4/AD4

P0.5/AD5

P0.6/AD6

P0.7/AD7

/V

ALE

P2.7/A15

P2.6/A14

P2.5/A13

P2.4/A12

P2.3/A11

P2.2/A10

P2.1/A9

P2.0/A8

EA

PSEN

PP

S
E
C
O
N
D
A
R
Y
F
U
N
C
T
IO
N
S

VCC VSS

XTAL 1

XTAL 2

8
0
5
1
M
ic
ro
c
o
n
tr
o
lle
r

PORT 0/ADDRESS
AND DATA BUS

PORT 2/ADDRESS BUS

PORT 1

RST

EA/Vpp

PSEN

ALE/PROG

INT0

INT1

WR

RD

R × D

T × D

T0

T1

P
O
R
T
3

30 pF

30p F

12 MHz

V
CC

V
CC

V
SS

RST

8
0
5
1
M
ic
ro
c
o
n
tr
o
ll
e
r

10 Fm

8.2 kW

10 Fm

8.2 kW

V
CC

V
CC

RST

V
SS

RESET

8.2 kW

8
0
5
1
M
ic
ro
c
o
n
tr
o
ll
e
r

This pin is connected to either Vcc or ground. When this pin is connected
to Vcc or high, 8051 can execute programs from internal program memory till address 0FFFH. If EA is low,
the microcontroller can execute from external memory only.

This pin is an active-low output control signal. This is used as
a read signal for reading data from the external program memory. This pin is activated after every six-clock
cycles during fetching the data from external program memory. The PSEN pin remains high during execution
of a program from internal ROM.

XTAL
1
 and XTAL

2
are the oscillator pins to connect the crystal oscillators of nominal frequency of 12

MHz or 11.059 MHz. XTAL1 is input to the inverting oscillator amplifier and input to the internal clock gen-
erating circuits. XTAL2 is output from the invert-
ing oscillator amplifier. Usually, the quartz crystal
oscillator is connected to XTAL1 and XTAL2 and
it also needs two capacitors of 30 pf values. One
side of each capacitor is connected to the grounds
as shown in Fig. 13.19.

When the 8051 microcontroller is connected to
a crystal oscillator and power supply is given, we can
observe the frequency on the XTAL2 pin. The 8051
microcontroller’s operation is synchronizing with
the crystal oscillator output signal. Effectively, the
8051 operates based on machine cycles. A machine
cycle is the minimum amount of time in which a
single 8051 instruction can be executed, but some
instructions take multiple machine cycles. In 8051,
a machine cycle consists of a sequence of 6 states
numbered S1 through S6 (twelve clock cycles) as
shown in Fig. 13.20. Each state time lasts for two oscillator periods. A machine cycle is also called an instruc-

tion cycle. Each instruction cycle has six states (S1–S6) and each state has two pulses (P1 and P2). Hence a
machine cycle takes 12 oscillator periods or 1 if the oscillator frequency is 12 HMZ.

+VCC

10 Fn

8.2 K 30 pF

11.0592 MHz
19

18
30 pF

9
RST

X2

8051

31

X1

EA/VPP

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

S1 S2 S3 S4 S5 S6

One Instruction Cycle

Port 0 consists of 8-bit bidirectional input/output port pins. These are bit
addressable. This port has been given an address in the SFR address range. Port 0 acts as multiplexed low
order address/data bus AD7–AD0. ALE is used for demultiplexing address and data bus. When ALE is 0, it
provides data D7–D0, but when ALE is 1 it is used as address A7–A0. Port 0 pins are open drain I/O. To use
the pins of Port 0, each pin must be connected externally to a 10 k-ohm pull-up resistor.

Port 1 pins can be used as either input or output. This port is an 8-bit quasi-
bidirectional bit addressable port, and Port 1 pins are internally pulled high with fixed pull-up resistors.
Hence, this port does not need any pull-up resistor as it already has a pull-up resistor internally. This port has
been given an address in the SFR address range. The user should configure it either as an input or output port.
This port acts as an input port when it writes 1 to all its 8 bits. This port acts as an output port when it writes
0 to all its 8 bits. Therefore Port 1 pins have no dual functions.

Port 2 is also an 8-bit quasi-bidirectional bit addressable I/O port and port
pins are pulled high internally. It has also been given an address in the SFR address range. Port 2 generates
higher eight bits of address (A15–A8) during external program and data memory accesses, if ALE is high
and EA is low. Port 2 receives higher order address bits during programming the internal ROM of 8051
microcontroller.

Port 3 is also an 8-bit bi-directional bit addressable I/O port with internal
pull-up resistances. This port has been given an address in the SFR address range. There are other functions
multiplexed with Port 3 pins as given in Table 13.7.

 Port 3 Alternative function

 P3.0 Acts as serial input data pin (R×D)

 P3.1 Acts as serial output data pin (T×D)

 P3.2 Acts as external interrupt pin 0 (INT0)

 P3.3 Acts as external interrupt input pin 1 (INT1)

 P3.4 Acts as external input to timer 0 (T0)

 P3.5 Acts as external input to timer 1 (T1)

 P3.6 Acts as write control signal for external data memory (WR)

 P3.7 Acts as read control signal for external data memory read operation (RD)

The port structures of 8051 microcontrollers are depicted in Fig. 13.21 and Fig. 13.22. Each port consists
of a latch, an input buffer and an output driver. The D flip-flop is used as bit latch and it clocks from internal
data bus in response to write to latch from internal CPU bus. The output of a flip-flop can be read onto the
internal data bus in response to a read latch signal from the internal CPU bus. The operation of the read pin is
different from read latch. The port pin can be read onto the internal data bus whenever CPU sends a read-pin
command.

Ports 1, 2 and 3 are bi-directional ports with fixed internal pull-up resistors. When a port pin is used as
input, 1 must be written to a port latch. The Q = 1, Q = 0 FET is OFF and the pin is simply pulled high by
the pull-up resistor. Thereafter, the pin status can be read onto the internal data bus. Writing ‘1’ to output pin
P1.X of Port 1 is shown in Fig. 13.23.

The port pin can be used as output while writing 0 onto the pin. Then Q = 0, Q = 1 FET is ON. The port
pins can sink more current than its source current. Sinking current is about 0.5 mA but source current is in
the order of tens μA only. Figure 13.24 shows writing ‘0’ to output pin P1.X of Port 1. Reading ‘1’ and ‘0’ at
input pin P1.X of Port 1 using MOV A, P1 are depicted in Fig. 13.25 and Fig. 13.26 respectively.

Read Latch

Internal CPU Bus

Write Latch

Read Pin

P1.X pin

Load (L1)

M1

P1.X pin

TBI

TB2

CLK

D Q

Q

VCC

Read Latch

Internal CPU Bus

Write Latch

Read Pin

P0.X pin

M1

P pin0.X

TB1

TB2

CLK

D Q

Q

Read latch

Write a 1 to the pin

Internal CPU
bus

Write to latch

Read pin

P1.X

CLK

D Q
1

0

TB1

TB2

Q

VCC

Load (L)1

P1.X pin

output pin is VCC

M1

OFF

1

Read latch

Write a 0 to the pin

Internal CPU
bus

Write to latch

Read pin

P0.x

CLK

D Q
0

1

TB1

TB2

Q

VCC

Load (L)1

P1.X pin

output pin is ground

M1

ON

0

Read latch

Internal CPU
bus

Write to latch

Read pin

P1.X

CLK

D Q
1

0

TB1

TB2

Q

VCC

Load (L)1

P1.X pin

MOV A, P
external pin=High

1

M1

OFF

Read pin = 1 Read latch = 0
Write to latch = 1

1

Read latch

Internal CPU
bus

Write to latch

Read pin

P1.X

CLK

D Q
1

0

TB1

TB2

Q

VCC

Load (L)1

P1.X pin

MOV A,P1
external pin–Low

M1

OFF

Read pin = 1 Read latch = 0
Write to latch = 1

0

Port 0

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

8
0
5
1
M
ic
ro

c
o
n
tr
o
ll
e
r

V
CC

10 k�

Port 0 is a bi-directional open drain I/O without internal pull-up resistors. When this port is configured
as an input, it floats as depicted in Fig. 13.27. If ‘1’ is written to a Port 0 latch, FET is OFF, the pin floats and
can be used as high-impedance input. To get output of Port 0 pins external pull-up resistances are connected
between Port 0 pins and +Vcc as shown in Fig. 13.28.

Read latch

Internal CPU
bus

Write to latch

Read pin

TB1

TB2

M1

P0.X pin

P X0.

CLK

D Q

Q

The 8051 microcontroller has two 16-bit timers/counters such as TIMER0 (T0) and TIMER1 (T1). Each timer
can be programmed to count internal clock pulses of 8051 microcontroller. These timers are used for the fol-
lowing functions:

 Calculate time delay between two events

 Counting the number of events

 Generate baud rate for serial ports

 Frequency measurement

 Pulse width measurement

Generally a timer is used to count machine cycles and provides a specified time delay. Actually a machine
cycle consists of 12 oscillator periods. Hence the counting rate is about

12

Oscillator frequency .

When the oscillator frequency is 12 MHz, the time period of one clock cycle is 1μs. The counter of the
8051 microcontroller is incremented in response to a transition from 1 to 0 at external pin, either T0 or T1.
The counter output is a count value which represents the occurrence of 1 to 0 transitions at the external pin.
Usually, counters are used as up counter. Figure 13.29 shows a 3-bit counter which counts from 0 to 7 and the
overflow flag is set after counting 7. The 3-bit counter is not used in the 8051 microcontroller, but 8-bit and
16-bit counters are commonly used. When the 16-bit counter overflows from 0000H to FFFFH, it can set a
flag and generates an interrupt.

D D D D
Q Q Q Q

Q Q Q Q
Clock Clock Clock Clock

Overflow
Flag

Logic 1

0 1 2 3 4 5 6 7 0

Clock

Q0

Q1

Q2

Overflow
Flag

The 16 bits of the timer consists of higher byte THx and the lower byte TLx, where x may be either 0 or
1. For TIMER1, TH1 is the higher byte of timer 1 and TL1 is the lower byte of timer 1 as shown in Fig. 13.30.
Similarly, TH0 is the higher byte of timer 0 and TL0 is the lower byte of timer 0 as depicted in Fig. 13.31.

TH
1

TL
1

D
15

D
7

D
14

D
6

D
13

D
5

D
12

D
4

D
11

D
3

D
10

D
2

D
9

D
1

D
8

D
0

The timer can be operating in four different modes, namely mode 0, mode1, mode 2 and mode 3. The mode
bits M1 and M0 in the TMOD register are used to select any one of the operating modes as given below:

 M
1 M

0 Operating Modes Functions

 0 0 Mode 0 13-bit timer mode

 0 1 Mode 1 16-bit timer mode

 1 0 Mode 3 8-bit timer mode

 1 1 Mode 4 Split timer mode

In this mode, timer operates as a 13-bit timer. THx register is used as an 8-bit
counter and TLx can be used as a 5-bit counter as shown in Fig. 13.32. The count value varies from 0000H to
1FFFH. Whenever the timer reaches its maximum value 1FFFH, it returns to 0000H and the overflow flag TF
is set. The timer clock frequency is oscillator frequency/12. The clock frequency input to THx is

Oscillator frequency Oscillator frequency

12 2 12 325 =

When oscillator frequency is 12MHz, the clock frequency input to THx is =

12

12 32

MHz
.

The overflow flag is set to zero after 32 × 256 = 8192 machine cycles.

TH
0

TL
0

D
15

D
7

D
14

D
6

D
13

D
5

D
12

D
4

D
11

D
3

D
10

D
2

D
9

D
1

D
8

D
0

Tx (Pin)

Control

TLx
5 bits

THx
8-bits

TFx Interrupt

12

C/ =1T

C/ =0T

:Osc.

 In timer mode-1, timer operates as a 16-bit timer where THx register is used as
an 8-bit counter and TLx is used an 8-bit counter. The timer higher byte THx is connected in cascade with
the timer lower byte TLx as shown in Fig.13.33 where the timer counts from 0000H to FFFFH. TLx is
incremented from 00H to FFH. After counting FFH, the timer resets to 0 and THx is incremented by 1. As
TLx and THx operate as 16-bit counter, it can count up to 65536D. The overflow occurs after FFFFH and
timer overflow flag is set. After overflow, the counter reset at 0000H when the timer starts counting from a
initial value, the time delay will be

(,)
Frequency

Initial Value12 65 536 -

where, initial value is equal to TLx + THx × 256

TFx InterruptTLx
8-bits

THx
8-bits

12:Osc.

C/ =1T

INT1 (Pin)

Tx (Pin)

TR1

Gate

C/ =0T

In mode 2, timer acts as an 8 bit timer, any values from 00H to FFH to be loaded
into the timer’s register THx. Initially THx will be loaded with the 8-bit value, after that the microcontroller
copies the content of THx into TLx. Then timer starts counting. In this mode, time provides an auto–reload
feature. TLx starts counting up, when TLx reaches FFH, subsequently it is incremented instead of resetting to
0, the TLx must be reset to the value which is stored in THx. Therefore, in timer mode 2, just after overflows
of TLx, it is reloaded with the value i.e. the content of THx as depicted in Fig.13.34. Hence, the time delay
between overflows is about

()
Frequency

THx12 256 -

OSC 12:

TR

TLx

THx

TFx
Interrupt

In this mode,
the Timer 0 divides into two 8-bit counter/
timers TL0 and TH0. TH0 and TL0 are two
separate timers with overflow flags TF1 and
TF0 respectively as shown in Fig.13.35. The
first counter TL0 acts like mode 0 without
pre-scalar. The second counter TH0 counts
CPU cycles, uses TR1 (timer 1 run bit) as
enable, uses TF1 (timer 1 overflow bit) as
flag and uses timer 1 interrupt. When the
timer 1 is in mode 3, Timer 1 works as
counter stopped if it is in mode 3. Timer 1
operates in mode 0, 1, or 2 and it has gate
(INT1) and external input (T1) but no flag or
interrupt. Timer 1 can also be used as baud
rate generator.

The timers T0 and T1 can be
used as counters. The difference between the
counter and timer is the source of the clock
pulses to the counters. While it is used as a
timer, the oscillator output pulse can be used
as source of clock pulses after divide by 12.
When it is used as a counter, pin T0 (P3.4)
provide pulses to counter 0 and pin T1(P3.5)
supplies pulses to counter 1. The C/T bit in
TMOD must be set to 1 to enable pulses
from the Tx pin to reach the control circuit.
Figure 13.36 shows the Timer/counter logic.

The timer/counter operation can be controlled by Timer Mode control (TMOD) register and Timer/counter
Control (TCON) Register. In this section, the function of TMOD and TCON are explained briefly.

The timer/counter control (TCON) register consists of control bits and flags for
timers in the upper nibble and control bits and flags for the external interrupt in the lower nibble as depicted
in Fig. 13.37.

TL0
8-bits

TH0
8-bits

TF0

TF1

Interrupt

Interrupt

Over flow flag

Over flow flag

Timer clock
(f/12)

f/12

TR1

INT1 (Pin)

Gate

12:Osc.

C/ =1T

C/ =0T

Timer

Counter

Tx (Pin)

To Timer

TF1 TF0TR1 TR0 IE1 IE0IT1 IT0

D
7 D

6
D

5 D
4

D
3

D
2

D
1

D
0

Timer 1 overflows flag. It is set by the hardware when timer/counter 1 overflows. It is cleared by
hardware as processor vectors to the interrupt service routine.

GATE C/ M1 M0T GATE C/ M1 M0T

Timer 1 Timer 0

D
7 D

6
D

5 D
4

D
3

D
2

D
1

D
0

Timer 1 runs control bit. This is set to 1 by software program to enable timer 1 to count. It is cleared
to 0 by program to halt timer.

Timer 0 overflows. It is set by the hardware when timer/counter 0 overflows. It is cleared when the
processor vectors to execute interrupt service routine.

Timer 0 runs control bit. It is set to 1 by program software to enable timer 0 to count. It is cleared
to 0 by software to halt timer.

External Interrupt 1 edge flag. This is set to 1 when a high to low (the falling) edge signal is received
on port pin P3.3 (INT1). It is cleared when processor vectors to ISR.

Interrupt 1 type control bit. This bit is set to 1 by program to enable external interrupt 1 to be
triggered by a falling edge signal. It is set to 0 by program to enable a low level signal on external interrupt
1 to generate an interrupt.

External Interrupt 0 edge flag. It is set to 1 by program to enable interrupt 0 to be triggered by a high
to low (falling edge) signal. This is set to 0 by program to enable a low-level signal on external interrupt 0 to
generate an interrupt.

The time node control
(TMOD) register is used to set the various timer operating
modes. Actually TMOD is related with the two times and
can be considered to be two duplicate 4-bit registers as
shown in Fig. 13.38.

If TRx of TCON is set and GATE=1, timer/counter x will operate only when INTx pin is high
for hardware control. When GATE=0, timer/counter x will run only if TRx =1 for software control.

The C/T bit in TMOD register is used to take decision whether the timer is
used as a timer or an counter. If the timer or counter selector bit is cleared (C/T=0), it is used as a timer to
generate time delay. When C/T =1, it is used as a counter by counting pulses from external input pin Tx (T1
and T0).

Timer/counter operating mode selector bit. This bit is set or cleared by program to select mode.

Timer/counter operating mode selector bit. This bit is set or cleared by program to select mode.

M1 M0 Operating Modes Functions

0 0 Mode 0 13-bit timer mode.

 THx as 8-bit timer/counter and TLx as 5 bit timer/counter (prescalar).

0 1 Mode 1 16-bit timer mode.

 THx and TLx are cascaded and there is no prescalar.

1 0 Mode 3 8-bit Auto reload timer/counter mode. THx hold a count value which is to be

reloaded into TLx after each overflows.

1 1 Mode 4 Split timer mode. Timer 0 is used as two 8-bit timers. Timer 1 stopped counting

and timing function is allowed. Timer 1 can be used as baud rate generator.

Serial communication is most commonly used either to control or to receive data from an embedded micro-
processor. The advantage of serial communication is that the number of wires required is less as compared
to that in parallel communication. Serial communication is a form of I/O in which the bits of a byte begin
transferred appear one after the other in a timed sequence on a single wire. Figure 13.39 shows the serial
communication through telephone line where P/S is parallel in serial out shift register, S/P Serial in parallel
out shift register, D/A digital to analog converter and A/D is analog to digital converter.

Sender Receiver
Single Wire

Data Flow
P/S D/A A/D S/P

There are two methods of serial communications, such as synchronous and asynchronous
communications. In synchronous communication, transfer a block of data at a time, but in asynchronous
communication transfer a single byte at a time. Software can be used for synchronous and asynchronous
communications, but the programs can be tedious and long. Therefore hardware such as UART and USART
are developed. Usually UART (Universal Asynchronous Receiver Transmitter) or USART (Universal
Synchronous Asynchronous Receiver Transmitter) are used in serial communication. The 8051 microcontroller
has a build in UART.

8051 support a full duplex serial port (UART). 8051 has T x D and R x D pins for transmission and
receive serial data respectively. The function of serial port is to perform parallel to serial conversion for data
output and serial to parallel conversion for data input. The block diagram of UART is shown in Fig. 13.40.

SBUF

T1

Send 8-bit
Data

Transmitter Buffer
is Empty

Serial data transmit

Ten bit
parallel

to
Serial

Conversion

8-bit
Data

Stop bit

Stop bit

Tx

Start bit

8-bit Data

Data Bits
Bit time = 1/fbaud

Stop bit

The UART can be used for 9-bit data transmission and receive where 8-bits represent the data byte
(information of character) and the 9th bit is the parity bit. A block diagram of UART transmitter is depicted in
Fig. 13.41 where the 9th bit is used as the parity bit. Figure 13.42 shows the block diagram of UART receiver
where the 9th bit is used as the parity bit.

SBUF

R1

Receive 8-bit
Data

Receive dat is
available

Serial data Recieve

Ten bit
serial

to
parallel

Conversion

8-bit
Data

Stop bit

Stop bit

Rx

8-bit Data

Data Bits
Bit time = 1/fbaud

Start bit

Stop bit

(b) Receiver half

SBUF

TB8

T1

Send 8-bit
Data

Put the parity bit
as 9th bit

Transmitter buffer
is empty

Serial data transmit

Eleven bit
parallel

to
Serial

Conversion8-bit
Data

Stop bit

9th bit

Stop bit

Tx

Start bit

8-bit Data

Data Bits
Bit time = 1/fbaud

Stop bit P

The 8051 serial communication can support RS232. RS232 is not compatible to TTL. Therefore, to con-
nect any RS232 to a microcontroller, we must use voltage converters such as MAX232 to convert TTL logic
level to the RS232 voltage levels as shown in Fig.13.43. The MAX232 IC is also known as line driver. The
8051 microcontroller has two pins such as TxD and RxD which are used for transferring and receiving data
serially. TxD and RxD pins are the part of Port 3 (P3.0 and P3.1). These pins are TTL compatible and a line
driver is required to make these pins RS232 compatible. The serial communication between two microcon-
trollers and between microcontroller and microprocessor is also possible.

SBUF

R1

RB8

Receive 8-bit
Data

Receive data is
available

Read the parity bit
as 9th bit

Serial data Receive

Eleven bit
serial

to
parallel

Conversion

8-bit
Data

Start bit

Stop bit

9th bit

Rx

P Stop bit8-bit Data

Data Bits
Bit time = 1/fbaud

Start bit

sub-D9(F)

O
5O

4
O

3O
2O

1

O
9
O

8 O
7 O

6
C1 C3

+5V

C2

10µ/16V 10µ/16V

10µ/16V

0.1µ

10µ/16V

TTL LEVELRS232 TTL LEVEL

Microcontroller
MAX232

13
14

Rx
Tx

12

11

The 8051 microcontroller use the following registers for serial data communication:
 SBUF(Serial Port data buffer)
 SCON(Serial port control) register
 PCON(Power control) register

The serial port data buffer register has two registers. One
register is used to hold data that to be transmitted through TxD of 8051 and it is write only type. The other
register can able to hold data from external sources through RxD of 8051 and it is read only type.

The format of SCON (serial port control) register is
shown in Fig. 13.44.

SM0 SM2SM1 REN TB8 TIRB8 RI

D
7 D

6
D

5 D
4

D
3

D
2

D
1

D
0

Bit Name Bit Address Function

7 SM0 9FH Serial port mode bit 0. This bit is set/cleared by program to select operating mode

as shown in Table 1.1.

6 SM1 9EH Serial port mode bit 1. This bit is set/cleared by program to select operating mode

as shown in Table 1.1.

5 SM2 9DH This pin enables the mutliprocessor communication feature in modes 2 and 3. In

mode 2 and 3, if SM2=1, then RI will not be activated, if the received 9th data

bit RB8 is 0. In Mode 0, SM2 must be 0. In mode 1, if SM=1, then RI will not be

activated if a valid stop bit is not received.

4 REN 9CH Receiver Enable bit. This bit must be set in order to receive characters. This bit

must be cleared to disable reception.

3 TB8 9BH Transmit bit 8. The 9th bit will be transmitted in mode 2 and 3. This bit can be

set/cleared by software.

2 RB8 9AH Receive bit 8. The 9th bit will be received in mode 2 and 3. In mode 1, if SM2=0,

RB8 is the stop bit that was received. In mod 0, RB8 is not used.

1 TI 99H Transmit Interrupt Flag. This bit is set by hardware at the end of the 8th bit time

in mode 0. This can also be set by hardware at the beginning of the stop bit in

other modes. This bit can be cleared by software.

0 RI 98H Receive Interrupt Flag. This bit is set by hardware at the end of the 8th bit time

in mode 0 or halfway through the stop bit in other modes. This bit can be cleared

by software.

SM0 SM1 Serial Mode Description Baud Rate

0 0 0 8-bit Shift Register Oscillator frequency/ 12

0 1 1 8-bit UART Variable which is set by Timer 1

1 0 2 9-bit UART Oscillator frequency/ 32 or Oscillator frequency / 64

1 1 3 9-bit UART Variable which is set by Timer 1

The format of power control register is shown in Fig.13.45

D
7 D

6
D

5 D
4

D
3

D
2

GF1 GF0 PD IDL

D
1

D
0

SMOD - - -

Double baud-rate bit. When this bit is set to 1, timer 1 is used to generate baud rate and the baud
rate is doubled while the serial port is used in modes 1, 2 or 3.

General-purpose flag bit

General-purpose flag bit

Power down bit. When this bit is set, power down operation in 8051 is performed. This is available
only in CHMOS processors.

Idle mode bit. If this bit is set, it activates idle mode operation in 8051. This is available only in
CHMOS processors.

There are four serial communication modes such as

 Mode 0—Shift register mode

 Mode 1—Standard UART mode

 Mode 2—Multiprocessor mode

 Mode 3—9 bit UART mode

The above modes can be selected by the programmer by proper setting the mode bits SM0 and SM1 in
SCON register.

This mode is known as shift register mode. When SM0 and SM1 are set to 00, the serial
port data buffer (SBUF) receives and transmit data through the RxD pin. TxD pin outputs the shift clock only.
RxD pin is connected to the internal shift frequency clock pulse to provide shift pulses to external circuits.
In this mode eight data bits are transmitted or received. The shit frequency or baud rate is fixed and it can
be determined from the system clock frequency. When the oscillator frequency is fosc, the baud rate can be
expressed as f

12

osc . For a 12 MHz crystal, the baud rate is 1 MHz. The transmission operation is

initiated by executing instructions to write data to SBUF. Then data can be shifted out on RxD line when the
clock pulse is applied through TxD line. The receiving operation is initiated when REL=1 and RI=0. REN is
set at the beginning of the program and then RI is cleared to start a data input operation. Figure 13.46 shows
the data transmission/reception in mode 0.

D7 D6
D5 D4 D3 D2 D1 D0

R×D

T×D

SBUF

OSC 12

Data transmitted/received

Clock pulse f /12osc

When SM0 and SM1 are set to 01, mode 1 operation is performed. In this mode, 10 bits
are transmitted through TxD pin or received through RxD pin. These 10 bits consists of one start bit (0), 8
data bits (LSB first) and a stop bit (1) as shown in Fig. 13.47. The transmit interrupt flag TI is set once after
sending 10 bits. Each bit interval is the inverse of the baud rate frequency and each bit must be maintained
high or low over this interval. After receiving, the stop bit goes to RB8 in SCON register. The baud rate is
variable and it is computed by the timer 1 overflow rate. The baud rate can be expressed as

Baud rate
Timer overflow rate32 1

2
SOD

=

When the timer 1 operates in auto-reload mode or mode 2 with reload count value in TH1, after each
over flow the content of TH1 must be loaded into TL1. In this mode of operation, the high nibble of TMOD
is 0010B. The baud rate can be expressed as

([])
Baud rate

TH

oscillator frequency

32 12 256 1

2SOD
=

-

For example, if the contents of TH1 are 230D and the SOD bit in PCON is 0, the baud rate is 1201 baud
or 1.2K(approx) for 12 MHz oscillator frequency.

D1 D2 D3 D4 D5 D6 D7 D8

Receiver samples data at the centre of bit time

At least
one stop bit

Stop bit

Stop bit goes to
RB8 for reception

Data Bits

Bit time = 1/fbaud

Idle state

Start bit

In this mode, serial operates as a 9-bit UART and 11 bits are transmitted or received. These
11 bits are a start bit (always 0), 8 data bits (LSB first), a programmable 9th bit and a stop bit (always 1) as
shown in Fig. 13.48. Programmer can define 9th bit as TB8 in SCON and it can be used as the parity bit of
data byte. On reception, the 9th bit is placed into RB8 in SCON. In mode 2, the bit SMOD in PCON and
oscillator frequency determine the baud rate and it can be expressed as

 ()Baud rate oscillator frequency
64
2SOD

=

Receiver samples data at the center of bit time

At least
one stop bit

Stop bit

Data Bits

Bit time = 1/fbaud

Idle state

Start bit

D1 D2 D3 D4 D5 D6 D7 D8 D9

If SMOD = 0, ()Baud rate oscillator frequency
Oscillator frequency

64
2

64

0

= =

If SMOD = 1, ()Baud rate oscillator frequency
Oscillator frequency

64
2

32

1

= =

In this mode, serial port operates as a 9-bit UART with variable baud rate and 11–bits are
transmitted or received. This operating mode is same as mode 2 except baud rate is programmable through
the timer 1 overflow rate. The baud rate calculations are same as that of mode 1 and it can be expressed as

([])
Baud rate

TH

oscillator frequency

32 12 256 1

2SOD
=

-
.

8051 microcontrollers can be operating in
multiprocessor mode for serial communica-
tion mode 2 and mode 3. In this mode, there
is a master processor (master microcon-
troller) which can communicate with more
than one slave processors (slave microcon-
trollers) as shown in Fig. 13.49. SM2 bit in
SCON register is used as a flag for multi-
processor communication. Whenever a byte
has been received, the 8051 will set the
RI (Receive Interrupt) flag. Consequently,
the program knows that a byte has been
received and it is required to process data.

In multiprocessor mode, 9-bits are
transferred or received. When SM2 is set,
the RI flag will be triggered. If the 9th bit
is cleared, The RI flag will never be set.
Generally, the 9th bit is kept clear so that the
RI flag is set after receiving any character.
In serial communication Modes 2 and 3, the
transmitting processor is used as a master
8051 which can control several slave 8051 microcontroller. The TxD outputs of the slave microcontrollers are
joined together and connected to the RxD input of the master microcontroller. The RxD inputs of the slaves
are tired together and connected to the TxD output of the master. Each slave microcontroller is assigned a
specified address. When the master wants to transmit a block of data, it must sends first the address byte of the
slave. While transmitting address byte by the master, the 9th bit is ‘1’ and 9th bit ‘0’ during data bytes transfer.

Whenever the master 8051 transmits an address byte, all slave 8051 microcontrollers are interrupted.
Then slave microcontrollers check to observe if they are being addressed or not. Subsequently, the addressed
slave clear its SM2 bit and wait to receive the data bytes. Other slaves who are not addressed can continue
their operations ignoring the incoming data bytes and they will be interrupted again while the next address
byte is transmitted by master controller. Usually, the master communicates with one slave at a time and trans-
mit 11 bit which consists of one start bit(0), 8-data bits(LSB first) TB8 and a stop bit(1). The TB8 is ‘1’ for
address byte and ‘0’ for a data byte.

8051

Microcontroller

8051

Microcontroller

8051

Microcontroller

8051

Microcontroller

SLAVE-1

SLAVE-2

SLAVE-n

MASTER

TxD

RxD

TxD

RxD

TxD

RxD

RxD

TxD Address-1

Address-2

Address-n

When the master microcontroller wants to communicate with a slave microcontroller, it sends the address
of the slave with TB8=1. Then all slave microcontrollers receive this address. Initially SM2 bit set to ‘1’. As
all slave microcontrollers check the address to observe if they are being addressed or not. Then the selected
slave microcontroller byte clear its SM2 bit to ‘0’ so that data can be received. In mode 2 and 3, Receive
Interrupt (RI) flag is set if REN=1 and RI=0, SM2=1 and RB8=1 and a valid stop bit is received. After proper
communication between master microcontroller and a slave microcontroller, the data bytes will be send by
the master with TB8=0.

An interrupt is the occurrence of internal and external events that interrupts the micro-controller to provide
service any device. In case of external events, the status of microprocessor pin is altered. In internal events,
interrupts are generated due to timer overflow or transmission/reception of a byte through the serial port.
After receiving an interrupt signal, the microcontroller interrupts the execution of main program. After sav-
ing the current status, the microprocessor jump to the memory location specified by interrupt and executes a
subprogram called interrupt service routine (ISR). This memory location is called vector. Hence the interrupt
is known as vector interrupt. After provide service to the interrupt, microprocessor restores the original status
and continue to execute main program again.

There are five interrupt sources for the 8051 microcontroller. The priority wise five different interrupts of
8051 microcontroller are given below:

 External Interrupt 0

 Timer 0

 External Interrupt 1

 Timer 1

 Serial Port

These interrupts can recognize 5 different events that can interrupt regular program execution.

 Each interrupt can be enabled separately.

 Each interrupt type has a separate vector address.

 Each interrupt type can be programmed to one of two priority levels.

 External interrupts can be programmed for edge or level sensitivity.

 Each interrupt can be enabled or disabled by setting bits of the IE (interrupt enable) register. Likewise,
the whole interrupt system can be disabled by clearing the EA bit of the same register as shown in
Fig. 13.50.

In 8051 microcontroller, interrupts are generated by internal operations such as Timer flag 0 (TF0),
Timer flag 1 (TF1), and serial port interrupt (RI or TI). When the timer/counter 0 overflows, the TF0 flag
is set to 1. If the timer/counter 1 overflows, the TF1 flag is set to 1. The vector address of TF0 and TF1 are
000BH and 001BH respectively. The TF0 and TF1 flag will be cleared when the timer flag interrupt makes
a program call from the timer subroutine. In serial port interrupt, a data byte will be received if RI=1 and a
data byte will be transmitted if TI=1. The vector address of RI or TI is 0023H. Whenever RI or TI becomes
1, the 8051 microcontroller is interrupted and jumps to the memory location 0023H to execute the Interrupt
Service Routine (ISR).

0

0

IT0

IT1

IE0

IE1

EX0

EX1

EA

Interrupt

ET0

ET1

ES

Register TCON

Register IE

1

1

INT0

INT1

TF0

TF1

TI

RI
OR

OR

Timer 0

Timer 1

UART

Interrupts are also generated by external signals INT0 and INT1. The INT0 and INT1 are located on pins
P3.2 and P3.3 respectively. External inputs on INT0 and INT1 pins set the interrupt flags IE0 and IE1 in the
TCON register to 1 by level triggered or edge triggered. If the IT0 and IT1 bits of the TCON register are set,
an interrupt will be generated on high to low transition, i.e. on the falling pulse edge. If these bits are cleared,
an interrupt will be continuously executed as far as the pins are held low. The vector address of external inter-
rupt 0 and external interrupt 1 are 0003H and 0013H respectively.

 Interrupt Source Flag Vector Address

 External Interrupt 0 IE0 0003H

 Timer 0 TF0 000BH

 External Interrupt 1 IE1 0013H

 Timer 1 TF1 001BH

 Serial Port RI&TI 0023H

All interrupt operations are controlled by software. The programmer should program the control bits in fol-
lowing registers

 Interrupt Enable (IE) Register

 Interrupt Priority(IP) register and

 Timer Control Register(TCON)

In this section IE and IP registers are explained.

IE is Interrupt Enable Register which is shown in Fig. 13.51.
The function of EA, ES, ET1, EX1, ET0 and EX0 are given below:

global interrupt enable/disable:

 0—disables all interrupt requests.

 1—enables all individual interrupt requests.

enables or disables serial interrupt:

 0—UART system cannot generate an interrupt.

 1—UART system enables an interrupt.

bit enables or disables Timer 1 interrupt:

 0—Timer 1 cannot generate an interrupt.

 1—Timer 1 enables an interrupt.

bit enables or disables external 1 interrupt:

 0—change of the pin INT0 logic state cannot generate an interrupt.

 1—enables an external interrupt on the pin INT0 state change.

bit enables or disables timer 0 interrupt:

 0—Timer 0 cannot generate an interrupt.

 1—enables timer 0 interrupt.

bit enables or disables external 0 interrupt:

 0—change of the INT1 pin logic state cannot generate an interrupt.

0 X 0 0 0 0 0 00 X 0 0 0 0 0 00 X 0 0 0 0 0 0

bit7

IE EA

bit6 bit5

ET2

bit4

ES

bit3

ET1

bit2

EX1

bit1

ET0

bit0

EX0

Value after Reset

Bit name

Bit Name Bit Address Function

7 EA AFH Global interrupt enable/disable
6 - AH Undefined
5 - ADH Undefined
4 ES ACH Enable serial interrupt
3 ET1 ABH Enable Timer 1 interrupt
2 EX1 AAH Enable External 1 interrupt
1 ET0 A9H Enable Timer 0 interrupt
0 EX0 A8H Enable External 0 interrupt

The Interrupt Priority (IP) Register is used to determine the
interrupt priority. Figure 13.52 shows the bit addressable IP register. When the bit is 0, the corresponding
interrupt has lowest priority and if the bit is 1, the corresponding interrupt has the higher priority. When
two interrupts occur at the same time, the higher priority interrupt gets service fast and then the next higher
priority interrupt gets service. The priority of
interrupts is given below:

 IE0 (External Interrupt 0)

 TF0 (Timer Flag 0)

 IE1 (External Interrupt 1)

 TF1 (Timer Flag 1)

 RI/TI (Serial Port)

Assume that the microcontroller is executing the main program and the external interrupt INT1 occurs. The
8051 microcontroller complete the execution of current instruction and save the address of the next instruc-
tion, i.e. the content of program counter (PC) to the stack. The current status of all the interrupts i.e. the
content of IE register is also saved to the stack. The IE1 flag is disabled so that another INT1 interrupt will
be inhibited.

D7

-

D6

-

D5

-

D4

PS

D3

PT1

D2

PX1

D1

PT0

D0

PX0

Serial port interrupt
priority level

Timer 1 interrupt
priority level

Timer 0 interrupt
priority level

External Interrupt 1
priority level

External Interrupt 0
priority level

Complete execution of
current instruction

Store the content of PC to Stack

IE flags are saved in Stack

INT1 interrupt flag is disabled

Load the starting address 0013H i.e.
Vector address of INT1 in PC

Main Program
Execution

Execution

INT 1
Occurs

ISR1

PUSH the contents of
registers to the stack

Execution of ISR

POP the contents of
registers to the stack

Execution of RETI

Restore the IE flags

Enable the INT1 interrupt

Restore the content of
PC from Stack for next
instruction Execution

Main Program
Execution

Execution

Interrupt Vector
0013H

LJMP ISR1

Then the program counter is loaded with the vector location 0013H which is the predefined address of
INT1. therefore the program execution has been transferred to the memory location 0013H. A LJMP instruc-
tion is programmed at the memory location. Consequently, the program execution jump to the specified start-
ing address of Interrupt Service Routine (ISR).

The ISR is written by the programmer and this subprogram states what operation will be performed by
the INT1 interrupt. During execution of ISR, initially PUSH the contents of registers to stack and execute the
subprogram part. After execution of the subprogram part, it is required to restore or POP the contents of these
registers. The last instruction in ISR is RETI (Return from interrupt) instruction. When RETI instruction is
executed, 8051 should restore the content of IE register, enable INT1 flag and also restore the content of pro-
gram counter (PC) from the stack. As the PC contains the address of next instruction, 8051 microcontroller
stars to execute the next instruction of main program. Fig.13.53 shows the sequence of operations when the
microcontroller receive an interrupt.

 In this chapter, the architecture and features of 80C51 microcontrollers are described.

 All registers are discussed with their applications. Program status word, accumulator, B register, regis-
ter banks are also discussed. The flags of microcontroller (PSW) are also explained.

 Special Function Registers (SFRs) related to timer/counters, I/O and serial operations are just intro-
duced briefly. Pointer registers, stack pointer, DPTR and PC are also discussed.

 The schematic pin diagram and function of each pin and memory organization of the 80C51 microcon-
troller are incorporated in this chapter.

13.1 The 8051 microcontroller has

 (a) 8-bit data bus and 16-bit address bus
 (b) 16-bit data bus and 8-bit address bus
 (c) 8-bit data bus and 8-bit address bus
 (d) 16-bit data bus and 16-bit address bus

13.2 The 8051 microcontroller has

 (a) 4K bytes of on-chip ROM
 (b) 8K bytes of on-chip ROM
 (c) 16K bytes of on-chip ROM
 (d) 32K bytes of on-chip ROM

13.3 The 8051 microcontroller has

 (a) three on-chip Timers
 (b) two on-chip Timers
 (c) one on-chip Timer
 (d) four on-chip Timers

13.4 The 80C51 microcontroller family has

 (a) 32 pins for I/O (b) 24 pins for I/O

 (c) 16 pins for I/O (d) 8 pins for I/O

13.5 The 8051 microcontroller can support

 (a) 5 interrupts (b) 4 interrupts
 (c) 3 interrupts (d) 2 interrupts

13.6 A 80C51 microcontroller has

 (a) 128 bytes of on-chip RAM
 (b) 256 bytes of on-chip RAM
 (c) 228 bytes of on-chip RAM
 (d) 556 bytes of on-chip RAM

13.7 A microcontroller has

 (a) 4 on-chip I/O ports
 (b) 3 on-chip I/O ports

 (c) 2 on-chip I/O ports
 (d) 1 on-chip I/O ports

13.8 The number of flags present in 8051 that re-
spond to math operations are

 (a) 2 (b) 3

 (c) 4 (d) 5

13.9 Which of the following are 16 bit registers in
the 80C51 microcontroller?

 (a) DPTR (b) IE

 (c) TMOD (d) PC

13.10 Which of the following registers can be used
to hold the address of a byte in the memory
of 80C51?

 (a) DPTR (b) PCON

 (c) SBUF (d) PSW

13.11 Which of the following registers can be used
as two individual 8-bit registers?

 (a) DPTR (b) PC

 (c) SBUF (d) PSW

13.12 How many general-purpose registers exist
in 80C51?

 (a) 10 (b) 16
 (c) 20 (d) 32

13.13 The operation of PSW is
 (a) hold the status of register bank currently

being used

 (b) holding data during data transfer operation

 (c) holding math flags

 (d) hold address of a byte in memory

13.14 Which of the following registers is bit
addressable?

 (a) SBUF (b) TMOD
 (c) PCON (d) PSW

13.15 Which port can only be used as I/O port?

 (a) Port 0 (b) Port 1
 (c) Port 2 (d) Port 3

13.1 What are microcontroller families?

13.2 What are the advantages of microcontroller-based systems over microprocessor-based systems?

13.3 Give a list of applications of microcontrollers.

13.4 What are the features of the Intel 80C51 microcontroller?

13.5 What are the general-purpose registers of 80C51?

13.6 What are the sizes of RAM in 8051, 8052 and 8031?

13.7 What are the sizes of ROM in 8051, 8052 and 8031?

13.1 Define microcontroller. Write the differences between microprocessors and microcontrollers.

13.2 Draw the block diagram of the 8051 microcontroller and explain the operation of each block briefly.

13.3 Draw the schematic pin diagram of the 8051 microcontroller and explain the operations of the fol-
lowing pins:

 (i) RST (ii) T×D (iii) R×D (iv) XTAL2 (v) ALE (vi) EA (vii) PSEN (viii) RD (x) RW

13.4 What is the difference between internal and external program memory? Why is external program

memory used in a microcontroller? How can EA be used to access internal and external program
memory?

13.5 Explain memory organization of the 80C51 microcontroller.

13.6 What is an SFR? How can you identify the bit-addressable SFRs from their addresses?

13.7 What are the ports used for external memory access? How can an I/O pin be used as both input
and output?

13.8 What do you mean by ‘bi-directional port’ and ‘quasi-bi-directional port’? How can Port 0 be used
as a bi-directional port?

13.9 Explain the various timer modes of 8051 microcontroller. What is the auto-reload mode?

13.10 Write short notes on the following: (i) Serial data communication (ii) Interrupts

 13.1 (b) 13.2 (a) 13.3 (a) 13.4 (a) 13.5 (a) 13.6 (a) 13.7 (a) 13.8 (c)

 13.9 (a),(d) 13.10 (a) 13.11 (a) 13.12 (a) 13.13 (a),(c) 13.14 (d) 13.15 (b)

In Chapter 13, the basic structure of 8051 microcontroller has been discussed elaborately. Like 8085 and
8080 microprocessors, the 8051 microcontroller has different addressing modes to locate operand in the
instructions. In this section, all addressing modes of a microcontroller has been discussed with examples.
This microcontroller has arithmetic and logical instructions, data transfer, Boolean operation instructions, bit
operation instructions, branch control instructions and program control instructions. All these instructions are
explained with appropriate examples. The programming format and some simple programs such as addition,
subtraction, multiplication, division, ascending order, descending order, look-up table, keyboard interface,
A/D converter interface, traffic control, washing machine control and stepper motor control have been incor-
porated in this chapter to understand the applications of instructions.

An instruction is used to load or transfer data from a source to a destination. The source may be any register,
internal memory, external memory, any one of four ports or any external I/O peripheral devices. Similarly,
destination may be any register, memory (internal or external) and I/O devices. In any instruction of the 8051
microcontroller, the data is known as operand. The way in which an operand is specified is called an address-

ing mode. There are different ways to specify operands for instructions. The commonly used addressing
modes of 8051 microcontroller are as follows:

 Immediate addressing

 Register addressing mode

 Direct addressing

 Indirect addressing

 Indexed addressing

 Relative addressing

 Absolute addressing

 Long addressing

In immediate addressing mode, the source operand is a constant rather than a variable. The constant operand
can be incorporated into the instruction as a byte of immediate address. The immediate operands are preceded
by a # sign in assembly language. The operand may be a numeric constant (decimal or hexadecimal), a sym-
bolic variable or an arithmetic expression.

MOV A, #FFH; This instruction is used to load the immediate data FF H to A register.

 MOV R0, #26; This is used to load the immediate data byte 26H to register R0.

All instructions using immediate addressing use an 8-bit data field. But one exception is that a 16-bit con-
stant is required for initialization of the Data Pointer Register (DPTR). For example, MOV DPTR, #9000H.
After execution of the MOV DPTR, #9000H instruction, 9000H will be loaded into DPTR register. Table 14.1
shows some other examples of immediate addressing:

 Instruction Task

 ADD A, # data Add immediate data to accumulator

 SUBB A, # data Subtract immediate data from accumulator with borrow

 MOV Rn, # data Move immediate data to register Rn

 MOV DPTR, #data 16 Load data pointer register with a 16-bit constant

In register addressing mode, the selected register bank containing registers R0 through R7 can be accessed
by certain instructions which carry a 3-bit register specification within the opcode of the instruction. As the
three least significant bits of the instruction opcode are used to specify a register, this addressing mode elimi-
nates an address byte. When the instruction is executed, one of the eight registers in the selected bank will be
accessed. One of four banks is selected at execution time by the two bank select in the PSW.

MOV A, R0 Move the content of R0 register into accumulator

 MOV R1, A Move the content of accumulator into R1 register

Some instructions are specific to a certain register. For example, some instructions always operate on
the accumulator, or data pointer and no address byte is required to point to it. The opcode itself specifies the
source of operand and an example is INC A. In this instruction, the accumulator itself is the operand. The
examples of other register addressing instructions are given in Table 14.2.

 Instruction Task

 ADD A, Rn Add the content of register Rn to accumulator.

 SUBB A, Rn Subtract the content of register from accumulator with borrow.

 MOV Rn, A Move data from accumulator to register Rn.

 INC DPTR Increment data pointer register by one.

In direct addressing mode, the operand is specified by an 8-bit
address field in the instruction. Only the lower 128 bytes of
internal data RAM and SFRs can be directly addressed by
using a single-byte address.

MOV A, 33H This instruction is used
to transfer the content of
internal memory (RAM)

 location 33H to accumulator as shown in Fig. 14.1.

 MOV 32, R1 The content of register R1 moves to internal memory location 32H as
depicted in Fig. 14.1.

Table 14.3 shows the some other examples of direct addressing.

 Instruction Task

 ADD A, Rn Add the content of register Rn to accumulator

 SUBB A, Rn Subtract the content of register from accumulator with borrow

 MOV Rn, A Move data from accumulator to register Rn

 INC DPTR Increment data pointer register by one

In indirect addressing mode, the instruction specifies a register which contains the address of the operand.
Both internal and external RAM can be indirectly addressed. In this mode, R0 or R1 of selected bank or the
stack pointer may operate as pointer registers for 8-bit addresses. Actually, the content of R0 or R1 indicates
an address in internal RAM where data will be stored or read. In assembly-language programming, indirect
addressing is presented by a @ symbol before R0 or R1.

MOV A, @R7

In this instruction, the content of R7 represents the internal memory address. As the R7 contains 33H,
the internal memory location will be 33H. After the execution of this instruction, the value of the internal
memory location 34H will be loaded into the accumulator as depicted in Fig. 14.2.

The data pointer register can also be used as the address register for a 16-bit address. Some examples of
indirect addressing are illustrated in Table 14.4.

34 H

33 H

32 HR
1

22

FF

FF

22

Internal RAM

Accumulator

34 H

33 H

32 H

R
7

22

FF

33

Internal RAM

Accumulator

22

 Instruction Task

 ADD A, @R0 Add the contents of the address specified by the R0 register to accumulator

 SUBB A, @R1 Subtract the contents of the address specified by the R1 register from accumulator

 with borrow

 MOV @Ri, A Move the content of accumulator to indirect RAM specified by Ri (R0 or R1)

 MOV A, @Ri Moves a byte of data from internal RAM at location whose address is in Ri

 (R0 or R1) to the accumulator

 DEC @Ri Decrement indirect RAM specified by Ri (R0 or R1)

In indexed addressing, only the program memory can be accessed and it can only be read. This addressing
mode is used for reading look-up tables in program memory. The effective address of a program memory is
calculated as the summation of the content of base register (program counter PC or data pointer DPTR) and
an offset, i.e., the contents of accumulator. This addressing mode is intended for a JMP or MOVC instruction.

MOVC A, @A+DPTR

When this instruction is executed, move a byte of data from program memory, whose address can be
obtained by adding the accumulator to the data pointer, to the accumulator as depicted in Fig. 14.3.

A list of examples of indexed addressing are given in Table 14.5.

Program Memory

16-bit base Register

80FF 80FF H

80FE H8-bit Index Register

8000

FF

22

FF

+

+

 Instruction Task

 MOVC A,@A+PC Move a byte of data from program memory, whose address can be determined

 by sum of accumulator and program counter, to the accumulator.

 MOVC A,@A+DPTR Move a byte of data from program memory, whose address can be found by

 adding the accumulator and the data pointer, to the accumulator.

 JMP @A+DPTR Jump indirect relative to the data pointer; the address of a jump instruction

 is calculated as sum of the accumulator and the data pointer.

Generally, this addressing mode is used in certain jump instructions. The relative address is an 8-bit signed
number (–128 to 127), which is added to the program counter to determine the address of the next instruc-
tion. Before addition, the program counter is incremented. Therefore, the new address relative to the next

instruction is determined before a jump to the new address
instruction. For example, when the SJMP Level offset.
instruction is executed, the new address can be obtained
from the sum of the PC and offset. Then, a jump to the new
address occurs as depicted in Fig. 14.4. The advantage of
relative addressing is that it has position-independent codes.

The absolute addressing is only used with AJMP and ACALL
instructions. The 11 least significant bits of the destination
address come from the opcode and the upper five bits are
the current upper five bits in the program counter. In this
addressing mode, the destination address will be within 2K
(211) memory. For example, ACALL addr11.

The long addressing is used only with the LJMP and LCALL
instructions. These instructions include a full 16-bit destina-
tion address. In this mode, the full 64K code space is avail-
able and the instruction is long and position dependent. For
example, when LJMP, 9500H. instruction is executed, it
jumps to memory location 9500H.

Find the addressing modes of the following instructions:

 (i) ADD A, R7 (ii) ADD A, 55H (iii) MOV A, @R0 (iv) MUL AB

 (v) MOV A, #FF (vi) MOV DPTR, #8000 (vii) MOVC A, @A+DPTR

 (i) ADD A, R7 instruction is an example of register addressing.

 (ii) ADD A, 55H instruction is an example of direct addressing.

 (iii) MOV A, @R0 instruction is an example of indirect addressing.

 (iv) MUL AB instruction is an example of register addressing.

 (v) MOV A, #FF instruction is an example of immediate addressing.

 (vi) MOV DPTR, #8000 instruction is an example of immediate addressing.

 (vii) MOVC A, @A+DPTR instruction is an example of index addressing.

An instruction is a command applied to the microcontroller to perform a specified operation. There are 255
possible instructions in the 8051 microcontroller. Each instruction consists of an operation code (opcode)
and an operand. Opcode states the specified operation which will be performed. The operand means data,
which will be used in that operation, as no operation can be performed without data. The 8051 instructions
have 8-bit opcodes. Data field may be of one-byte or two-bytes. Based on data (operand), the instructions are
classified as one-byte, two-byte and three-byte instructions. 8051 instructions are divided into the following
groups as given below:

04

80SJAMP 04

Code Memory

8007H

8006H

8005H

8004H

8003H

8002H

8001H

8000H

7FFFH

 Arithmetic instructions

 Logical instructions

 Data-transfer instructions

 Boolean operations instructions

 Program-control instructions

 Branching instructions

The symbols and abbreviations, which have been used while explaining Intel 8051 microcontroller
instructions, are illustrated in Table 14.6. In this section, all groups of instructions are explained elaborately
with appropriate representations.

 Symbol/Abbreviations Meaning

 addr 16 16-bit address 16-bit destination address. Used by LCALL and LJMP. A branch can be any-

where within the 64 K-byte program memory address space.

 addr 11 11-bit address 11-bit destination address. Used by ACALL and AJMP. The branch will be

within the same 2 K-byte page of program memory as the first byte of the fol-

lowing instruction.

 #data 8-bit constant included in the instruction.

 #data 16 16-bit constant included in the instruction

 Rn, Ri Register R7–R0 of the currently selected register bank.

 direct 8-bit internal data location’s address. This could be an Internal Data RAM

location (0–127) or a SFR [i.e., I/O port, control register, status register, etc.

(128–255)].

 @Ri 8-bit internal data RAM location (0–255) addressed indirectly through register

R1 or R0.

 rel Signed (two’s complement) 8-bit offset byte. Used by SJMP and all conditional

jumps. Range is –128 to +127 bytes relative to first byte of the instruction.

 bit Direct addressed bit in Internal Data RAM or Special Function Register.

 DPTR Data pointer register.

 DPH, DPL DPH–Data pointer register higher, DPL—Data pointer register lower.

 SP SP represents 16-bit stack pointer.

 PC 16-bit program counter

 PSW Program Status Word

 CS Carry status

 [] Content of the memory location

 ! Move data in the direction of the arrow

 + Exchange contents

 / Logical AND operation

 0 Logical OR operation

 5 Logical EXCLUSIVE OR

 a Complement

The arithmetic instructions are used to perform arithmetic operations such as addition, subtraction, incre-
ment, decrement, multiplication, and division. Since different addressing modes are available, an arithmetic
instruction can be written in different ways. All arithmetic instructions are executed in one machine cycle
except INC, DPTR, MUL AB and DIV AB. INC and DPTR requires two machine cycles and MUL AB and
DIV AB require four machine cycles. All arithmetic instructions are explained below:

A A+ Rn,

Machine cycles: 1; States: 12 Flags: all; Register Addressing; One-byte Instruction

The contents of the operand (register) are added to the contents of the accumulator and the result is
stored in the accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from
Bit 7 or Bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow
occurred. When adding signed integers, OV indicates a negative number produced as the sum of two positive
operands, or a positive sum from two negative operands.

ADD A, R6 Add the content of register R6 to accumulator and result in accumulator.

A A+ [direct],

Machine Cycles: 1; States: 12; Flags: all; Direct Addressing; Two-byte Instruction

The contents of the internal memory location specified by the 8-bit direct are added with accumulator.
All flags are modified to reflect the result of the addition. For example, the instruction is ADD A, 44H.

A A+ [Ri],

Machine Cycles: 1; States: 12; Flags: all; Register Indirect Addressing; One-byte Instruction

The contents of the internal RAM whose location is denoted by the content of register Ri (R0 or R1) are
added to the contents of the accumulator and the result is stored in the accumulator.

ADD A,@R0

A A + #data,

Machine Cycles: 1; States: 12; Flags: all; Immediate Addressing; Two-byte Instruction

Add the number specified by #data to accumulator and the result is stored in the accumulator.

ADD A, 36H

A A + Rn + C,

Machine Cycles: 1; States: 12. Flags: all; Register Addressing; One-byte Instruction

ADDC instruction simultaneously adds the contents of the register Rn and the carry flag to the contents of
the accumulator and the result is stored in the accumulator. The carry and auxiliary-carry flags are set, respec-
tively, if there is a carry-out from Bit 7 or Bit 3, and cleared otherwise. During adding unsigned integers,
the carry flag indicates an overflow occurred. When adding signed integers, OV indicates a negative number

produced as the sum of two positive operands, or a positive sum from two negative operands. Therefore, flags
are modified to reflect the result of the addition.

ADDC A, R7. If accumulator content is C3H, R7 content is AAH with the carry flag set, the
result in accumulator is 6E and AC cleared, the carry flag and OV set to 1.

A A + [direct]+C,

Machine Cycles: 1; States: 12; Flags: all; Direct Addressing; Two-byte Instruction

The content of the memory location, which is specified by the direct address and the carry flag, are added
to the contents of the accumulator. After addition, the result is stored in the accumulator. All flags are effected
to reflect the result of the addition.

ADDC A, 55H

A A + [Ri] + C,

Machine Cycles: 1; States: 12; Flags: all. Register Indirect Addressing; One-byte Instruction

The contents of the internal memory RAM located by Ri register (R0 or R1) are added to the contents of
the accumulator with carry and the result is stored in the accumulator.

ADDC A, @R1

A A + C + #direct,

Machine Cycles: 1; States: 12; Flags: all. Immediate Addressing; Two-byte Instruction

The 8-bit immediate data (operand) can be added to the contents of the accumulator and the result is
stored in the accumulator.

ADDC A, #FF

A A – Rn – C,

Machine Cycles: 1; States: 12; Flags: all; Register Addressing; One-byte Instruction

SUBB A, Rn states that the content of register Rn and the carry flag are subtracted from the content of
the accumulator. After subtraction, the result is stored in the accumulator. This instruction sets the carry (bor-
row) flag if a borrow is needed for Bit 7, and clears C otherwise. AC is set if a borrow is needed for Bit 3,
and cleared otherwise. OV is set if a borrow is needed into Bit 6, but not into Bit 7, or into Bit 7, but not Bit
6. During subtraction of signed integers, OV indicates a negative number produced when a negative value
is subtracted from a positive value, or a positive result when a positive number is subtracted from a negative
number. For example, SUBB A, R2. If the accumulator content is C9H, the content of R2 is 54H and the carry
flag is set, the result 74H will be in the accumulator with the carry flag and AC cleared but OV set.

A A – [direct] – C

Machine Cycles: 1; States: 12; Flags all; Direct Addressing; two-byte Instructions

The contents of the 8-bit direct memory location are subtracted from the contents of the accumulator
with borrow and the result is placed in the accumulator. All flags will be modified to reflect the result.

SBBB A, 45H.

A A – [Ri] – C,

Machine Cycles: 1; States: 12; Flags: all; Register Indirect Addressing; One-byte instruction

The content of internal RAM whose location is specified by register Ri (R0 or R1) is subtracted from the
content of the accumulator with borrow, and the result is stored in the accumulator.

SUBB A, @R0

A A – #data – C

Machine Cycles: 1; States: 12; Flags: all; Immediate Addressing; Two-byte Instructions

The 8-bit immediate data is subtracted from the contents of the accumulator with borrow and the result
is placed in the accumulator.

SBBB A, 78H

A A + 1.

Machine Cycles: 1; States: 12; No Flags are affected; Register Addressing; One-byte Instructions

When INC instruction is executed, the indicated variable is incremented by 1. Therefore, the contents of
the accumulator are incremented by 1 and the result is stored in the accumulator.

INC A

Rn Rn + 1.

Machine Cycles: 1; States: 12; No flags are affected; Register Addressing; One-byte Instructions

The contents of the selected register Rn (R0 to R7) are incremented by 1 and the result is stored in the
same register.

INC R5

[direct] [direct] + 1.

Machine Cycles: 1; States: 12; No flags are affected; Direct Addressing; Two-byte Instructions

The contents of the 8-bit direct memory location are incremented by 1 and the result is stored in the same
memory location.

INC 44H

[Ri] [Ri] + 1.

Machine Cycles: 1; States: 12; No flags are affected; Register Indirect Addressing; One-byte instructions

The contents of the internal RAM location whose address can be selected by register R0 or R1 are incre-
mented by 1 and the result is stored in the same RAM location.

INC @R0

DPTR DPTR + 1.

Machine Cycles: 2; States: 24; No flags are affected; Register Addressing; One-byte instruction

The contents of the 16-bit data pointer register are incremented by 1 and the result is stored in the same
register. A 16-bit increment is performed; an overflow of the low-order byte of the data pointer (DPL) from
FFH to 00H will increment the high-order byte (DPH). No flags are affected.

INC DPTR

A A – 1.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Addressing; One-byte Instruction

The contents of the accumulator are decremented by 1 and the result is stored in the accumulator.

DEC A.

Rn Rn – 1.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Addressing; One-byte Instruction

The contents of the selected register R0 to R7 are decremented by 1 and the result is stored in the same
register.

DEC R6.

[direct] [direct] – 1.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Direct Addressing; Two-byte Instruction

The contents of the 8-bit direct memory location is decremented by 1 and the result is stored in the same
memory location.

DEC 34H.

[[Ri]] [[Ri]] – 1.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Indirect Addressing; One-byte
Instruction.

The contents of the internal RAM location specified by registers R0 or R1 are decremented by 1 and the
result is stored in the same place.

DEC @Ri.

A7–0 A × B
B15–8

Machine Cycles: 4; States: 48; Flags: Flags are affected; Register Addressing; One-byte Instruction.
MUL AB multiplies the unsigned eight-bit integers in the accumulator and register B. The low-order

byte of the sixteen-bit product will be stored in the accumulator, and the high-order byte will be stored in
B. If the product is greater than 255 (FFH) the overflow flag is set; otherwise it is cleared. The carry flag is
always cleared.

MUL AB.

A15–8 A/B
B7–0

Machine Cycles: 4; States: 48; Flags: Flags are affected; Register Addressing; One-byte Instruction
DIV AB divides the unsigned eight-bit integer in the accumulator by the unsigned eight-bit integer in

Register B. After execution of DIV AB, the Accumulator receives the integer part of the quotient and register
B receives the integer remainder. The carry and OV flags will be cleared.

DIV AB.

Machine Cycles: 1; States: 12; Flags: all; One-byte Instruction

If [[(A3–0) > 9] [(AC) = 1]], then (A3–0) (A3–0) + 6

AND If [[(A7–4) > 9] [(C) = 1]], then (A7–4) (A7–4) + 6
The contents of accumulator are transferred from a binary code to two 4-bit binary coded decimal (BCD)

digits. This is the only instruction which uses the auxiliary flag to perform the binary to BCD conversion. The
conversion procedure is as follows:

When the value of the low-order 4-bits/nibble in the accumulator is greater than 9 or AC flag is set, the
instruction adds 6 to the low-order four bits.

If the value of the high-order 4-bits/nibble in the accumulator is greater than 9 or the carry flag is set, the
instruction adds 6 to the high-order four bits. In this instruction S, Z, AC, P, CY flags are altered to reflect the
results of the operation.

ADC A, R3

If the accumulator holds 56H, i.e., the packed BCD digits of decimal number 56 and the content of register
R3 is 67H, i.e., the packed BCD digits of decimal number 67. The carry flag is set. After execution of the
above instructions, 24H will be stored in the accumulator as the true sum of 56, 67 and 1 is 124.

Write instructions for the following operations:

 (i) Add 23H to the contents of accumulator.

 (ii) Add the content of the memory location specified by R0 with accumulator.

 (iii) Subtract the content of R1 register from accumulator with borrow.

 (iv) Subtract immediately 45H from accumulator register with borrow.

 (v) Increment the content of internal memory location specified by R0.

 (i) ADD A, #23; Add 23H to the contents of accumulator.

 (ii) ADD A, @R0; Add the content of the memory location specified by R0 with accumulator.

 (iii) SUBB A, R1; Subtract the content of R1 register from accumulator with borrow.

 (iv) SUBB A, #45; Subtract immediately 45 from accumulator register with borrow.

 (v) INC @R0; Increment the content of internal memory location specified by R0.

Write instructions for the following operations:

 (i) Multiply the content of accumulator by B register.

 (ii) Divide the content of accumulator by B register.

 (iii) Increment data pointer register by one.

 (i) MUL A B; Multiply the content of accumulator by B register.

 (ii) DIV A B; Divide the content of accumulator by B register.

 (iii) INC DPTR; Increment data pointer register by one.

The logical instructions perform AND, OR, EX-OR, operations; compare, rotate or complement of data in
register or memory. All logical instructions are discussed in this section.

ANL performs the bitwise logical AND operation between the variables indicated in the instruction and
stores the results in the destination variable. No flags are affected. The two operands allow six addressing
mode combinations. If the destination is the accumulator, the source can use register, direct, register-indirect,
or immediate addressing. When the destination is a direct address, the source can be the accumulator or
immediate data.

A A Rn

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Addressing; One-byte Instruction

The contents of the accumulator are logically ANDed with the contents of the register Rn (R0–R7). The
result is stored in the accumulator. No flags are affected.

ANL A, R5

A A [direct].

Machine Cycles: 1; States: 12; Flags: No flags are affected; Direct Addressing; Two-byte Instructions

The content of the 8-bit memory location whose address is specified by the direct address is ANDed with
the accumulator. The result is placed in the accumulator. No flags are affected.

ANL A, direct

A A [Ri]

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Indirect Addressing; One-byte
Instruction

The content of the memory location whose address is specified by the register R0 or R1 is ANDed with
the accumulator. After ANDing, the result is stored in the accumulator. No flags are affected.

ANL A, @Ri.

A A #data.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Immediate Addressing; Two-byte Instruction

The contents of the accumulator are logically ANDed with the 8-bit data (#data). After ANDing, the result
is stored in the accumulator. No flags are affected.

ANL A, #45H.

A [direct] A.

Machine Cycles: 1; States: 12; Flags: No flags are affected; One-byte Instruction

The content of the memory location whose address is specified by the 8-bit direct address is ANDed with
the accumulator. The result will be stored in the 8-bit direct memory address. No flags are affected.

ANL direct, A.

[direct] [direct] #data.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Immediate Addressing; One-byte Instruction

The content of the memory location whose address is specified by the 8-bit direct address is ANDed with
the 8-bit immediate data. The result will be stored in the 8-bit direct memory address. No flags are affected.

ANL direct, #A.

ORL performs the bitwise logical OR operation between the indicated variables in instruction and store
the results in the destination byte. No flags are affected. Six different addressing-mode combinations are
available for this instruction. When the destination is the accumulator, the source can use register, direct,
register-indirect, or immediate addressing. While the destination is a direct address, the source can be the
accumulator or immediate data.

A A Rn

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Addressing; One-byte Instruction

The content of register Rn (R0–R7) is logically ORed with the content of the accumulator. The result is
stored in the accumulator. No flags are affected.

ORL A, Rn

A A [direct].

Machine Cycles: 1; States: 12; Flags: No flags are affected; Direct Addressing; Two-byte Instruction

The contents of the accumulator are logically ORed with the contents of the memory location, whose
address is specified by the 8-bit direct address and the result is placed in the accumulator. No flags are
affected.

ORA A, direct.

A A [Ri].

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Indirect Addressing; One-byte
Instruction

The contents of the accumulator are logically ORed with the contents of the memory location, whose
address is specified by the content of register R0 or R1. The result is placed in the accumulator. No flags are
affected. ORA

ORAA, @R0.

A A #8-bit data.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Immediate Addressing; Two-byte Instruction

In this instruction, 8-bit data is ORed with the content of the accumulator and the result is placed in the
accumulator. No flags are affected.

ORA A, #45H.

[direct] [direct] A.

Machine Cycles: 1; States: 12; Flags: No flags are affected; Two-byte Instruction

The contents of the accumulator are logically ORed with the contents of the memory location, whose
address is specified by the 8-bit direct address and the result is stored in the 8-bit direct address. No flags are
affected.

ORA direct, A

[direct] [direct] #data.

Machine Cycles: 2; States: 24; Flags: No flags are affected; Immediate Addressing; Three-byte Instruction

The 8-bit immediate data is logically ORed with the contents of the memory location, whose address is
specified by the 8-bit direct address and the result is placed in the 8 bit direct address. No flags are affected.

ORA direct, #data

XRL performs the bitwise logical Exclusive-OR operation between the indicated variables in instruc-
tion and stores the results in the destination. No flags are affected. Different addressing-mode combinations
are possible for this instruction. When the destination is the accumulator, the source can use register, direct,
register-indirect, or immediate addressing. If the destination is a direct address, the source can be the accu-
mulator or immediate data.

A A Rn

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Addressing; One-byte Instruction

The contents of the accumulator are Exclusive ORed with the contents of the register Rn(R0–R7) and the
result is placed in the accumulator. No flags are affected.

XRL A, R7.

A A [direct]

Machine Cycles: 1; States: 12; Flags: No flags are affected; Direct Addressing; Two-byte Instruction

The contents of the accumulator are Exclusive ORed with the contents of the memory location, which is
specified by 8-bit direct address and the result is placed in the accumulator. No flags are affected.

XRL A, direct.

A A [Ri]

Machine Cycles: 1; States: 12; Flags: No flags are affected; Register Indirect Addressing; One-byte
Instruction

The contents of the accumulator are Exclusive ORed with the contents of the memory location, which
is specified by the register Ri (R0 or R1) and the result is placed in the accumulator. No flags are affected.

XRL A, @R0.

A A #data

Machine Cycles: 1; States: 12; Flags: No flags are affected; Immediate Addressing; Two-byte Instruction

The contents of the accumulator are Exclusive ORed with the 8-bit data. The result is stored in the accu-
mulator. No flags are affected.

XRL A, #78H.

[direct] [direct] A

Machine Cycles: 1; States: 12; Flags: No flags are affected; One-byte Instruction

The contents of the accumulator are Exclusive ORed with the contents of the memory location, which is
specified by the 8-bit direct address and the result is placed in the same address. No flags are affected.

XRL direct, A.

[direct] [direct] #data

Machine Cycles: 2; States: 24; Flags: No flags are affected; Three-byte Instruction

The contents of the 8-bit direct address memory location are Exclusive ORed with 8-bit immediate data
and the result is placed in the 8-bit direct memory address. No flags are affected.

XRL direct, #data.

A 0; Machine Cycles: 1; States: 12

The accumulator is cleared (all bits reset to zero). No flags are affected.

A A; Machine Cycles: 1: States: 12,

Each bit of the accumulator is logically complemented, i.e., one’s complement. Bits which previously
contained a one are changed to a zero and vice-versa. No flags are affected.

An+1 An, A0 A7,

Machine Cycles: 1; States: 12; Flags: No Flags are affected; Implicit Addressing; One-byte Instruction

The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into the Bit 0 position as
shown in Fig. 14.5. No flags are affected.

A
7

A
0

ACCUMULATOR

A
0

A
7CS

CARRY STATUS ACCUMULATOR

RL A

The accumulator holds the value C5H (11000101) and after execution of RLA instruction, the accumula-
tor holds the value 8BH (10001011) with the carry unaffected.

An+1 An, A0 C, C A7

Machine Cycles: 1; States: 12; Flags: CS; Implicit Addressing; One-byte Instruction

The eight bits in the accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves
into the carry flag and the original state of the carry flag moves into the Bit 0 position. Each bit of the accu-
mulator is rotated left by one bit. The seventh bit of the accumulator is placed in the position of carry and
carry flag moves to A0 as shown in Fig. 14.6. No other flags are affected.

RLC A

Assume the accumulator holds the value C5H (11000101), and the carry is zero. After execution of RLC
A, the accumulator holds the value 8AH (10001010) with the carry set.

An An+1, A7 A0,

Machine Cycles: 1; States: 4 Flags: No flags are effected; Implicit Addressing; One-byte Instruction

The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated into the Bit 7 position.
Each binary bit of the accumulator is shifted right by one position as depicted in Fig. 14.7. No flags are
affected.

A
0

A
7

ACCUMULATOR

A
7

A
0

CARRY STATUS ACCUMULATOR

CS

RR A

If the accumulator holds the value C5H (11000101). After execution RR A instruction, the accumulator
holds the value E2H (11100010) with the carry unaffected.

An An+1, A7 C, C A0

Machine Cycles: 1; States: 4; Flags: CS; Implicit Addressing; One-byte Instruction

The eight bits in the accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves
into the carry flag; the original state of the carry flag moves into the Bit 7 position as shown in Fig. 14.8. No
other flags are affected.

RRC A

When the accumulator holds the value C5H (11000101) and the carry is zero. After execution of RRC A
instruction, the accumulator holds the value 62H (01100010) with the carry set.

Machine Cycles: 1; States 4. Flags: No flags are affected

SWAP A.

If the accumulator holds the value C5H (11000101), after execution of SWAP A instruction, the accumu-
lator holds the value 5CH (01011100).

Data-transfer instructions are used to transfer data between registers, register pairs, memory and registers,
etc. The byte variable indicated by the second operand is copied into the location specified by the first oper-
and. After execution of MOV <destination-byte>, <source-byte>, the source byte is not affected. No other
register or flag is affected. This is by far the most flexible operation. Fifteen combinations of source and
destination addressing modes are allowed. In this section, all data-transfer instructions are described in detail.

A Rn,

Machine Cycles: 1; States: 12; Flags none; Register Addressing Mode; One-byte Instruction

This instruction copies the contents of the source register into the accumulator but the contents of the
source register are not changed. Flags and other registers are not affected.

MOV A, R2.

A [direct],

Machine Cycles: 1; States: 12; Flag none: Direct Addressing; Two-byte Instruction

The content of the memory location moves to the accumulator.

The instruction MOV A, 44H will move the content 44H memory location to the accumulator.

A [Ri],

Machine Cycles: 1; States: 12; Flag none; Register Indirect Addressing; One-byte Instruction

The content of memory location whose address is specified by register R0 or R1 moves to accumulator.

The instruction MOV A, @R0 will move the content of the memory location specified by R0
register to accumulator.

A #data,

Machine Cycles: 1; States: 12; Flags: none; Immediate Addressing Modes; Two-byte Instruction

The 8-bit data can be stored in the accumulator immediately.

The instruction MOV A, #44H moves 44H to accumulator.

Rn A,

Machine Cycles: 1; States: 12; Flags: none; Register Addressing; One-byte Instruction

The contents of accumulator will be stored in the register Rn (R0–R7).

MOV Rn, A.

Rn [direct],

Machine Cycles: 2; States: 12; Flags: none; Direct Addressing; Two-byte Instruction

The content of 8-bit direct memory location will be stored in register Rn.

MOV R2, 22H. When this instruction is executed, the content of 22H memory location moves
to Register R2.

Rn data,

Machine Cycles: 1; States: 12; Flags: none; Immediate Addressing; Two-byte Instruction

The 8-bit immediate data will be stored in the register Rn.

Example: MOV R4, #67H. When this instruction is executed, 67H data move to the register R4.

[direct] A,

Machine Cycles: 1; States: 12; Flags: none; Two-byte Instruction

The content of the accumulator will be copied in the 8-bit direct address memory location.

MOV 25, A. After execution of this instruction, accumulator content moves to 45H memory
location.

[direct] Rn,

Machine Cycles: 2; States: 12; Flags: none; Two-byte Instruction

The content of Register Rn(R0–R7) will be stored in the memory location, specified by the 8-bit direct
address. Example: MOV 45H, R7. If this instruction is executed, R7 register content moves to 45H memory
location.

[direct] [direct],

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

The data will be stored in an 8-bit direct memory location from an 8-bit direct memory location.

MOV 23, 22H. The content of 22H memory location is copied to 23H memory location.

[direct] [Ri],

Machine Cycles: 3; States: 10; Flags none; Indirect Addressing; Two-byte Instruction

The content of internal RAM whose address is specified by the contents of the register Ri (R0 or R1) will
be stored in 8-bit direct address memory location.

MOV 44H, @R0. After execution of this instruction, the content of the memory location
specified by R0 register will be stored in the 8-bit direct address memory location.

[direct] data,

Machine Cycles: 2; States: 24; Flags: none; Immediate Addressing; Two-byte Instruction

The 8-bit immediate data will be stored in the 8-bit direct memory location.

MOV 45H, #22H In this instruction, MOV 45H, #22H, 22H data move to 8-bit direct address
memory location 45 H.

[Ri] A,

Machine Cycles: 1; States: 12; Flags: none; One-byte Instruction

The content of accumulator will be stored in the memory location, specified by the contents of the Ri
(R0 or R1) register.

MOV @R0, 35H. In this instruction MOV @R0, 35H, 35H data moves to the memory
location specified by R0 register.

[Ri] [direct],

Machine Cycles: 2; States: 24; Flags: none; Direct Addressing;

The data of 8-bit direct memory location will be stored in the memory location which is specified by the
contents of the Ri (R1 or R0) register.

MOV @R0, 33H. When this instruction is executed, the content of 33H memory location
moves to memory location specified by R0.

[Ri] #data,

Machine Cycles: 1; States: 12; Flags none; Immediate Addressing; Two-byte Instruction

The 8-bit immediate data will be stored in memory location, which is specified by the contents of the Ri
register.

MOV @R1, #FFH. After execution of MOV @R1, #FFH instruction, FFH data move to
memory location specified by the R1 register.

DPTR data15-0

DPH data15-8, DPL data7-0

Machine Cycles: 3; States: 10; Flags: none; Immediate Addressing; Two-byte Instruction

The data pointer register is loaded with the 16-bit constant indicated in the instruction. The 16-bit con-
stant is loaded into the second and third bytes of the instruction. The second byte (DPH) is the high-order byte
and the third byte (DPL) holds the low-order byte. No flags are affected. This is the only instruction, which
moves 16 bits of data at once.

MOV DPTR, #8000H.

When this instruction is executed, load the value 8000H into the Data Pointer. Hence DPH will hold 80H
and DPL will hold 00H.

The MOVC A, @A + <base-register> instructions load the accumulator with a code byte from program
memory. The address of the byte fetched is the sum of the unsigned eight-bit accumulator contents and
the contents of a 16-bit base register. The base register may be either the data pointer or the PC. The PC is
incremented before being added with the accumulator. As 16-bit addition is performed, a carry-out from the
low-order eight bits may propagate through higher-order bits. No flags are affected. Examples of MOV C
instructions are explained below:

A [A+DPTR],

Machine Cycles: 2; States: 12; Flags: none; Index Addressing; One-byte Instruction

The contents of memory location specified by the contents of accumulator and the DPTR register, move
to accumulator.

MOVC A, @A+DPTR.

PC PC+1, A [A+PC],

Machine Cycles: 2; States: 24; Flags none; Index Addressing; One-byte Instruction

The contents of memory location specified by the contents of the accumulator and the PC register, move
to the accumulator.

MOVC A, @A+PC.

The MOVX <destination-byte>, <source-byte> instruction is used to transfer data between the accumu-
lator and a byte of external memory. There are two types of instructions differing in whether they provide
eight bits or sixteen bits in direct address to the external data RAM.

In the first case, the contents of R0 or R1 of the selected register bank provide an eight-bit address mul-
tiplexed with data on P0. In the second case, the data pointer registers provide the sixteen-bit address, P2
outputs the content of DPH, i.e., high-order eight address bits, but P0 multiplexes the low-order eight bits
(DPL) with data. All types of MOVX instruction are explained in this section.

A [Ri],

Machine Cycles: 2; States: 24; Flags: none; Indirect Addressing; One -byte Instruction

The contents of external RAM location (8-bit address), which is specified by the contents of R0 or R1,
moves to accumulator.

MOVX A, @R0.

A [DPTR],

Machine Cycles: 2; States: 24; Flags: none; Indirect Addressing, One-byte Instruction

The contents of external RAM location (16-bit address), which is specified by the contents of DPTR,
moves to accumulator.

MOVX A, @DPTR.

[Ri] A,

Machine Cycles: 2; States: 24; Flags: none; One -byte Instruction

The contents of accumulator move to external RAM location (8-bit address), which is specified by the
contents of R0 or R1.

MOVX @R0,A.

[DPTR] A,

Machine Cycles: 2; States: 24; Flags: none; One -byte Instruction

The contents of accumulator move to external RAM location (16-bit address), which is specified by the
contents of DPTR.

MOVX @DPTR, A.

Write instructions to perform the following operations:

 (i) Move the content of accumulator into R0 register.

 (ii) Load immediate 8-bit data (FFH) into accumulator.

 (iii) Load Data pointer with 9000H.

 (iv) Move the content of accumulator to external RAM location 8000H.

 (i) MOV A, R0; Move the content of accumulator into R0 register.

 (ii) MOV A, #FFH; Load immediate 8-bit data (FFH) into accumulator.

 (iii) MOV DPTR, #9000H; Load Data pointer with 9000H.

 (iv) MOV DPTR, #8000; Load Data Pointer with 8000H.

 MOVX @DPTR, A; Move the content of accumulator to external RAM location 8000H.

The 8051 controller contains a complete Boolean processor for single-bit operations. In these instructions,
all bit accesses use direct addressing and bits may be set or cleared using a single instruction. All Boolean
instructions are explained below:

C 0,

Machine Cycles: 1; States: 12; Flags: none; Direct Addressing Mode; One-byte Instruction

This instruction clears the carry flag. No other flags are affected.

CLR C.

bit 0,

Machine Cycles: 1; States: 12; Flags: none; Direct Addressing Mode; Two-byte Instruction

The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the carry flag

or any directly addressable bit.

Port 1 has previously been written with 5DH (01011101B). The instruction CLR P1.2 will
leave the port set to 59H (01011001B).

C 1,

Machine Cycles: 1; States: 12; Flags: none; Direct Addressing Mode; One-byte Instruction

This instruction set the carry flag. No other flags are affected.

SETB C.

bit 1,

Machine Cycles: 1; States: 12; Flags: none; Direct Addressing Mode; Two-byte Instruction

SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit.
No other flags are affected.

The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B).
The instructions, SETB P1.0 will leave the carry flag set to 1 and change the data output on Port 1 to 35H
(00110101B).

C C,

Machine Cycles: 1; States: 12; Flags: none; Direct Addressing Mode; One-byte instruction

This instruction complements the carry flag. No other flags are affected.

CPL C.

bit bit,

Machine Cycles: 1; States: 12; Flags: none; Direct Addressing Mode; One-byte Instruction

The bit variable specified is complemented. When a bit is one, it is changed to zero and vice-versa. No
other flags are affected. CPL can operate on the carry or any directly addressable bit.

Port 1 has previously been written with 5DH (01011101B). The instruction sequence, CPL
P1.1 and CPL P1.2 will leave the port set to 5BH (01011011B).

C C bit

Machine Cycles: 2; States: 24; Flags: none; Direct Addressing Mode; Two-byte Instruction

This instruction performs logical AND operation between the source bit and the carry flag. No other
flags are affected.

ANL C, ACC.7; AND operation between the accumulator bit 7 and the carry.

C C bit

Machine Cycles: 2; States: 24; Flags: none; Direct Addressing Mode; Two-byte Instruction

The slash (/) preceding the operand in the assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected.

ANL C, /OV; AND with inverse of overflow flag

C C bit

Machine Cycles: 2; States: 24; Flags: none; Direct Addressing Mode; Two-byte Instruction

This instruction performs logical-OR operation between source bit and the carry. No other flags are
affected Example: ORL C, ACC.7; OR carry with the ACC. BIT 7.

C C

Machine Cycles: 2; States: 24; Flags: none; Direct Addressing Mode; Two-byte Instruction

A slash (/) preceding the operand in the assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected.

ORL C, /OV; OR carry with the inverse of OV.

C bit

Machine Cycles: 1; States: 12; Flags: none; Direct Addressing Mode; Two-byte Instruction

This instruction is used to copy the Boolean variable indicated by the second operand into the location
specified by the first operand. No other flags are affected.

MOV C, P3.3.

bit C

Machine Cycles: 2; States: 24; Flags none; Direct Addressing Mode; Two-byte Instruction

The Boolean variable indicated by the second operand must be copied into the location specified by the
first operand. One of the operands is the carry flag and the other is any directly addressable bit. No other
register or flag is affected.

MOV P1.3, C; Assume the carry flag is set and the data present at output Port 1 is 35H (0011
0101B. After execution of MOV P1.3, C; Port 1 changes to 3DH (0011 1101B).

PC PC+2, If C=1, Then PC PC + rel

Machine Cycles: 2; States: 24; Flags: none; Two-byte Instruction

When the carry flag is set, jump to the address indicated in instruction; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement to the PC, after
incrementing the PC twice. No flags are affected.

JC LABEL-1

PC PC+2, If C=0, Then PC PC + rel

Machine Cycles: 2; States: 24; Flags: none; Two-byte Instruction

If the carry flag is a zero, jump to the address indicated in the instruction; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative-displacement to the PC,
after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

JNC LABEL-1

PC PC+3, If bit=1, Then PC PC + rel

Machine Cycles: 2; States: 24; Flags: none, Three-byte Instruction

If the indicated bit is ‘1’, jump to the address indicated in the instruction; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement to the PC, after
incrementing the PC. The bit tested is not modified. No flags are affected.

JB P1.2, LABEL-1

PC PC+2, If C=1, Then PC PC + rel

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

If the indicated bit is a zero, jump to the indicated address in the instruction; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative-displacement to the PC,
after incrementing the PC. The bit tested is not modified. No flags are affected.

JNB P1.3, LABEL-1

PC PC+3, If bit=1, Then bit 0, PC PC + rel

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

If the indicated bit is ‘1’, jump to the address indicated in instruction; otherwise proceed with the next
instruction. The bit will not be cleared if it is already a zero. The branch destination is computed by adding
the signed relative-displacement to the PC, after incrementing the PC. No flags are affected.

JBC ACC.3, LABEL-1

The branch-group instructions are generally used to change the sequence of the program execution. There are
two types of branch instructions, namely, conditional and unconditional. The conditional branch instructions
transfer the program to the specified address only when the condition is satisfied. The unconditional branch

instructions transfer the program to the specified address unconditionally. All conditional and unconditional
branch instructions are explained in this section.

PC PC+2, SP SP+1, SP PC7-0,

SP SP+1, SP PC15-8, PC10-0 page address

Machine Cycles: 2; States: 24 ; Flags: none; Two-byte Instruction

ACALL instruction unconditionally calls a subroutine located at the indicated address. This instruc-
tion increments the PC twice to obtain the address of the following instruction, then pushes the 16-bit result
onto the stack (low-order byte first) and increments the stack pointer twice. The destination address can be
obtained by successively concatenating the five high-order bits of the incremented PC, opcode bits 7–5, and
the second byte of the instruction. This instruction can be used to call a subroutine within the same 2K block
of the program memory as the first byte of the instruction following ACALL. No flags are affected.

ACALL address 11

PC PC+3, SP SP+1, [SP] PC7-0,

SP SP+1, [SP] PC15-8, PC address15-0

Machine Cycles: 2; States: 24 ; Flags: none; Three-byte Instruction

LCALL instruction calls a subroutine located at the indicated address. This instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit result onto the stack
(low byte first), incrementing the stack pointer by two. The high-order and low-order bytes of the PC are

LCALL SUBRTN

PC15-8 [SP], SP SP-1, PC7-0 [SP], SP SP-1

Machine Cycles: 2; States: 24; Flags: none; One-byte Instruction

RET pops the high-order and low-order bytes of the PC successively from the stack, decrementing
the Stack Pointer by two. Generally this instruction immediately follows ACALL or LCALL. No flags are
affected.

RET

PC15-8 SP

SP SP-1, PC7-0 SP

SP SP-1

Machine Cycles: 2; States: 24; Flags: none; One-byte Instruction

RETI pops the high-order and low-order bytes of the PC successively from the stack, and restores the
interrupt logic to accept additional interrupts at the same priority level as the one just processed. The stack
pointer is left decremented by two. No other registers are affected and the PSW is not automatically restored
to its pre-interrupt status. Usually, this instruction immediately after the point at which the interrupt request
was detected. If a lower- or same-level interrupt has been pending when the RETI instruction is executed, that
one instruction will be executed before the pending interrupt is processed.

RETI

PC PC+2, PC10-0 page address

Machine Cycles: 2; States: 24; Flags: none; Two-bytes Instruction

AJMP instruction transfers program execution to the indicated address, which is formed at run-time by
concatenating the high-order five bits of the PC after incrementing the PC twice, opcode bits 7–5, and the sec-
ond byte of the instruction. The destination address must be within the same 2 K block of program memory.

AJMP 11-bit address

PC addr15-0,

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

LJMP instruction is an unconditional branch to the indicated address, by loading the high-order and low-
order bytes of the PC with the second and third instruction bytes. The destination address will be anywhere
in the full 64K program memory address space. No flags are affected.

LJMP JMPADR

PC PC+2, PC PC + rel,

Machine Cycles: 2; States: 24; Flags: none; Two-byte Instruction

If SJMP rel instruction is executed, program control branches unconditionally to the address indicated.
The branch destination is computed by adding the signed displacement in the second instruction byte to the
PC, after incrementing the PC twice. The range of destinations allowed is from 128 bytes preceding this
instruction to 127 bytes following it.

SJMP RELADR

PC A+DPTR,

Machine Cycles: 2; States: 24; Flags: none; One-byte Instruction

The eight-bit unsigned contents of the accumulator is added with the sixteen-bit data pointer, and load
the result to the program counter. This will be the address for subsequent instruction fetches. No flags are
affected.

MOV DPTR,#8000H; JMP @A+DPTR. If the accumulator is equal to 04H, execution will
jump to label 8004H memory location.

PC PC+2, If A=0, then PC PC + rel,

Machine Cycles: 2; States: 24; Flags: none; Two-byte Instruction

If all bits of the accumulator are zero, jump to the indicated address; otherwise proceed with the next
instruction. The branch destination address is computed by adding the signed relative-displacement to the PC,
after incrementing the PC twice. The accumulator is not modified. No flags are affected.

DEC A; JZ LABEL2

Assume the accumulator holds 01H. After execution of above instructions, the accumulator will change
to 00H and cause jump to the label LABEL2.

PC PC+2, If A 0 then PC PC+rel,

Machine Cycles: 2; States: 24; Flags: none; Two-byte Instruction

If any bit of the accumulator is ‘1’, jump to the indicated address; otherwise proceed with the next
instruction. The branch destination address is computed by adding the signed relative-displacement to the PC,
after incrementing the PC twice. The accumulator is not modified. No flags are affected.

INC A; JNZ LABEL2

Assume the accumulator holds 00H. After execution of above instructions the accumulator will set to
01H and continue at label LABEL2.

CJNE <dest-byte, <src-byte>, rel instruction is used to compare the magnitudes of the first two oper-
ands, and branches if their values are not equal. The branch destination address is computed by adding the
signed relative displacement to the PC, after incrementing the PC. The carry flag is set if the unsigned integer
value of <dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. All
addressing mode combinations of CJNE instructions are explained below:

PC PC+3, If A< > direct, then PC PC + relative offset; If A<direct, then C 1, Else C 0.

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

Compare the content of data which is specified by direct memory location and accumulator, thereafter
jump to destination address if not equal. The destination address is computed by addition of PC and relative
offset address after incrementing PC by 3.

PC PC+3, If A< > data, then PC PC + relative offset; If A<data, then C 1, Else C 0

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

Compare the contents of accumulator with 8-bit immediate data, thereafter jump to destination address if
not equal. The destination address is computed by addition of PC and relative offset address after increment-
ing PC by 3.

PC PC+3, If Rn< > data, then PC PC + relative offset; If Rn < data, then C 1, Else C 0

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

Compare the contents of register Rn with 8-bit immediate data; thereafter jump to destination address if
not equal. The destination address is computed by addition of PC and relative offset address after increment-
ing PC by 3.

PC PC+3, If [Ri]< > data, then PC PC + relative offset; If Ri<data, then C 1, Else C 0

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

Compare the content of memory location which is specified by R0 or R1 and 8-bit immediate data,
thereafter jump to destination address if not equal. The destination address is computed by addition of PC and
relative offset address after incrementing PC by 3.

DJNZ <byte>, <rel-addr> instruction decrements the first operand by 1 and jump to the address indicated
by the second operand if the resulting value is not zero. An original value of 00H will underflow to FFH. No
flags are affected. The branch destination would be computed by adding the signed relative displacement

value to the PC, after incrementing the PC. The location of first operand may be a register or a directly
addressed byte. Two types of DJNZ instructions are explained below:

PC PC+2, Rn Rn-1, If Rn > 0 or Rn < 0, then PC PC + rel

Machine Cycles: 2; States: 24; Flags: none; Two byte Instruction

Decrements the contents of register Rn by 1 and jump to the address indicated by the instruction if the
resulting value is not zero. The branch destination would be computed by adding the signed relative-displace-
ment value to the PC, after incrementing the PC by two.

DJNZ R2, 8-bit offset address.

PC PC+2, direct direct-1, If direct >0 or direct <0, then PC PC + rel

Machine Cycles: 2; States: 24; Flags: none; Three-byte Instruction

Decrements the contents of memory location which is specified by direct address, by 1 and jump to the
address indicated by the instruction if the resulting value is not zero. The branch destination would be com-
puted by adding the signed relative-displacement value to the PC, after incrementing the PC by two.

DJNZ 40, 8-bit offset address.

PC PC+1,

Machine Cycles: 1; States: 12; Flags: none; One-byte Instruction

Execution continues at the following instruction. Other than the program counter PC, no registers or
flags are affected.

NOP

The PUSH and POP instructions are used to manipulate stack related operations. All stack and exchange
instructions are given Table 14.12 and their function are discussed as follows:

SP SP+1; [SP] direct,

Machine Cycles 2; States: 24; Flags: none; Two-byte Instruction

The stack pointer is incremented by one. The contents of the indicated variable is then copied into the
internal RAM location addressed by the stack pointer. No flags are affected.

PUSH DPL

Direct [SP]; SP SP -1

Machine Cycles: 2; States: 24; Flags: none; Two-byte Instruction

The contents of the internal RAM location addressed by the stack pointer are read, and the stack pointer
is decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags
are affected.

POP DPH and POP SP

XCH A, <byte> loads the accumulator with the contents of the indicated variable, at the same time
writing the original Accumulator contents to the indicated variable. The source/destination operand can use
register, direct, or register-indirect addressing. All types of instructions are explained below:

A Rn

Machine Cycles: 1; States: 12; Flags: none; One-byte Instruction

Exchange the contents of specified register Rn with accumulator.

XCH A, R3

A direct

Machine Cycles: 1; States: 12; Flags: none; One-byte Instruction

Exchange the contents of memory location specified by direct address with accumulator.

XCH A, 40H

A [Ri]

Machine Cycles: 1; States: 12; Flags: none; One-byte Instruction

Exchange the contents of RAM location which is specified by R0 or R1 with accumulator.

XCH A, @R0; Assume R0 contains the address 40H, the internal RAM location 40H holds
25H and accumulator holds 2FH. After execution of XCH A, @R0, the accumulator contains 25H and internal
memory location content is 2FH.

A3-0 Ri3-0

Machine Cycles: 1; States: 12; Flags: none; One-byte instruction

XCHD instruction exchanges the low-order nibble of the accumulator (bits 3–0) with that of the internal
RAM location indirectly addressed by the specified register. The high-order nibbles (bits 7-4) of each register
are not affected. No flags are affected.

XCHD A, @R0

Store 8-bit immediate data (65H) into accumulator.

Mnemonics Opcode Comments

MOV A, #65H Store 65H into accumulator immediately

Transfer the contents of B register into accumulator.

Mnemonics Opcode Comments

MOV A, B Copy the content of B register into accumulator

Load 42H and 55H in registers R0 and R1 respectively.

Mnemonics Opcode Comments

MOV R0, #42H Load 42H in R0 register

MOV R1, #55H Load 55 in R1register

Place the contents of external memory location 8000H into accumulator.

Mnemonics Opcode Comments

MOV DPTR, #8000H Load 8000H in data pointer register immediately

MOVX A, @DPTR Copy the content of external memory location 8000H
 into accumulator

Read the contents of external RAM locations 2000H and 20001H. Place values in
R5 and R6 respectively.

Mnemonics Opcode Comments

MOV DPTR, #2000H Load 2000H in data pointer register immediately

MOVX A,@DPTR Copy the content of external memory location 2000H
 into accumulator

MOV R5, A Copy the content of accumulator in R5 register

INC DPTR Increment data pointer register

MOVX A,@DPTR Copy the content of external memory location 2001H
 into accumulator

MOV R6,A Copy the content of accumulator in R5 register

Load 45H in external memory location 8000 H.

Mnemonics Opcode Comments

MOV DPTR, #8000H Load 8000H in data pointer register immediately

MOV A, #45H Load 45H into accumulator

MOVX @DPTR,A Copy the content of accumulator (45H) into external
 memory location 8000H

Load 89 (HEX) in internal memory location 40 H.

Mnemonics Opcode Comments

MOV 40, #89H Load 89H in internal memory location 40H

Write program instructions to load a byte in memory location 9000H and incre-
ment the contents of the memory location.

Mnemonics Opcode Comments

MOV DPTR, #9000H Load 9000H in data pointer register immediately

MOV A, #48H Load 48H into accumulator

MOVX @DPTR, A Copy the content of accumulator 48H into external memory
 location 9000H

INC A Increment accumulator

MOVX @DPTR, A Load 49H, i.e., the content of accumulator into external
 memory location 9000H

Write program instructions to load 44H in internal memory location 45H and
decrement the contents of the memory.

Mnemonics Opcode Comments

MOV 45, #44H Load 44H in internal memory location 45H immediately

MOV A, 45H Copy the content of internal memory location 45H
 into accumulator

DEC A Increment accumulator

MOV 45,A Copy the content of internal memory location 45H
 into accumulator

Load ABH in Register B. Then transfer the data to memory location 9050H.

Mnemonics Opcode Comments

MOV B, #ABH Load ABH in B register

MOV DPTR, #9050H Load 9050H in data pointer register immediately

MOV A, B Move B register to accumulator

MOVX @DPTR,A Load ABH i.e. the content of Accumulator into external
 memory location 9050H

Store 01H, 02H, 03H and 04H in register R0, R1, R2 and R3 respectively and
 exchange data stored in Reg. R0 with R1 and data in Reg. R2 with R3.

Mnemonics Opcode Comments

MOV R0, #01H Load 01H in R0 register immediately

MOV R1, #02H Load 02H in R1 register immediately

MOV R2, #03H Load 03H in R2 register immediately

MOV R3, #04H Load 04H in R3 register immediately

MOV A, R0H Copy the content of R0 into accumulator

XCH A,R1 The content of accumulator and register R1 are exchanged

MOV R0,A The content of accumulator into R0 register

MOV A, R2 Copy the content of R2 into accumulator

XCH A, R3 The content of accumulator and register R3 are exchanged

MOV R2,A The content of accumulator into R2 register

Load data 12H and 34H in memory location 8500 and 8501. Transfer the contents
of 8500 and 8501 to Register R0 and R1 respectively.

Mnemonics Opcode Comments

MOV DPTR, #8500H Load 8500H in data pointer register immediately

MOV A, #12H Load 12H into accumulator

MOVX @DPTR, A Copy the content of accumulator into external memory
 location 8500H

MOVX A, @DPTR Copy the content of external memory location 8500H
 into accumulator

MOV R0, A Move the content of accumulator into R0 register

INC DPTR Increment data pointer register

MOV A, #34H Load 34H into accumulator

MOVX @DPTR, A Copy the content of accumulator into external memory
 location 8501H

MOVX A, @DPTR Copy the content of external memory location 8501H
 into accumulator

MOV R1, A Move the content of accumulator into R1 register

A 8-bit data is stored in 40H Memory Location. Find its one’s complement and store
it in 41H memory location.

Mnemonics Opcode Comments

MOV R0, #40H Load 40H in R0 register immediately

MOV A, @R0 Load the content of 40H location into accumulator

CPL A Complement accumulator

INC R0 Increment R0

MOV @R0, A Move the content of accumulator into 41H memory location

Add 49 H and 56 H. The first number 49 H is in the external memory location 9001H. The second number
56 H is in the external memory location 9002 H. The result is to be stored in the external memory location
9003H.

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 90 90 01 MOV DPTR, #9001 Load 16-bit constant 9001 into

DPTR

 8003 E0 MOVX A, @DPTR Move the content of external mem-

ory 9001 into accumulator

 8004 F5 0B MOV B, A Move accumulator to B

 8006 A3 INC DPTR Increment DPTR (Contd.)

 8007 E0 MOVX A, @DPTR Move second data into accumulator

 8008 25 0B ADD A ,B Add B register with accumulator

 800A A3 INC DPTR Increment DPTR

 800B F0 MOVX @DPTR,A Store result into 9003H

 800C 02 00 00 LJMP 0000

DATA

9001–49 H

9002–56 H

RESULT

9003–9F H. The sum is stored in the memory location 9003 H

Two data 24 H and 23 H are Stored in RAM locations 40H and 41H write a program to find the sum and
Store at 42 H.

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 78 40 MOV R0, #40H Load 40H in R0 register

 8002 A6 24 MOV @R0, #24H Store 24H in 40H memory location

 8004 E6 MOV A, @R0 Content of 40H location in

accumulator

 8005 08 INC R0 Increment R0

 8006 76 23 MOV @R0, #23H Load 98H into 41 memory location

 8008 26 ADD A, @R0 Content of 41H location in

accumulator

 8009 08 INC R0 Increment R0

 800A F6 MOV @R0, A Move the content of accumulator

into 42H memory location

 800B 02 00 00 LJMP 0000 Addition of two 8-bit numbers
whose sum is 16 bits

Add 98 H and 9A H. The first number 98H is in the memory location 9001 H. The second number 9A H is in
the memory location 9002H. The results are to be stored in 9003 and 9004H.

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 90 90 01 MOV DPTR, #9001 Load 16-bit constant 9001 into

DPTR

 8003 E0 MOVX A, @DPTR Move the content of external mem-

ory 9001 into accumulator

 8004 F5 0B MOV B, A Move accumulator to B

 8006 A3 INC DPTR Increment DPTR

 (Contd.)

 (Contd.)

 8007 E0 MOVX A, @DPTR Move second data into accumulator

 8008 25 0B ADD A, B Add B register with accumulator

 800A A3 INC DPTR Increment DPTR

 800B F0 MOVX @DPTR, A Store result into 9003H

 800C 40 04 JC 8012 If carry flag is set, jump to 8012

 800E 74 00 MOV A, #00 Load 00H in accumulator

 8010 A3 INC DPTR Increment DPTR

 8011 F0 MOVX @DPTR, A Store 00H into 9004H

 8012 74 01 MOV A, #01 Load 01H in accumulator

 8014 A3 MOVX @DPTR, A Store 01H into 9004H

 8015 02 00 00 LJMP 0

Addition of 98 H and 9A H is SUM = 01, 32 H. In this case, the sum is to be stored in two consecutive
memory locations. The LSBs of the sum is 32H and it will be stored in the memory location 9003 H. The
MSB of the sum is 01 which will be stored in 9004 H.

Assume ten 8-bit numbers are stored in the internal RAM locations from 31H to 3A. After addition, MSD
will be stored in R2 and LSD will be in R3.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 78 31 MOV R0,#31 Load 31H in R0 register

 8002 79 0A MOV R1, #0A The number of data in R1 register

 8004 E4 CLR A Clear accumulator and A becomes

00H

 8005 FA MOV R2, A Move the accumulator content into

R2 register

 8006 E6 MOV A, @R0 Move the content of internal RAM

location into accumulator

 8007 08 LOOP INC R0 Increment R0 register to read next

data

8008 26 ADD A, @R0 Add next data with Accumulator

8009 50 01 JNC Level_1 Jump no carry to Level-1

800B 0A INC R2 Increment R2 register

800C D9 F9 Level_1 DJNZ R1, LOOP Repeat until R1 becomes 0

800E FB MOV R3, A Move the accumulator content into

 R3 register

800F 02 00 00 LJMP 00

 (Contd.)

The numbers are stored in the external RAM locations starting from 8000H. Sum will be 16 bit and Result
will be stored in the memory location 8100H and 8101H.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 90 80 00 MOV DPTR, #8000H Load 8000H in data pointer register

 8003 79 0A MOV R1, #0A The number of data in R1 register

 8005 E4 CLR A Clear accumulator and A becomes

00H

 8006 FA MOV R2, A Initialize R2 register

 8007 E0 MOVX A, @DPTR Load first data in accumulator

 8008 FB LOOP MOV R3, A Move data from A to R3

 8009 A3 INC DPTR Increment DPTR register to MOVE

next data in accumulator

 800A E0 MOVX A, @DPTR

 800B 2B ADD A, R3 Add R3 register with accumulator

 800C 50 01 JNC Level_1 Jump no carry to Level_1

 800E 0A INC R2 Increment R2 register

 800F D9 F7 Level_1 DJNZ R1, LOOP Repeat until R1 becomes 00H

 8011 90 81 00 MOV DPTR,#8100 Load 8100H in data pointer register

 8014 F0 MOVX @DPTR,A Move ACC to external memory

location 8100H

 8015 A3 INC DPTR Increment DPTR

 8016 E3 MOV A,R2 Move R2 register to ACC

 8017 F0 MOVX @DPTR,A Move ACC to external memory

location 8101H

 8018 02 00 00 LJMP 00

The first number is 2498H and the second number is FE4CH. After addition result will be stored in R2, R1
and R0 registers.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 C3 CLR C Clear carry C = 0

 8001 7A 00 MOV R2, #00H R2 register is initialized

 8003 74 98 MOV A, #98 Least significant byte of first num-

ber in accumulator

 8005 24 4C ADD A, #4CH Add least significant byte of second

number with accumulator
 (Contd.)

 8007 F8 MOV R0,A Store result of lower byte in R0

register

 8008 E5 24 MOV A,24H Most significant byte of first number

in accumulator

 800A 35 FE ADDC A,FEH Add most significant byte of second

number with accumulator

 800C 50 01 JNC Level_1 Jump no carry to Level_1

 800E 0A INC R2 Increment R2 register

 800F F9 Level_1 MOV R1,A Move the content of accumulator

into R1 register

 8010 02 00 00 LJMP 0000

After addition the content of R2, R1 and R0 registers as follows: R2 = 01H, R1 = 22H and R0
= E4H

 2 4 9 8 H 1st number

 +F E 4 C H 2nd number

 Sum: 1 2 2 E 4 H

Assume five BCD numbers are stored from 41H to 45H. The result must be BCD and stored in memory loca-
tions 46H and 47H.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 79 05 MOV R1, #05H Number of data in R1 register

 8002 78 41 MOV R0, #41H Load 41H in R0 register

 8004 E4 CLR A Clear accumulator

 8005 FA MOV R2, A Content of accumulator in R2

register

 8006 26 LOOP ADD A, @R0 The content of indirect RAM with

accumulator

 8007 D4 DAA Decimal Adjustment

 8008 50 00 JNC Level_1 Jump no carry to Level_1

 800A 0A INC R2 Increment R2

 800B 08 Level_1 INC R0 Increment R0

 800C D9 F8 DJNZ R1, LOOP Repeat until R1 become zero

 800E F5 46 MOV 46, A Move LSD into 46H memory

location

 8010 8A 47 MOV 47, R2 Move MSD into 46H memory

location

 8012 02 00 00 LJMP 0000

 (Contd.)

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 74 45 MOV A, #45H Load 45H in accumulator

 8002 F8 MOV R0, A Move content of accumulator in R0 register

 8003 54 0F ANL A, #0FH Mask the upper nibble A = 05H

 8005 44 30 ORL A, #30H Make it an ASCII, A = 35H

 8007 FA MOV R2, A Save ASCII equivalent into R2 register

 8008 E8 MOV A,R0 Move content of R0 register into accumulator

 8009 54 F0 ANL A, #F0H Mask lower nibble, A = 40H

 800B 03 RR A Rotate right accumulator

 800C 03 RR A Rotate right accumulator

 800D 03 RR A Rotate right accumulator

 800E 03 RR A Rotate right accumulator, A = 04H

 800F 44 30 ORL A, #30H Make it an ASCII, A = 34H

 8011 FB MOV R3, A Save ASCII equivalent into R3 register

 8012 02 00 00 LJMP 00

Assume one number EFH is in accumulator and other number 45H in R0 register. After subtraction result
will be stored in R1 register.

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 74 EF MOV A, #EFH Load EFH into accumulator

8002 78 45 MOV R0, #45H Load 45H into R0 register

8004 98 SUBB A, R0 Subtract the content of R0 from accumulator

8005 F9 MOV R1, A Move accumulator content into R1 register

8006 02 00 00 LJMP 0000

Assume 45H data is immediately loaded into accumulator. Complement accumulator and Store result in
9001H memory location.

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 74 45 MOV A, #45 Load 45H into accumulator

 8002 F4 CPL A Complement accumulator

 8003 90 90 01 MOV DPTR, #9001 Load 9001H in DPTR

 8006 F0 MOVX @DPTR,A Store accumulator content in 9001H memory location

 8007 02 00 00 LJMP 00

Store the result in 9001H memory location.

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 C3 CLR C Clear carry

 8001 74 4F MOV A, #4F Move 4FH into accumulator

 8003 F4 CPL A 1’s complement accumulator

 8004 24 01 ADD A, #01 1’s complement + 1

 8006 90 90 01 MOV DPTR, #9001 Load 9001 in DPTR

 8009 F0 MOVX @DPTR, A Store result in 9001H memory location

 800A 02 00 00 LJMP 0000

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 74 68 MOV A,#68H Load 68H into accumulator

 8002 23 RL A Rotate accumulator left by one bit

 8003 23 RL A Rotate accumulator left by one bit

 8004 F5 40 MOV 40,A Store accumulator content into 40H memory location

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 74 65 MOV A, #65H Load 65H into accumulator

 8002 C4 SWAP A Swap command interchanges the low and high order

nibbles

 8003 90 91 00 MOV DPTR, #9100 Load 9100 in DPTR

 8006 F0 MOVX @DPTR, A Store accumulator content into 9100H memory location

 8007 02 00 00 LJMP 00

Assume a section of data is stored in internal RAM starting from 40H. These data will be shifted to memory
locations starting from 80H.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 78 40 MOV R0, #40H Store 40H in R0 register immediately

 8002 79 80 MOV R1, #80H Store 80H in R1 register immediately

 8004 AA 20 MOV R2, #20 Store no of data, 20H in R2 register

immediately

 8006 E6 LOOP MOV A, @R0 Move register indirect memory loca-

tion into accumulator

 8007 F7 MOV @R1, A Move accumulator content into reg-

ister indirect memory location

 8008 08 INC R0 Increment R0 register

 8009 09 INC R1 Increment R1 register

 800A DA FA DJNZ R2,LOOP Repeat until R2 becomes zero

 800C 02 00 00 LJMP 00

Assume number of data is stored in 9000H and array of numbers is stored in external data memory starting
from 9001H. Store the largest number in 9100H.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 90 90 00 MOV DPTR,#9000H Load 9000H in data pointer register

 8003 E0 MOVX A,@DPTR Move content of data pointer into

accumulator

 8004 F8 MOV R0,A Move accumulator content into R0

register

 8005 A3 INC DPTR Increment data pointer register

 8006 E0 MOVX A,@DPTR Move content of data pointer into

accumulator

 8007 F9 MOV R1,A Copy accumulator content into R1

register

 8008 18 DEC R0 Decrement R0 register

 8009 A3 Loop INC DPTR Increment data pointer register

 800A E0 MOVX A,@DPTR Move content of data pointer into

accumulator

 800B FA MOV R2,A Move accumulator content into R0

register

 800C 99 SUBB A,R1 Subtract the content of R1 register

from accumulator

 800D 40 02 JC Level Jump no carry to shift Level

 800F EA MOV A,R2 Move R2 register to accumulator

 (Contd.)

 8010 F9 MOV R1,A Move accumulator content into R0

register

 8011 D8 F6 Level DJNZ R0, Loop If R0 is not equal to zero, jump to

Loop

 8013 E9 MOV A,R1 Move R1 to accumulator

 8014 90 91 00 MOV DPTR,#9100H Load 9100H in DPTR register

 8017 F0 MOVX @DPTR,A Move content of accumulator into

memory location

 8018 02 00 00 LJMP 0000

Assume number of data is stored in 9000H and array of numbers is stored in external data memory starting
from 9001H.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 90 90 00 MOV DPTR,#9000 Load 9000H in data pointer register

 8003 E0 MOVX A,@DPTR Move content of data pointer into

accumulator

 8004 F8 MOV R0,A Move accumulator content into R0

register

 8005 A3 INC DPTR Increment data pointer register

 8006 E0 MOVX A,@DPTR Move content of data pointer into

accumulator

 8007 F9 MOV R1,A Copy accumulator content into R1

register

 8008 18 DEC R0 Decrement R0 register

 8009 A3 LOOP INC DPTR Increment data pointer register

 800A E0 MOVX A,@DPTR Move content of data pointer into

accumulator

 800B FA MOV R2,A Move accumulator content into R0

register

 800C 99 SUBB A,R1 Subtract the content of R1 register

from accumulator

 8000D 50 02 JNC Level Jump no carry to Level

 800F EA MOV A,R2 Move R2 register to accumulator

 8010 F9 MOV R1,A Move accumulator content into R0

register

 8011 D8 F6 Level DJNZ R0, LOOP If R0 is not equal to zero, jump to

LOOP

 8013 E9 MOV A,R1 Move R1 to accumulator

 8014 90 91 00 MOV DPTR,#9100 Load 9100H in DPTR register

 (Contd.)

 (Contd.)

 8017 F0 MOVX @DPTR,A Move content of accumulator into

memory location

 8018 02 00 00 LJMP 0000

Assume number of data is stored in R0 register and array of numbers is stored in external data memory start-
ing from 9000H.

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 78 08 MOV R0,#0A Number of data bytes, 0A is stored

in R0

 8002 18 DEC R0 Decrement R0 by 1

 8003 90 90 00 LOOP1 MOV DPTR,#9000 Load 9000H in DPTR

 8006 E8 MOV A,R0 Content of R0 in accumulator

 8007 F9 MOV R1,A Content of accumulator in R1

 8008 E0 LOOP2 MOVX A,@DPTR Move data into accumulator

 8009 FA MOV R2,A Copy data in R2

 800A A3 INC DPTR Increment DPTR

 800B E0 MOVX A,@DPTR Move next data in accumulator

 800C 9A SUBB A,R2 Compare above two data

 800D 50 08 JC 8017 LOOP3 Jump to LOOP 3 if carry flag is 0

 800F E0 MOVX A,@DPTR

 8010 CA XCH A,R2 Exchange data in accumulator and

R2 if carry flag is 1

 8011 F0 MOVX @DPTR,A Replace current memory data by

accumulator content

 8012 15 82 DEC 82 Decrement DPL by1 DPL = DPL-1

 8014 EA MOV A,R2 Move R2 content into accumulator

 8015 F0 MOVX @DPTR,A Replace previous memory data by

R2

 8016 A3 INC DPTR Increment DPTR

 8017 D9 EF LOOP3 DJNZ R1,8008 LOOP2 Decrement R1, if not zero, Jump to

LOOP2

 8019 D8 E8 DJNZ R0,8003 LOOP1 Decrement R0, if not zero, Jump to

LOOP1

 801B 02 00 00 LJMP 0000

Assume number of data is stored in R0 register and array of numbers is stored in external data memory start-
ing from 9000H.

 (Contd.)

 Memory Machine

 address Codes Labels Mnemonics Operands Comments

 8000 78 08 MOV R0,#08 Number of data bytes, 08 is stored in

R0

 8002 18 DEC R0 Decrement R0 by 1

 8003 90 90 00 LOOP1 MOV DPTR,#9000 Load 9000H in DPTR

 8006 E8 MOV A,R0 Content of R0 in accumulator

 8007 F9 MOV R1,A Content of accumulator in R1

 8008 E0 LOOP2 MOVX A,@DPTR Move data into accumulator

 8009 FA MOV R2,A Copy data in R2

 800A A3 INC DPTR Increment DPTR

 800B E0 MOVX A,@DPTR Move next data in accumulator

 800C 9A SUBB A,R2 Compare above two data

 800D 50 08 JNC 8017 Jump to LOOP 3 if carry flag is 0

 800F E0 MOVX A,@DPTR

 8010 CA XCH A,R2 Exchange data in accumulator and

R2 if carry flag is 1

 8011 F0 MOVX @DPTR,A Replace current memory data by

accumulator content

 8012 15 82 DEC 82 Decrement DPL by1 DPL=DPL-1

 8014 EA MOV A,R2 Move R2 content into accumulator

 8015 F0 MOVX @DPTR,A Replace previous memory data by

R2

 8016 A3 INC DPTR Increment DPTR

 8017 D9 EF LOOP3 DJNZ R1,8008 Decrement R1, if not zero, Jump to

LOOP2

 8019 D8 E8 DJNZ R0,8003 Decrement R0, if not zero, Jump to

LOOP2

 801B 02 00 00 LJMP 0000

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 90 90 00 MOV DPTR,#9000H Lookup table address

 8003 78 05 MOV R0,#05 Load the number 05 in R0

 8005 E8 MOV A,R0 Move data R0 to accumulator

 8006 93 MOVC A,@A+DPTR Get square of 05 from table and stored in accumulator

 8007 90 91 00 MOV DPTR,#9100 Load 9100 in DPTR

 800A F0 MOVX @DPTR, A Send result to 9100H memory location

 800B 02 00 00 LJMP 00

ADDRESS SQUARE

9000 00
9001 01
9002 04

9003 09

9004 16

9005 25

9006 36

9007 49

9008 64

9009 81

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 74 24 MOV A, #24 Load accumulator with first number (24H)

 8002 75 0B 12 MOV B, #12 Load register B with Second number (12H)

 8005 A4 MUL AB Multiplication accumulator with B register and store

result in accumulator

 8006 F8 MOV R0,A Store LSB in R0

 8007 A9 0B MOV R1,B Store MSB in R1

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 74 60 MOV A, #60H Load accumulator with first number (60H)

 8002 75 0B 12 MOV B, #12H Load register B with Second number (12H)

 8005 84 DIV AB Division accumulator with B register and store result in

accumulator

 8006 F8 MOV R0,A Store result in R0 register

 8007 A9 0B MOV R1,B Store reminder in R1 register

 Memory Machine

 address Codes Mnemonics Operands Comments

 8000 79 45 MOV R1, #45H Load first data byte, 45H in R0 register

 8002 74 7F MOV A, #7FH Load second data byte, 7FH in accumulator

 8004 59 ANL A,R1 Logical AND operation of accumulator and R1 register

 8005 FA MOV R2,A Store result in R2 register

 Labels Mnemonics Operands Comments

 DELAY MOV R1,#FF Outer loop counter = FFH = 256

 MOV R0,#FF Inner loop counter = FFH = 256

 LOOP DJNZ R0,LOOP Loop 256 times

 DJNZ R1,LOOP Loop 256 times

 RET Return

The DJNZ instruction takes 24 clock periods or T states. Initially, the inner loop is executed 256 times.
After that R1 is decremented by 1, again the inner loop is executed 256 times until R1 is not zero. As the outer
loop is also executed for 256 times, total T states = 24 × 256 × 256 + 24 × 256 T states required to execute
DJNZ R0, LOOP and DJNZ R0, LOOP instructions. Twelve T states are required to execute MOV R1, #FF
and MOV R0, #FF instructions. Hence, the total T states for the DELAY loop is 12 + 12 + 24 × 256 × 256 +
24 × 256 T states = 1579032 T states. If the microcontroller operating frequency is 12 MHZ, 24 T states is
equal to 2 μs. So that the time delay is equal to 1579032 T states =131586 μs = 0.13s

The content of Port 0 states number of times LEDs ON. Assume that input switches are connected to Port 0
and output connected to Port 1 of 8051.

 Labels Mnemonics Operands Comments

 READ MOV A,P0 Read Port 0 switches

 JZ READ If no switch is on, jump to READ

 MOV R0,A Move Port 0 value in R0 register

 ON MOV P1,#0FF Turn ON all LEDs connected to Port 1

 CALL DELAY Call Delay Loop

 OFF MOV P1,#00 Turn ON all LEDs connected to Port 1

 CALL DELAY Call Delay Loop

 DJNZ R0,ON Decrement R0 by 1, if R0 is not zero jump to ON

 DELAY MOV R1,#FF Outer loop counter = FH=256

 MOV R2,#FF Inner loop counter = FFH=256

 MOV R3,#08 Middle loop counter for 9 times

 LOOP DJNZ R2,LOOP Loop 256 times

 DJNZ R1,LOOP Loop 256 times

 DJNZ R3,LOOP Loop 9 times

 RET Return

To execute the delay program given in example 14.6.1, time required is about 0.13 s. If the said program
is repeated 8 times, about 1 s delay will be generated. Therefore, a middle loop must be incorporated in the
program as given above.

Figure 14.9 shows the keyboard interfacing with 8051 microcontroller. It is clear from Fig. 14.9 that the
keyboard is wired as a 4 × 4 row-column matrix. The low-order nibble of Port 0 is connected to the rows and
the high-order nibble of Port 0 is connected to columns. All rows and columns are connected with the 10 K
pull-up resistors. As the I/O ports of the 8051 microcontroller can be used as bidirectional port to perform
both read and write operations, therefore, the status of Port 0 can be read to scan the keyboard. Three differ-
ent subroutines such as ROW_READ, COLUMN_READ and CONVERT are used to scan the key which is
actually pressed.

To find out the row of the depressed key, assume all of the columns are LOW and all of the rows HIGH.
This is possible by executing the instruction MOV P0, #0FH. The HIGH on the rows is actually a floating
state and the rows to be read. The other instructions of ROW_READ subroutine are executed to read each row
and to determine the row number that is LOW and the other three rows will be high.

10 k� 10 �k 10 �k 10 �k

10 �k

10 �k

10 �k

10 �k

C D E F

8 9 A B

4 5 6 7

0 1 2 3

Row 0

Row 1

Row 2

Row 3

Column 0

Column 1

Column 2

Column 3

P
o
rt
0

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

8
0
5
1
M
ic
ro
c
o
n
tr
o
ll
e
r

+5V

After the row read operation, a column must be read to determine the column number by executing
COLUMN_READ subroutine. When the instruction MOV P0, #F0 is executed, all of the rows are LOW
and all of the columns are HIGH that float the columns. When any key is still depressed, the column of the
key will be LOW. After execution of COLUMN_READ subroutine, the column number will be stored in R1
register.

Lastly, the CONVERT subroutine converts the row–column combination to the numeric value of the key
pressed. Rows 0, 1, 2 and 3 have weighting factors of 0, 4, 8 and 12 respectively. Similarly, columns 0, 1, 2
and 3 have weighted factors 0, 1, 2 and 3 respectively. The CONVERT subroutine determines the numeric
value of the key pressed by using formula: Key pressed = row × 4 + column. The program for keyboard inter-
facing with 8051 microcontroller is given below:

 Labels Mnemonics Operands Comments

 CALL ROW_READ Find out row of key pressed

 CALL COLUMN_READ Find out column of key pressed

 CALL CONVERT Convert row/column to key value

 LJMP 0000

 ROW_READ MOV P0, #0F Output 0s to all columns

 MOV R0, #00 ROW=0

 JNB P0.0, RET_1 If row 0 is LOW, return to RET_1

 MOV R0, #01 ROW=1

 JNB P0.1, RET_1 If row 1 is LOW, return to RET_1

 MOV R0, #02 ROW=2

 JNB P0.2, RET_1 If row 2 is LOW, return to RET_1

 MOV R0, #03 ROW=3

 JNB P0.3, RET_1 If row 3 is LOW, return to RET_1

 JMP ROW_READ Jump to ROW_READ

 RET_1 RET Return

 Labels Mnemonics Operands Comments

 COLUMN_READ MOV P0,#0F0H Output 0s to all rows

 MOV R1,#00 COLUMN=0

 JNB P0.4,RET_2 If column 0 is LOW, return to RET_2

 MOV R1,#01 COLUMN = 1

 JNB P0.4,RET_2 If column 1 is LOW, return to RET_2

 MOV R1,#02 COLUMN =2

 JNB P0.5,RET_2 If column 2 is LOW, return to RET_2

 MOV R1,#03 COLUMN =3

 JNB P0.6,RET_2 If column 3 is LOW, return to RET_2

 JMP COLUMN_READ Jump to COLUMN _READ

 RET_2 RET Return

 Labels Mnemonics Operands Comments

 CONVERT MOV B,#04 Move multiplication factor = 04 to B register

 MOV A,R0 Move row number to A

 MUL AB A = row × 4

 ADD A, R1 A = row × 4 + column which is the key value

 RET Return

Figure 14.10 shows the ADC0804 is interfaced with the 8051 microcontroller. The clock input for ADC is
taken from the crystal oscillator of the microcontroller. As frequency is very high, two flip-flops are used to
divide the frequency by 4. The connection start-of-conversion SC and end-of-conversion EOC signals are
shown in Fig. 14.10. The steps of A/D converter is as follows:

D Q

Q

74LS74

D Q

Q

74LS74

8051
Microcontroller

XTAL1

XTAL2

P0.5

P0.6

P1.0

P

P

P

P

P

P

P

P

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.7

D

D

D

D

D

D

D

D

INTR

0

1

2

3

4

5

6

7

EOC CS

RD

WR
SC

+5V

VCR

CLKR

CLK IN

10 K
pot

Vin (+)

Vin (-)

AGND

GND

Vref/2

ADC 0804

CLK

CLK

Step 1 The start of conversion SC signal is sent to pin WR to start the conversion.

Step 2 INTR pin is connected with end-of-conversion EOC signal. Keep monitoring the INTR pin to check
end of conversion. If INTR is high, keep polling until it becomes low.

Step 3 When the INTR is low, the A/D conversion is completed and the ADC0804 sent a high-to-low pulse
to the RD pin.

After the initial reset of the 8051 microcontroller, all I/O ports are in the floating condition. The first two
instructions in this program, write ones to ports 1 and 0, which make them float. To start the DATA conver-
sion, bit 6 of Port0 is pushed LOW then HIGH using the CLR and set bit SETB instructions. The conversion

process will continue and remains in a WAIT loop until bit 7 of Port 0 becomes LOW. Then the microcon-
troller reads the ADC output data through Port 1 and stores it in Register R 0. The program of A/D converter
is given below:

 Labels Mnemonics Operands Comments

 MOV P1,#0FFH All pins of Port 1 become 1

 MOV P0,#0FFH All pins of Port 0 become 1

 CLR P0.6 Make P0.6 LOW to HIGH for SC
 SETB P0.6

 WAIT JB P0.7, WAIT Wait until EOC becomes low

 CLR P0.5 Conversion is completed and RD enable

 MOV R0,P1 Read the data from port P1 and store it in

R0 register

Nowadays microcontrollers are used to implement traffic-control systems. Figure 14.11 shows the simple
model of a microcontroller-based traffic control system. The various control signals such as red, green, orange,

PB
2

PB
3

PB
4

PA
6
PA

7
PC

0

G Y R

G

Y

R

P
C
1
P
C
2
P
C
3

PB
5

PB
6

PB
7

PC
6 PC

5
PC

4

PA
2
PA

1
PA

0

R Y G

P
A
5
P
A
4
P
A
3

R
Y

G

PB
1

PB
0

PC
7

EW

N

S

forward arrow, right arrow and left arrow are used in this scheme. The forward, right and left arrows are used
to indicate forward, right and left movement respectively. The red (R) signal is used to stop the traffic in
the required lane and the yellow (Y) signal is used as standby, which indicates that the traffic must wait for
the next signal. The green (G) light for a particular lane remains on for DELAY-1 seconds followed by the
standby signal for DELAY-2 seconds. However, at a time, 3 out of the 4 roads, the left signal or the left arrow
remains ON even though that lane may have a red signal. The traffic light control is implemented using an
8051 microcontroller kit having 8255 on board, and the interfacing circuit is illustrated in Fig. 14.12. Each
signal is controlled by a separate pin of I/O ports. The total number of logic signals required for this arrange-
ment is twenty-four. The programmable peripheral interface device 8255 is used to interface these 24 logic
signals with the lamps. The logic ‘0’ and ‘1’ represent the state of the lamp. Logic ‘1’ represents ON and ‘0’
represents OFF. All ports of 8255 are used as output ports. The control word to make all ports as output ports
for Mode 0 operation is 80H. The traffic light control program can be written by the following steps:

+ 5V

220W

+ 5V

220W

+ 5V

220W

LEDInverted
Buffer

PA7

PA0

PB7

PB0

PC7

PC0

A0

A1

A0

A1

D –D0 7 D –D0 7

To 8051
Microprocessor

8255

IOW WR

CSCS

Step 1 Initialize all ports of the 8255 as output ports.

Step 2 Determine the required status of Port A, Port B and Port C of 8255 for north to south traffic move-
ment. Load data into accumulator and send to Port A, Port B and Port C for north to south traffic movement.

Step 3 Call delay subroutine –1.

Step 4 Before starting east to west traffic movement, north-to-south traffic movement will be ready to stop
and east to west traffic must be ready for movement. Therefore, determine the required status of Port A, Port
B and Port C for this operation. Then load data into accumulator and send to Port A, Port B and Port C for
north-to-south traffic movement will be ready to stop and east-to-west traffic must be ready for movement.

Step 5 Call delay subroutine-2.

Step 6 For east-to-west traffic movement, determine the required status of Port A, Port B and Port C of
8255. Load data into accumulator and send to Port A, Port B and Port C for east-to-west traffic movement.

Step 7 Call delay subroutine-1.

Step 8 Prior to starting south-to-north traffic movement, east-to-west traffic will be ready to stop and south-
to-north traffic must be ready for movement. For this operation, determine the status of Port A, Port B and
Port C of 8255. Load required data into accumulator and send to Port A, Port B and Port C for east-to-west
traffic will be ready to stop and south-to-north traffic must be ready for movement.

Step 9 Call delay subroutine-2.

Step 10 Determine the status of Port A, Port B and Port C for south-to-north traffic movement. Load require
data into accumulator and send to Port A, Port B and Port C for south-to-north movement.

Step 11 Call delay subroutine-1.

Step 12 Before starting west-to-east traffic movement, south-to-north traffic movement will be ready to
stop and west-to-east traffic must be ready for movement. Find out the status of Port A, Port B and Port C for
this operation. Load required data into accumulator and send to Port A, Port B and Port C for south-to-north
traffic movement will be ready to stop and west-to-east traffic must be ready for movement.

Step 13 Call delay subroutine-2.

Step 14 For west-to-east traffic movement, determine the status of Port A, Port B and port C of 8255. Load
necessary data into accumulator and send to Port A, Port B and Port C for west-to-east traffic movement.

Step 15 Call delay subroutine-1.

Step 16 Subsequently west-to-east traffic movement will be ready to stop and north-to-south traffic must be
ready for movement. Determine the status of Port A, Port B and Port C for this operation. Load needed data
into accumulator and send to Port A, Port B and Port C. Then west-to-east traffic movement will be ready to
stop and north-to-south traffic must be ready for movement.

Step 17 Call delay subroutine-2.

Step 18 Jump to Step 2.

The Chart below shows the bit assignment of ports. Putting 0s and 1s in required positions, the data byte for
each port can be derived. For example, during north-to-south traffic movement, the statuses of Port A, Port
B and Port C are as follows:

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

0 0 1 0 0 0 0 1

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

0 0 0 0 0 1 0 0

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

1 1 1 1 1 0 0 1

When north-to-south traffic movement will be ready to stop and east-to-west traffic must be ready for
movement, the statuses of Port A, Port B and Port C are as follows:

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

0 0 0 1 0 0 1 0
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

0 0 0 0 0 1 0 0
PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

0 0 0 0 1 0 0 1

The calculated necessary data bytes of Port A, Port B and Port C for all types of traffic movement are
illustrated in Table 14.7 as given below:

Traffic movement Status of Port A Status of Port B Status of Port C

North-to-south traffic movement 21H 04H F9H

North-to-south traffic movement be ready to stop 12H 04H 09H

and east-to-west traffic be ready for start

East-to-west traffic movement 0CH 27H 89H

East-to-west traffic movement be ready to stop 94H 20H 08H

and south-to-north traffic are ready for start

South-to-north traffic movement 64H 3CH 18H

South-to-north traffic movement be ready to stop A4H 00H 14H

and west-to-east traffic be ready for start

West-to-east traffic movement 24H D0H 93H

West-to-east traffic movement be ready to stop 22H 00H 85H

and north-to-south traffic be ready for start

The green light is provided for the traffic flowing from north to south. The arrows indicate the deviations
in which traffic is allowed to move. The arrows with a cross indicate that the traffic is not allowed to move in
that particular direction. Each signal is controlled by a separate port. The various signals used are red, green,
orange, forward arrow, right and left arrows. The forward arrow, right and left arrows are used to indicate
forward, right and left movement. The red signal is used to stop traffic in the required lane and the orange
signal is used as standby which indicates that the traffic must wait for the next signal. The green lights for a
particular lane remain on for 10 seconds followed by the standby signal for 4 seconds. However, at a time, for
3 out of the 4 roads, the left signal or the left arrow remains ON even though that lane may have a red signal.
This system is implemented using 8051 trainer having 8255 on board. The 8051 is interfaced with the 8255
and output pins are used to control the various signals. The program for traffic-light control is given below.

 Labels Mnemonics Operands Comments

 MOV 0A0,#0E8 Load control word of 8255 into Control word register

whose address is E803H. Control word is 80H

 MOV R0,#03

 MOV A,#80

 MOVX @R0,A

 START MOV R0,#00 Send 21H in Port A, F9H in Port C and 04H in Port B for

north-to south traffic movement.

 MOV A,#21

 MOVX @R0,A

 Labels Mnemonics Operands Comments

 MOV R0,#02

 MOV A,#F9

 MOVX @R0,A

 MOV R0,#01

 MOV A,#04

 MOVX @R0,A

 LCALL DEDAY-1 Call Delay-1 subroutine.

 MOV R0,#00 Send 12H in Port A, 09H in Port C and 04H in Port B for

north-to-south traffic movement will be ready to stop and

east-to-west traffic movement is ready to start.

 MOV A,#12

 MOVX @R0,A

 MOV R0,#02

 MOV A,#09

 MOVX @R0,A

 MOV R0,#01

 MOV A,#04

 MOVX @R0,A

 LCALL DELAY-2 Call Delay-2 subroutine

 MOV R0,#00 Send 0CH in Port A, 89H in Port C and 27H in Port B for

east-to-west traffic movement.

 MOV A,#0C

 MOVX @R0,A

 MOV R0,#02

 MOV A,#89

 MOVX @R0,A

 MOV R0,#01

 MOV A,#27

 MOVX @R0,A

 LCALL DEDAY-1 Call Delay-1 subroutine.

 MOV R0,#00 Send 94H in Port A, 08H in Port C and 20H in Port B for

east-to-west traffic movement will be ready to stop and

south-to-north traffic movement is ready to start.

 MOV A,#94

 MOVX @R0,A

 MOV R0,#02

 MOV A,#08

 MOVX @R0,A

 MOV R0,#01

 MOV A,#20

 MOVX @R0,A

 LCALL DELAY-2 Call Delay-2 subroutine.

 MOV R0,#00 Send 64H in Port A, 18H in Port C and 3CH in Port B for

south-to North traffic movement.

 MOV A,#64

 MOVX @R0,A

 Labels Mnemonics Operands Comments

 MOV R0,#02

 MOV A,#18

 MOVX @R0,A

 MOV R0,#01

 MOV A,#3C

 MOVX @R0,A

 LCALL DELAY-1 Call Delay-1 subroutine.

 MOV R0,#00

 MOV A,#A4 Send A4H in Port A, 14H in Port C and 00H in Port B for

south-to-north traffic movement is ready to stop and west-

to-east traffic movement will be ready to start.

 MOVX @R0,A

 MOV R0,#02

 MOV A,#14

 MOVX @R0,A

 MOV R0,#01

 MOV A,#00

 MOVX @R0,A

 LCALL DEDAY-2 Call Delay-2 subroutine.

 MOV R0,#00 Send 24H in Port A, 93H in Port C and D0H in Port B for

west-to-east traffic movement.

 MOV A,#24

 MOVX @R0,A

 MOV R0,#02

 MOV A,#93

 MOVX @R0,A

 MOV R0,#01

 MOV A,#D0

 MOVX @R0,A

 LCALL DELAY-1 Call Delay-1 subroutine.

 MOV R0,#00 Send 22H in Port A, 85H in Port C and 00H in Port B for

west-to-east traffic movement is ready to stop and north-to-

south traffic movement will be ready to to start.

 MOV A,#22

 MOVX @R0,A

 MOV R0,#02

 MOV A,#85

 MOVX @R0,A

 MOV R0,#01

 MOV A,#00

 MOVX @R0,A

 LCALL DELAY-2 Call Delay-2 subroutine.

 LJMP START Jump to START.

 Labels Mnemonics Operands

 MOV R4,#0A

 LOOP-3 MOV R7,#08

 MOV R5,#00

 LOOP-2 MOV R6,#F3

 LOOP-1 DJNZ R5,LOOP_1

 DJNZ R6,LOOP_1

 DJNZ R7,LOOP_2

 DJNZ R4,LOOP_3

 RET

 Labels Mnemonics Operands

 MOV R4,#04

 LOOP-3 MOV R7,#08

 MOV R5,#00

 LOOP_5 MOV R6,#F3

 LOOP_4 DJNZ R5,LOOP_4

 DJNZ R6,LOOP_4

 DJNZ R7,LOOP_5

 DJNZ R4,LOOP_6

 RET

Stepper motors are electromechanical devices, which con-
vert electrical pulses into proportionate discrete mechani-
cal rotational movement. To rotate the stepper motor’s
shaft, a sequence of pulses is required to be applied to
stator windings of a stepper motor. When a given number
of command pulses are supplied to the motor, the shaft
will have turned through a known angle. Therefore, the
motor can be used to control position by keeping count
of the number of command pulses. Each revolution of the
stepper motor’s shaft is made up of a series of discrete
individual steps. A step is defined as the angular rotation
produced by the shaft each time when the motor receives a
step pulse. Due to each step, the shaft can rotate a specified
angle in degrees. The rotation of the shaft due to each step
is called step angle. The stepper motors are usually used
in position control of robot arms, paper-drive mechanism

A
1

A
1

A
2

A
2

B
2

B
1

B
1

B
2

in a printer, machine-tools control, process-control system, textile industry, integrated circuit fabrication,
electric watches, tapes as well as disk drive systems, etc. Further, the average motor speed is proportional
to rate at which the pulse command is delivered. At low-command pulse rate, the rotor moves in steps, but
when the pulse rate is made sufficiently high, because of the inertia, the rotor moves smoothly, as in case of
dc motors. As motor speed is proportional to rate of command pulses, it can be used for speed control.

Figure 14.13 shows four-phase stepper motor windings and its interfacing is depicted in Fig. 14.14. The
four windings A1, A2, B1 and B2 are connected to PA3, PA2, PA1 and PA0 respectively. When PA3 is level
‘1’ and PA1 is level ‘1’, the coils A1 and B1 are energized and the motor will rotate by one step clockwise.
Similarly, coils A1 and B2 will be energized when PA3 is level ‘1’ and PA0 is in level ‘1’ and again the motor
rotates by one step. In the same way, the other phases are energized sequentially as per Table 14.8 and switch-
ing sequence waveform of windings is illustrated in Fig. 14.15. The assembly-language program for stepper-
motor control in clockwise as well as anti-clockwise rotation is illustrated below.

A1 A2 B1 B2

V (+12V)cc V (+12V)cc V (+12V)cc V (+12V)cc

PA3

PA2

PA1

PA0

A
1

A
2

B
1

B
2

5V

1

1

0

0

0

1

1

1

0

0

0

1

0

1

0

1

0

1

0

1

A1 A2 B1 B2 Clockwise CW Counter Clockwise CCW

1 0 1 0 A A

1 0 0 1 9 9

0 1 0 1 5 5

0 1 1 0 6 6

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 74 80 MOV A,#80 Load control word 80H in 8255

8002 90 E8 03 MOV DPTR,#E803

8005 F0 MOVX @DPTR,A

8006 74 00 START MOV A,#00

8008 12 01 61 LCALL 0161 Call subroutine to read character

800B B4 55 03 CJNE A,#55,8011 Compare if U is pressed

800E 12 D0 00 LCALL D000 Call clockwise rotation subroutine

8011 B4 44 03 CJNE A,#44,8017 Compare if D is pressed

8014 12 90 00 LCALL 9000 Call Counter clockwise rotation subroutine

8017 02 80 06 LJMP 8006 Jump to 8006

Memory Machine

address Codes Labels Mnemonics Operands Comments

D000 74 0A LOOP_1 MOV A, #0A Load 0A in accumulator

D002 12 C0 00 LCALL C000 Call subroutine to send data, 0AH in Port A

D005 12 B0 00 LCALL B000 Call delay subroutine

D008 74 09 MOV A,#09 Load 09 in accumulator

D00A 12 C0 00 LCALL C000 Call subroutine to send data, 09H in Port A

D00D 12 B0 00 LCALL B000 Call delay subroutine

D010 74 05 MOV A,#05 Load 05 in accumulator

D012 12 C0 00 LCALL C000 Call subroutine to send data, 05H in Port A

D015 12 B0 00 LCALL B000 Call delay subroutine

D018 74 06 MOV A,#06 Load 06 in accumulator

D01A 12 C0 00 LCALL C000 Call subroutine to send data, 06H in Port A

D01D 12 B0 00 LCALL B000 Call delay subroutine

D020 02 D0 00 LJMP D000 Jump to LOOP_1

Memory Machine

address Codes Labels Mnemonics Operands Comments

9000 74 06 LOOP_2 MOV A, #06 Load 0A in accumulator

9002 12 C0 00 LCALL C000 Call subroutine to send data, 0AH in Port A

9005 12 B0 00 LCALL B000 Call delay subroutine

D008 74 05 MOV A,#05 Load 09 in accumulator

900A 12 C0 00 LCALL C000 Call subroutine to send data, 09H in Port A

900D 12 B0 00 LCALL B000 Call delay subroutine

9010 74 09 MOV A,#09 Load 05 in accumulator

9012 12 C0 00 LCALL C000 Call subroutine to send data, 05H in Port A

9015 12 B0 00 LCALL B000 Call delay subroutine

9018 74 0A MOV A,#0A Load 06 in accumulator

901A 12 C0 00 LCALL C000 Call subroutine to send data, 06H in Port A

901D 12 B0 00 LCALL B000 Call delay subroutine

9020 02 90 00 LJMP 9000 Jump to LOOP_2

Memory Machine

address Codes Labels Mnemonics Operands Comments

C000 90 EB 00 MOV DPTR, #E800 Load Port A address E800H in DPTR

C003 F0 MOVX @DPTR,A Send accumulator content into Port A

C004 22 RET Return

Memory Machine

address Codes Labels Mnemonics Operands Comments

B000 7B 10 MOV R3,#10 Move 10H into R3

B002 7C FF MOV R4,#FF Move FFH into R4

B004 1B DEC R3 Decrement R3

B005 BB 00 FC CJNE R3,#00,B004 Compare R3 with 00. if R3 0, jump to B004

B008 1C DEC R4 Decrement R4

B009 BC 00 FC CJNE R4,#00,B008 Compare R4 with 00. if R4 0, jump to B008

B00C 22 RET Return

Since early days, many efforts have been made to overcome the difficulties associated with washing clothes
manually. It was very painful, wearisome and time consuming to constantly wash bulky clothes, especially
the very dirty ones. Due to research for easier and highly efficient ways of washing cloths, electrical washing
machines evolved. Presently, washing machines are incorporated with timers. The timer is a device which is
subject to the effects of wear and tear and high cost of maintenance. Nowadays, microcontroller-controlled

washing machines are available in the market and these
machines are highly efficient, reliable and durable with less
running cost. Such a washing machine is controlled by a con-
troller based on a software program. Usually, the controller is
designed to control the pumping of water in and out of the
machine and the washing and the rinsing of the clothes. The
controller is very flexible and user friendly.

Figure 14.16 shows an automatic washing machine with
top loading capability. On the top of the machine, there are
four knobs for controller input settings. The functions of knobs
are as follows:

The load of a washing machine is the
number of clothes to be washed. There are three settings such
as Low, Medium and High. According to load, the controller
decides the amount of water which to be filled by the electric
pump.

This knob is used to select
hot, normal or mixed water. There are two inlet pipes for
hot and normal tap water at the rear of the machine. The hot
and cold lines are hooked up to the body of a solenoid valve
as shown in Fig. 14.17. There are two valves, but they feed
into a single house. Therefore, depending on the specified
temperature, the hot valve, the cold valve or both valves will open.

Knobs of machine

The washing machine can be operated in Save mode and Normal mode. In Save
mode, the machine can be used to save detergent. After washing a lot of clothes, the user should take out the
clothes from the machine and put another lot of clothes and restart the machine. During Normal mode, the
machine operates on the following steps:

Step 1 The clothes are washed for a specified time which is set by the controller.

Step 2 The detergent water is drained.

Step 3 The fresh water is put through pump.

Step 4 The clothes are rinsed for a specified time which is set by the controller.

Step 5 The water is drained and the moisture is absorbed from clothes

Usually, the machine is programmed to wash clothes in four different settings
such as Heavy, Normal, Light and Delicate. When the clothes are very dirty, the heavy knob will be selected.
For normal dirty clothes, the normal knob is selected. Delicate is used for silk clothes. To wash clothes
completely, the controller should select the following parameters based on the Program Select Knob.

Water will be filled by the pump as per Load Select Knob. During first fill, the water temperature
will be selected by proper tap setting. During second fill after drain, only tap water is filled for rinsing the
clothes. The filling time will be controlled by relay setting.

The wash basket will rotate in a clockwise direction for ten revolutions. After that, the wash
basket will stop for 2 seconds. Then the wash basket will rotate in anticlockwise direction for ten revolutions.
This process will continue for specified minutes as shown in Table 14.9. Figure. 14.18 shows the inner tub
when it has been removed from the outer tub. It is resting on the gearbox, and the plastic agitator is visible in
the center of the tub. Figure. 14.18(b) shows the gearbox when the inner tub is removed. The inner tub bolts
to the three holes in the flange of the gearbox.

(a) (b)

After agitation, the water and detergent are drained.

During spin, the agitator does not move and the wash basket will rotate at very high speed. Then the
moisture of clothes are removed through holes in the inner metallic basket. Table 14.9 shows a complete
washing cycle.

Operation Heavy Normal Light Delicate

Fill water Set by Load Set by Load Set by Load Set by Load

 Select Knob Select Knob Select Knob Select Knob

Agitate 20 minutes 15 minutes 10 minutes 5 minutes

Drain 5 minutes 5 minutes 5 minutes 5 minutes

Fill water Set by Load Set by Load Set by Load Set by Load

 Select Knob Select Knob Select Knob Select Knob

Agitate 10 minutes 10 minutes 5 minutes 5 minutes

Drain 5 minutes 5 minutes 5 minutes 5 minutes

Spin 10 minutes 10 minutes 5 minutes 5 minutes

When the machine is ON, a LED will be ON to indicate its state. After completion of
washing cycle, a buzzer sound will be generated.

Figure 14.19 shows the circuit diagram
of washing-machine-controller. The input signals of the controller are Load/Water Level Select, Water Inlet
and Program Select. The level measurement transducers are used to measure level of water of the machine.
the transducers outputs are connected to P0.0 to P0.2, Hot and Normal water knobs are connected to pins P0.3
to P0.4 respectively, and Program Select Knobs are attached to pins P1.0 to P1.3 as shown in Table 14.10.

The output signals of washing-machine controller are Machine ON, Fill water, Agitation control, Drain,
Spin and Washing complete. These output signals are available from P2.0, P2.1, P2.2, P2.3, P2.4, P2.5, P2.6
and P2.7 respectively. The flowchart for program of a washing-machine controller is depicted in Fig. 14.20.

Operation Signal Input/Output Port Pin No.

Load/Water level select Water level low Input P0.0

 Water level medium Input P0.1

 Water level high Input P0.2

Water Inlet Hot water knob Input P0.3

 Normal water knob Input P0.4

Program select Heavy Input P1.0

 Normal Input P1.1

 Light Input P1.2

 Dedicate Input P1.3

Machine ON Machine ON indication Output P2.0

Fill water Hot water inlet Output P2.1

 Normal water inlet Output P2.2

Agitation control Motor rotate in clockwise direction Output P2.3

 Motor rotate in anticlockwise direction Output P2.4

Drain Drain valve open Output P2.5

Spin Spin motor ON/OFF Output P2.6

Washing complete Washing complete indication Output P2.7

The flowchart for sequence of operations of a
washing machine is shown in Fig. 14.20. The integer number in parentheses states the minutes of operation.
For example, agitation (10) means that agitation will continue for 10 minutes. The washing-machine controller
software consists of a main program and subroutine programs for the following operations:

Fill machine with water.

The agitator rotates 10 revolutions in clockwise direction, stops for one second
followed by 10 revolutions in anticlockwise direction. This process will run for specified minutes as indicated
in parentheses.

Remove water from tank. This operation is also performed for specified minutes.

In this operation, the moisture of clothes is removed.

In this section, only the main program of the washing-machine controller is given and the programmer
should write the subroutine programs so that the machine can operate as per washing cycle.

Labels Mnemonics Operands Comments

 SETB P2.0 Machine ON indication

 LCALL FILL_1 Machine fill with water first time

 JNB P1.0, LOOP_1 Check program setting knob for HEAVY. If P1.0

is not set, Jump to LOOP_1

 SJMP HEAVY If P1.0 is set, Jump to HEAVY

LOOP_1 JNB P1.1, LOOP_2 Check program setting knob for NORMAL. If

P2.4

Spin Motor
drive

Agitator motor
drive

Agitator motor
drive

Low level

Medium
level

High level

Drain

D

Normal

T

Hot

H

P2.5

P2.6

P2.3

P0.0

P0.1

P0.2

P2.2

P2.1
P2.0 P2.7

P1.0
P1.1

P1.2

P1.3

8051
Microcontroller

P0.3
P0.4

Hot
Normal
Water inlet

Heavy
Normal
Light
Delicated

Program select

Buzzer Sound

LED

Washing machine ON

P1.1 is not set, Jump to LOOP_2

 SJMP NORMAL If P1.1 is set, Jump to NORMAL

LOOP_2 JNB P1.2, LOOP_3 Check program setting knob for LIGHT. If P1.2

is not set, Jump to LOOP_3

 SJMP LIGHT If P1.2 is set, Jump to LIGHT

LOOP_3 JNB P1.3, LOOP_4 Check program setting knob for DELICATE. If

P1.3 is not set, Jump to LOOP_4

 SJMP DELICATE If P1.2 is set, Jump to DELICATE

DISPLAY SETB P2.7 Indicate the completion of wash cycle

LOOP_4 NOP

 LJMP 0000 End of program

Put machine ON

Fill machine with water as per
opening of Hot and Normal tap

Check program setting

Agitate
20 minutes

Drain
5 minutes

Fill
water

Agitate
10 minutes

Drain
5 minutes

Spin
20 minutes

Buzzer for
wash Complete

Agitate
15 minutes

Drain
5 minutes

Fill
water

Agitate
10 minutes

Drain
5 minutes

Spin
10 minutes

Buzzer for
wash Complete

Agitate
10 minutes

Drain
5 minutes

Fill
water

Agitate
5 minutes

Drain
5 minutes

Spin
5 minutes

Buzzer for
wash Complete

Agitate
5 minutes

Drain
5 minutes

Fill
water

Agitate
5 minutes

Drain
5 minutes

Spin
5 minutes

Buzzer for
wash Complete

Heavy Normal Light Delicated

Labels Mnemonics Operands Comments

HEAVY LCALL AGITATE(20) Agitate for 15 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL FILL_2 Machine fill with water second time

 LCALL AGITATE(10) Agitate for 10 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL SPIN(10) Spin for 10 minutes

 SJMP DISPLAY Jump to DISPLAY

Labels Mnemonics Operands Comments

NORMAL LCALL AGITATE(15) Agitate for 15 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL FILL_2 Machine fill with water second time

 LCALL AGITATE(10) Agitate for 10 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL SPIN(10) Spin for 10 minutes

 SJMP DISPLAY Jump to DISPLAY

Labels Mnemonics Operands Comments

LIGHT LCALL AGITATE(10) Agitate for 15 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL FILL_2 Machine fill with water second time

 LCALL AGITATE(5) Agitate for 10 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL SPIN(5) Spin for 10 minutes

 SJMP DISPLAY Jump to DISPLAY

Labels Mnemonics Operands Comments

DELICATE LCALL AGITATE(5) Agitate for 15 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL FILL_2 Machine fill with water second time

 LCALL AGITATE(5) Agitate for 10 minutes

 LCALL DRAIN(5) Drain operation for 5 minutes

 LCALL SPIN(5) Spin for 10 minutes

 SJMP DISPLAY Jump to DISPLAY

 In this chapter, all types of addressing modes of the 8051 microcontroller such as direct addressing,
register addressing, register indirect addressing, immediate addressing, index addressing are discussed
with examples.

 The classification of instruction set of 8051 microcontroller has been explained and detailed operation
of each instruction has been described with examples.

 Assembly-language programs such as addition, subtraction, multiplication, division, 1’s complement,
2’s complement, largest and smallest value of an array, descending order, ascending order of an array
are given in this chapter.

 Applications of microcontrollers in stepper-motor control, traffic-light control, display, A/D converter
interfacing, keyboard interface, and washing-machine control are also incorporated in this chapter.

14.1 What is the addressing mode of MOV A, 40?
 (a) Direct addressing
 (b) Indirect addressing
 (c) Index addressing
 (d) Register addressing

14.2 Which instruction does not belong to register
addressing mode?

 (a) MOV A,R7 (b) MOV R0,R1

 (c) MOV A,@R3 (d) MOV R5,A

14.3 Which of the following instructions is index
addressing?

 (a) MOVC A,@A+DPTR

 (b) MOVX @DPTR,A

 (c) MOVX A,@DPTR

 (d) MOVX A,@R0

14.4 The MOVX A, @R0 instruction performs
 (a) data transfer from external RAM 8-bit

address specified by R0 to accumulator
 (b) data transfer from internal RAM 8-bit ad-

dress specified by R0 to accumulator
 (c) data transfer from external ROM 8-bit

address specified by R0 to accumulator
 (d) data transfer from internal ROM 8-bit ad-

dress specified by R0 to accumulator

14.5 Which of the following instructions is
incorrect?

 (a) CPL A (b) SWAP A
 (c) CLR C (d) RL B

14.6 Which of the following flags are affected by
the instruction INC A and INC @R0?

 (a) Carry flag (b) Auxiliary carry flag
 (c) Overflow flag (d) No flags are affected

14.7 What will be the output after execution of the
following instructions?

 MOV A, #55

 ANL A, #67
 (a) 54 (b) 45
 (c) 55 (d) 67

14.8 To exchange the content of A and R0 which
instruction is used?

 (a) XCH A, R0 (b) XCH A, @R0
 (c) XCHD A, @R0 (d) XCH R0, A

14.9 Which of the following instructions is not a
logical instruction?

 (a) ANL A, #FF (b) CPL A
 (c) INC A (d) SWAP A

14.10 Which of the following instructions is not an
arithmetic instruction?

 (a) MUL AB (b) ADD A, #66H
 (c) DIV AB (d) CPL A

14.11 Which of the following instructions do not
perform the increment of the content of
memory location 50H by 1?

 (a) INC 50
 (b) MOV R0, #50; INC @R0
 (c) MOV A, #50; INC A
 (d) MOV R0, #50, INC R0

14.12 Which of the following instructions are used
to swap nibbles inside the accumulator?

 (a) SWAP A
 (b) RR A; RR A
 (c) RR A; RR A; RR A;
 (d) RRC A RRC A; RRC A; RRC A;

14.13 Which of the following instructions is
incorrect?

 (a) RLC A (b) SWAP B
 (c) CPL C (d) MOVC A, @A+PC

14.14 Which of the following instructions is indi-
rect addressing?

 (a) MOV A, R0 (b) MOV A, 40H
 (c) MOV R7, #55 (d) MOV A,@R0

14.15 The operation “end the content of RAM
whose address is specified by R3 to port3”
is performed by

 (a) MOV P3, @R3 (b) MOV P3, R3
 (c) MOV @R3, P3 (d) MOV R3, P3

14.16 What will be the contents of A register after
execution of instruction RRC A. Assume the
contents of A before execution is C5H and
carry is zero.

 (a) 62 (b) 26
 (c) 66 (d) 22

14.1 What is the difference between CY and OV flags ?

14.2 What is the addressing mode of MOV A, @Ri instruction?

14.3 What will be the content of the accumulator after execution of the following instructions?

 MOV A, #FFH ADD A, #23H

14.4 What is the difference between the following instructions?
 (a) LJMP and SJMP (ii) RET and RETI (iii) MOV and MOVX

14.5 Which addressing mode is suitable for look-up table access?

14.6 What are the instructions to access the program memory?

14.1 What are the addressing modes of 8051 microcontroller? Explain each addressing mode with an
example.

14.2 Write the addressing modes of the following instructions:
 (i) MOV A, @R0 (ii) MOVX @DPTR, A (iii) MOV A, @A+DPTR (iv) MOA R0,#45H

14.3 State different types of instructions of 8051 and explain any three instructions from each group of
the instructions.

14.4 Write instructions to perform the following operations:
 (i) Move the content of accumulator to register 7(R7).
 (ii) Move the contents of RAM memory location 55H to Port 1
 (iii) Send 22H to Port 0

 (iv) Move the value at Port 2 to Register 1(R1)
 (v) Clear bit 7 of the accumulator.

14.5 Write the following programs in assembly language.
 (i) Add two 8-Bit numbers (ii) Add two 16-bit numbers
 (iii) Add a series of 8-bit numbers (iv) Subtract two 8-Bit numbers
 (v) Two’s complement of an 8-bit number
 (vi) Find the largest number in a data array
 (viii) Find smallest number in a data array (ix) Perform division of two numbers
 (x) Perform multiplication two numbers (xi) SWAP 4 MSBs with 4 LSBs in the accumulator
 (xii) Arrange a series of numbers in descending order (xiii) Compare two 8-bit numbers
 (xiv) Arrange a data array in ascending order

14.6 Explain a microcontroller-based traffic-light control system with assembly-language program.

14.7 Explain the 8051 microcontroller-based position control system using a stepper motor.

14.8 Draw a circuit diagram for keyboard interface with 8051 microcontroller and write a program for
reading any key.

14.9 Write a program for A/D converter interface with the 8051 microcontroller.

14.10 N 8-bit numbers whose sum is 8bits.

14.11 Add two 16-bit numbers whose Sum is 16 bits.

14.12 Find one’s complement of a 16-bit number.

14.13 Shift an 8-bit number right by one bit and store in 50H memory location.

14.14 Find out the largest of two numbers and store in 9000H memory location.

14.15 Find out the smallest of two numbers.

14.16 Write a program for logical OR of two 8-bit data.

14.17 Write a program to display ‘8051 microcontroller’ on the screen.

 14.1 (a) 14.2 (c) 14.3 (a) 14.4 (a) 14.5 (d) 14.6 (d) 14.7 (b) 14.8 (a)

 14.9 (c) 14.10 (d) 14.11 (c)&(d) 14.12 (a) 14.13 (b) 14.14 (d) 14.15 (a) 14.16 (a)

Mnemonic Hex Mnemonic Hex Mnemonic Hex

 Code Code Code

 MOV A.A 7F MOV H,B 60 POP B C1

 MOV A.B 78 MOV H,C 61 POP D D1

 MOV A.C 79 MOV H,D 62 POP H E1

 MOV A,D 7A MOV H,E 63 POP PSW F1

 MOV A,E 7B MOV H,H 64 PUSH B C5

 MOV A,H 7C MOV H,L 65 PUSH D D5

 MOV A,L 7D MOV H,M 66 PUSH H E5

 MOV A,M 7E MOV L,A 6F PUSH PSW F5

 MOV B,A 47 MOV L,B 68 PCHL E9

 MOV B,B 40 MOV L,C 69 RAL 17

 MOV B,C 41 MOV L,D 6A RAR 1F

 MOV B,D 42 MOV L,E 6B RC D8

 MOV B,E 43 MOV L,H 6C RET C9

 MOV B,H 44 MOV L,L 6D RIM 20

 MOV B,L 45 MOV L,M 6E RLC 07

 MOV B,M 46 MOV M,A 77 RM F8

 MOV C,A 4F MOV M,B 70 RNC D0

 MOV C,B 48 MOV M,C 71 RNZ C0

 MOV C,C 49 MOV M,D 72 RP F0

 MOV C,D 4A MOV M,E 73 RPE E8

 MOV C,E 4B MOV M,H 74 RPO E0

 MOV C,H 4C MOV M,L 75 RRC 0F

 MOV C,L 4D MVI A,8-bit 3E RST 0 C7

 MOV C,M 4E MVI B,8-bit 06 RST 1 CF

 MOV D,A 57 MVI C,8-bit 0E RST 2 D7

 MOV D,B 50 MVI D,8-bit 16 RST 3 DF

(Contd.)

Mnemonic Hex Mnemonic Hex Mnemonic Hex

 Code Code Code

 MOV D,C 51 MVI E,8-bit 1E RST 4 E7

 MOV D,D 52 MVI H,8-bit 26 RST 5 EF

 MOV D,E 53 MVI L,8-bit 2E RST 6 F7

 MOV D,H 54 MVI M,8-bit 36 RST 7 FF

 MOV D,L 55 NOP 00 RZ C8

 MOV D,M 56 ORA A B7 SBB A 9F

 MOV E,A 5F ORA B B0 SBB B 98

 MOV E,B 58 ORA C Bl SBB C 99

 MOV E,C 59 ORA D B2 SBB D 9A

 MOV E,D 5A ORA E B3 SBB E 9B

 MOV E,E 5B ORA H B4 SBB H 9C

 MOV E,H 5C ORA L B5 SBB L 9D

 MOV E,L 5D ORA M B6 SBB M 9E

 MOV E,M 5E ORI 8-bit F6 SBI 8-Bit DE

 MOV H,A 67 OUT 8-bit D3 SHLD 16-Bit 22

 SIM 30 ACI 8-Bit CE CP 16-Bit F4

 SPHL F9 ADC A 8F CPE 16-Bit EC

 STA 16-Bit 32 ADC B 88 CPI 8-Bit FE

 STAX B 02 ADC C 89 CPO 16-Bit E4

 STAX D 12 ADC D 8A CZ 16-Bit CC

 STC 37 ADC E 8B DAA 27

 SUB A 97 ADC H 8C DAD B 09

 SUB B 90 ADC L 8D DAD D 19

 SUB C 91 ADC M 8E DAD H 29

 SUB D 92 ADD A 87 DAD SP 39

 SUB E 93 ADD B 80 DCR A 3D

 SUB H 94 ADD C 81 DCR B 05

 SUB L 95 ADD D 82 DCR C 0D

 SUB M 96 ADD E 83 DCR D 15

 SUI 8-Bit D6 ADD H 84 DCR E 1D

 XCHG EB ADD L 85 DCR H 25

 XRA A AF ADD M 86 DCR L 2D

 XRA B A8 ADI 8-Bit C6 DCR M 35

 XRA C A9 ANA A A7 DCX B 0B

 XRA D AA ANA B A0 DCX D 1B

 XRA E AB ANA C A1 DCX H 2B

 XRA H AC ANA D A2 DCX SP 3B

(Contd.)

(Contd.)

 XRA L AD ANA E A3 DI F3

 XRA M AE ANA H A4 EI FB

 XRI 8-Bit EE ANA L A5 HLT 76

 XTHL E3 ANA M A6 IN 8-Bit DB

 ANI 8-Bit E6 INR A 3C

 CALL 16-Bit CD INR B 04

 JNC 16-Bit D2 CC 16-Bit DC INR C 0C

 JNZ 16-Bit. C2 CM 16-Bit FC INR D 14

 JP 16-Bit F2 CMA 2F INR E 1C

 JPE 16-Bit EA CMC 3F INR H 24

 JPO 16-Bit E2 CMP A BF INR L 2C

 JZ 16-Bit CA CMP B B8 INR M 34

 LDA 16-Bit 3A CMP C B9 INX B 03

 LDAX B 0A CMP D BA I NX D 13

 LDAX D 1A CMP E BB INX H 23

 LHLD 16-Bit 2A CMP H BC INX SP 33

 LXI B, 16-Bit 01 CMP L BD JC 16-Bit DA

 LXI D, 16-Bii 11 CMP M BE JM 16-Bit FA

 LXI H, 16-Bit 21 CNC 16-Bit D4 JMP 16-Bit C3

 LXI SP. 16-Bit 31 CNZ 16-Bit C4

Mnemonic Hex Mnemonic Hex Mnemonic Hex

 Code Code Cod

(Contd.)

 Clock Number

Opcode Operand Functions cycle of bytes Instruction code

MOV A, Rn Move register to accumulator 12 1 1 1 1 0 1 r r r

MOV A, direct Move direct byte to accumulator 12 2 1 1 1 0 0 1 0 1

MOV A, @Ri Move indirect RAM to accumulator 12 1 1 1 1 0 0 1 1 i

MOV A, #data Move immediate data to accumulator 12 2 0 1 1 1 0 1 0 0

MOV Rn, A Move accumulator to register 12 1 1 1 1 1 1 r r r

MOV Rn, direct Move direct byte to register 24 2 1 0 1 0 1 r r r

MOV Rn, #data Move immediate data to register 12 2 0 1 1 1 1 r r r

MOV direct, A Move accumulator to direct byte 12 2 1 1 1 1 0 1 0 1

MOV direct, Rn Move register to direct byte 24 2 1 0 0 0 1 r r r

MOV direct, Move direct byte to direct 24 3 1 0 0 0 0 1 0 1

 direct

MOV direct, @Ri Move indirect RAM to direct byte 24 2 1 0 0 0 0 1 1 i

MOV direct, Move immediate data to direct byte 24 3 0 1 1 1 0 1 0 1

 #data

MOV @Ri, A Move accumulator to indirect RAM 12 1 1 1 1 1 0 1 1 i

MOV @Ri, direct Move direct byte to indirect RAM 24 2 1 0 1 0 0 1 1 i

MOV @Ri, Move immediate data to indirect 12 2 0 1 1 1 0 1 1 i

 #data RAM

MOV DPTR, Load data pointer with a 16-bit 24 3 1 0 0 1 0 0 0 0

 #data16 constant

MOVC A,@A Move code byte relative to 24 1 1 0 0 1 0 0 1 1

 +DPTR DPTR to ACC

MOVC A,@A+PC Move code byte relative to PC to ACC 24 1 1 0 0 0 0 0 1 1

MOVX A, @Ri Move external RAM (8-bit addr) 24 1 1 1 1 0 0 0 1 i

 to ACC

MOVX A,@ Move external RAM (16-bit addr) 24 1 1 1 1 0 0 0 0 0

 DPTR to ACC

MOVX A, @Ri Move ACC to external RAM 24 1 1 1 1 1 0 0 1 i

 (8-bit addr)

MOVX A,@DPTR Move ACC to external RAM 24 1 1 1 1 1 0 0 0 0

 (16-bit addr)

 Clock Number

Opcode Operand Functions cycle of bytes Instruction code

ADD A, Rn Add register to accumulator 12 1 0 0 1 0 1 r r r

ADD A, direct Add direct byte to accumulator 12 2 0 0 1 0 0 1 0 1

ADD A, @Ri Add indirect RAM to accumulator 12 1 0 0 1 0 0 1 1 i

ADD A, #data Add immediate data to accumulator 12 2 0 0 1 0 0 1 0 0

ADDC A, Rn Add register to accumulator with carry 12 1 0 0 1 1 1 r r r

ADDC A, direct Add direct byte to accumulator 12 2 0 0 1 1 0 1 0 1

 with carry

ADDC A, @Ri Add indirect RAM to Accumulator 12 1 0 0 1 1 0 1 1 i

 with carry

ADDC A, #data Add immediate data to ACC 12 2 0 0 1 1 0 1 0 0

 with carry

SUBB A, Rn Subtract register from ACC 12 1 1 0 0 1 1 r r r

 with borrow

SUBB A, direct Subtract direct byte from ACC 12 2 1 0 0 1 0 1 0 1

 with borrow

SUBB A, @Ri Subtract indirect RAM from ACC 12 1 1 0 0 1 0 1 1 i

 with borrow

SUBB A, #data Subtract immediate data from ACC 12 2 1 0 0 1 0 1 0 0

 with borrow

INC A Increment accumulator 12 1 0 0 0 0 0 1 0 0

INC Rn Increment register 12 1 0 0 0 0 1 r r r

INC direct Increment direct byte 12 2 0 0 0 0 0 1 0 1

INC @Ri Increment indirect RAM 12 1 0 0 0 0 0 1 1 i

INC DPTR Increment data pointer 12 1 0 0 0 0 0 0 1 1

DEC A Decrement accumulator 12 1 0 0 0 1 0 1 0 0

DEC Rn Decrement register 12 1 0 0 0 1 1 r r r

DEC direct Decrement direct byte 12 2 0 0 0 1 0 1 0 1

DEC @Ri Decrement indirect RAM 12 1 0 0 0 1 0 1 1 i

MUL AB Multiply A and B 48 1 1 0 1 0 0 1 0 0

DIV AB Divide A by B 48 1 1 0 0 0 0 1 0 0

DAA Decimal adjust accumulator 12 1 1 1 0 1 0 1 0 0

 Clock Number

Opcode Operand Functions cycle of bytes Instruction code

ANL A, Rn AND register to accumulator 12 1 0 1 0 1 1 r r r

ANL A, direct AND direct byte to accumulator 12 2 0 1 0 1 0 1 0 1

ANL A,@Ri AND indirect RAM to accumulator 12 1 0 1 0 1 0 1 1 i

ANL A,#data AND immediate data to accumulator 12 2 0 1 0 1 0 1 0 0

ANL direct, A AND accumulator to direct byte 12 2 0 1 0 1 0 0 1 0

ANL direct, AND immediate data to direct byte 24 3 0 1 0 1 0 0 1 1

 #data

ORL A, Rn OR register to accumulator 12 1 0 1 0 0 1 r r r

ORL A, direct OR direct byte to accumulator 12 2 0 1 0 0 0 1 0 1

ORL A, @ Ri OR indirect RAM to accumulator 12 1 0 1 0 0 0 1 1 i

ORL A, #data OR immediate data to accumulator 12 2 0 1 0 0 0 1 0 0

ORL direct ,A OR accumulator to direct byte 12 2 0 1 0 0 0 0 1 0

ORL direct, OR immediate data to direct byte 24 3 0 1 0 0 0 0 1 1

 #data

XRL A, Rn Exclusive-OR register to 12 1 0 1 1 0 1 r r r

 accumulator

XRL A, direct Exclusive-OR direct byte to 12 2 0 1 1 0 0 1 0 1

 accumulator

XRL A, @ Ri Exclusive-OR indirect RAM to 12 1 0 1 1 0 0 1 1 i

 accumulator

XRL A, # data Exclusive-OR immediate data to 12 2 0 1 1 0 0 1 0 0

 accumulator

XRL direct,A Exclusive-OR accumulator to 12 2 0 1 1 0 0 0 1 0

 direct byte

XRL direct, Exclusive-OR immediate data to 24 3 0 1 1 0 0 0 1 1

 #data direct byte

CLR A Clear accumulator 12 1 1 1 1 0 0 1 0 0

CPL A Complement accumulator 12 1 1 1 1 1 0 1 0 0

RL A Rotate accumulator left 12 1 0 0 1 0 0 0 1 1

RLC A Rotate accumulator left through 12 1 0 0 1 1 0 0 1 1

 the carry

RR A Rotate accumulator right 12 1 0 0 0 0 0 0 1 1

RRC A Rotate accumulator right through 12 1 0 0 0 1 0 0 1 1

 the carry

SWAP A Swap nibbles within the accumulator 12 1 1 1 0 0 0 1 0 0

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

CLR C Clear carry 12 1 1 1 0 0 0 0 1 1

CLR bit Clear direct bit 12 2 1 1 0 0 0 0 1 0

SETB C Set carry 12 1 1 1 0 1 0 0 1 1

SETB bit Set direct bit 12 2 1 1 0 1 0 0 1 0

CPL C Complement carry 12 1 1 0 1 1 0 0 1 1

CPL bit Complement direct bit 12 2 1 0 1 1 0 0 1 0

ANL C, bit AND direct bit to carry 24 2 1 0 0 0 0 0 1 0

ANL C,/bit AND complement of direct bit 24 2 1 0 1 1 0 0 0 0

 to carry

ORL C, bit OR direct bit to carry 24 2 0 1 1 1 0 0 1 0

ORL C,/bit OR complement of direct bit to carry 24 2 1 0 1 0 0 0 0 0

MOV C,bit Move direct bit to carry 12 2 1 0 1 0 0 0 1 0

MOV bit,C Move carry to direct bit 24 2 1 0 0 1 0 0 1 0

JC rel Jump if carry is set 24 2 0 1 0 0 0 0 0 0

JNC rel Jump if carry is not set 24 2 0 1 0 1 0 0 0 0

JB Bit, rel Jump if direct bit is set 24 3 0 0 1 0 0 0 0 0

JNB Bit,rel Jump if direct bit is not set 24 3 0 0 1 1 0 0 0 0

JBC bit,rel Jump if direct bit is set and clear bit 24 3 0 0 0 1 0 0 0 0

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

ACALL addr11 Absolute subroutine call 24 2 a10 a9 a8 1 0 0 0 1

LCALL addr16 Long subroutine call 24 3 0 0 0 1 0 0 1 0

RET Return from subroutine 24 1 0 0 1 0 0 0 1 0

RETI Return from interrupt 24 1 0 0 1 1 0 0 1 0

AJMP addr11 Absolute jump 24 2 a10 a9 a8 0 0 0 0 1

LJMP addr16 Long jump 24 3 0 0 0 0 0 0 1 0

SJMP rel Short jump (relative addr) 24 2 1 0 0 0 0 0 0 0

JMP @A+ Jump indirect relative to the DPTR 24 1 0 1 1 1 0 0 1 1

 DPTR

JZ rel Jump if accumulator is zero 24 2 0 1 1 0 0 0 0 0

JNZ rel Jump if accumulator is not zero 24 2 0 1 1 1 0 0 0 0

CJNE A, direct, Compare direct byte to ACC 24 3 1 0 1 1 0 1 0 1

 rel and jump if not equal

CJNE A, #data, Compare immediate to ACC 24 3 1 0 1 1 0 1 0 0

 rel and jump if not equal

Contd.

CJNE RN, #data, Compare immediate to register 24 3 1 0 1 1 1 r r r

 rel and jump if not equal

CJNE @Ri, # Compare immediate to indirect 24 3 1 0 1 1 0 1 1 i

 data, rel and jump if not equal

DJNZ Rn, rel Decrement register and jump 24 2 1 1 0 1 1 r r r

 if not zero

DJNZ direct,rel Decrement direct byte and 24 3 1 1 0 1 0 1 0 1

 jump if not zero

NOP No operation 12 1 0 0 0 0 0 0 0 0

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

PUSH direct Push direct byte onto stack 24 2 1 1 0 0 0 0 0 0

POP direct Pop direct byte from stack 24 2 1 1 0 1 0 0 0 0

XCH A, Rn Exchange register with accumulator 12 1 1 1 0 0 1 r r r

XCH A, direct Exchange direct byte with 12 2 1 1 0 0 0 1 0 1

 accumulator

XCH A, @ Ri Exchange indirect RAM with 12 1 1 1 0 0 0 1 1 i

 accumulator

XCHD A, @ Ri Exchange low-order digit indirect 12 1 1 1 0 1 0 1 1 i

 RAM with ACC

Opcode Operand Functions Clock Number

 cycle of bytes Instruction code

MOV Rd, Rs Move register to register 4 1 0 1 D D D S S S

MOV M, Rs Move register to memory 7 1 0 1 1 1 0 S S S

MOV Rd, M Move memory to register 7 1 0 1 D D 1 1 0

MVI Rd, data Move immediate register 7 2 0 0 D D D 1 1 0

MVI M, data Move immediate memory 10 2 0 0 1 1 0 1 1 0

LDA 16 bit Load A direct 13 3 0 0 1 1 1 0 1 0

 address

LDAX B Load A indirect 7 1 0 0 0 0 1 0 1 0

LDAX D Load A direct 7 1 0 0 0 1 1 0 1 0

LXI B Load immediate register pair B and C 10 3 0 0 0 0 0 0 0 1

LXI D Load immediate register pair D and E 10 3 0 0 0 1 0 0 0 1

LXI H Load immediate register pair H and L 10 3 0 0 1 0 0 0 0 1

LXI SP Load immediate stack pointer 10 3 0 0 1 1 0 0 0 1

LHLD 16 bit Load H & L direct 16 3 0 0 1 0 1 0 1 0

 address

STA 16 bit Load A direct 13 3 0 0 1 1 0 0 1 0

 address

STAX B Store A indirect 7 1 0 0 0 0 0 0 1 0

STAX D Store A indirect 7 1 0 0 0 1 0 0 1 0

SHLD Store H & L direct 16 1 0 0 1 0 0 0 1 0

XCHG Exchange D & E and H & L registers 4 1 1 1 1 0 1 0 1 1

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

ADD R Add register to A 4 1 1 0 0 0 0 S S S

ADD M Add memory to A 7 1 1 0 0 0 0 1 1 0

ADC R Add register to A with carry 4 1 1 0 0 0 1 S S S

ADC M Add memory to A with carry 7 1 1 0 0 0 1 1 1 0

ADI 8-bit data Add immediate to A 7 2 1 1 0 0 0 1 1 0

ACI 8-bit data Add immediate to A with carry 7 2 1 1 0 0 1 1 1 0

DAD B Add B & C to H & L 10 1 0 0 0 0 1 0 0 1

DAD D Add D & E to H & L 10 1 0 0 0 1 1 0 0 1

DAD H Add H & L to H & L 10 1 0 0 1 0 1 0 0 1

DAD SP Add stack pointer to H & L 10 1 0 0 1 1 1 0 0 1

SUB R Subtract register from A 4 1 1 0 0 1 0 S S S

SUB M Subtract memory from A 7 1 1 0 0 1 0 1 1 0

SBB R Subtract register from A with borrow 4 1 1 0 0 1 1 S S S

SBB M Subtract memory from A with borrow 7 1 1 0 0 1 1 1 1 0

SUI 8-bit data Subtract immediate from A 7 2 1 1 0 1 0 1 1 0

SBI 8-bit data Subtract immediate from A 7 2 1 1 0 1 1 1 1 0

 with borrow

INR R Increment register 4 1 0 0 D D D 1 0 0

INR M Increment memory 10 1 0 0 1 1 0 1 0 0

INX B Increment B & C registers 6 1 0 0 0 0 0 0 1 1

INX D Increment D & E registers 6 1 0 0 0 1 0 0 1 1

INX H Increment H & L registers 6 1 0 0 1 0 0 0 1 1

INX SP Increment stack pointer 6 1 0 0 1 1 0 0 1 1

DCR R Decrement register 4 1 0 0 D D D 1 0 1

DCR M Decrement memory 10 1 0 0 1 1 0 1 0 1

DCX B Decrement B & C registers 6 1 0 0 0 0 1 0 1 1

DCX D Decrement D & E registers 6 1 0 0 0 1 1 0 1 1

DCX H Decrement H & L registers 6 1 0 0 1 0 1 0 1 1

DCX SP Decrement stack pointer 6 1 0 0 1 1 1 0 1 1

DAA Decimal adjustment 4 1 0 0 1 0 0 1 1 1

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

CMP R Compare register with A 4 1 1 0 1 1 1 S S S

CMP M Compare memory with A 7 1 1 0 0 0 0 1 1 0

CPI 8 bit data Compare immediate with A 7 2 1 1 1 1 1 1 1 0

ANA R AND register with A 4 1 1 0 1 0 0 S S S

ANA M AND memory with A 7 1 1 0 1 0 0 1 1 0

ANI 8 bit data AND immediate with A 7 2 1 1 1 0 0 1 1 0

ORA R OR register with A 4 1 1 0 1 1 0 S S S

ORA M OR memory with A 7 1 1 0 1 1 0 1 1 0

ORI 8 bit data OR immediate with A 7 2 1 1 1 1 0 1 1 0

XRA R Exclusive OR register with A 4 1 1 0 1 0 1 S S S

XRA M Exclusive OR memory with A 7 1 1 0 1 0 1 1 1 0

XRI 8 bit data Exclusive OR immediate with A 7 2 1 1 1 0 1 1 1 0

RLC Rotate A left 4 1 0 0 0 0 0 1 1 1

RRC Rotate A right 4 1 0 0 0 0 1 1 1 1

RAL Rotate A left with carry 4 1 0 0 0 1 0 1 1 1

RAR Rotate A right with carry 4 1 0 0 0 1 1 1 1 1

CMA Complement A 4 1 0 0 1 0 1 1 1 1

CMC Complement carry 4 1 0 0 1 1 1 1 1 1

STC Set carry 4 1 0 0 1 1 0 1 1 1

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

JMP 16-bit address Jump unconditional 10 3 1 1 0 0 0 0 1 1

JC 16-bit address Jump on carry 7/10 3 1 1 0 1 1 0 1 0

JNC 16-bit address Jump on no carry 7/10 3 1 1 0 1 0 0 1 0

JP 16-bit address Jump on positive 7/10 3 1 1 1 1 0 0 1 0

JM 16-bit address Jump on minus 7/10 3 1 1 1 1 1 0 1 0

JZ 16-bit address Jump on zero 7/10 3 1 1 0 0 1 0 1 0

JNZ 16-bit address Jump on no zero 7/10 3 1 1 0 0 0 0 1 0

JPE 16-bit address Jump on parity even 7/10 3 1 1 1 0 1 0 1 0

JPO 16-bit address Jump on parity odd 7/10 3 1 1 1 0 0 0 1 0

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

CALL 16-bit address Call unconditional 18 3 1 1 0 0 1 1 0 1

CC 16-bit address Call on carry 9/18 3 1 1 0 1 1 1 0 0

CNC 16-bit address Call on no carry 9/18 3 1 1 0 1 0 1 0 0

CP 16-bit address Call on positive 9/18 3 1 1 1 1 0 1 0 0

CM 16-bit address Call on minus 9/18 3 1 1 1 1 1 1 0 0

CZ 16-bit address Call on zero 9/18 3 1 1 0 0 1 1 0 0

CNZ 16-bit address Call on no zero 9/18 3 1 1 0 0 0 1 0 0

CPE 16-bit address Call on parity even 9/18 3 1 1 1 0 1 1 0 0

CPO 16-bit address Call on parity odd 9/18 3 1 1 1 0 0 1 0 0

RET Return unconditional 10 1 1 1 0 0 1 0 0 1

RC Return on Carry 6/12 1 1 1 0 1 1 0 0 0

RNC Return on no Carry 6/12 1 1 1 0 1 0 0 0 0

RP Return on positive 6/12 1 1 1 1 1 0 0 0 0

RM Return on minus 6/12 1 1 1 1 1 1 0 0 0

RZ Return on zero 6/12 1 1 1 0 0 1 0 0 0

RNZ Return on no zero 6/12 1 1 1 0 0 0 0 0 0

RPE Return on parity even 6/12 1 1 1 1 0 1 0 0 0

RPO Return on parity odd 6/12 1 1 1 1 0 0 0 0 0

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

PUSH B Push register pair Band C on stack 12 1 1 1 0 0 0 1 0 1

PUSH D Push register pair D and E on stack 12 1 1 1 0 1 0 1 0 1

PUSH H Push register pair H and L on stack 12 1 1 1 1 0 0 1 0 1

PUSH PSW Push accumulator A and Flags on stack 12 1 1 1 1 1 0 1 0 1

POP B Pop register pair Band C off stack 10 1 1 1 0 0 0 0 0 1

POP D Pop register pair D and E off stack 10 1 1 1 0 1 0 0 0 1

POP H Pop register pair H and L off stack 10 1 1 1 1 0 0 0 0 1

POP PSW Pop accumulator A and Flags off stack 10 1 1 1 1 1 0 0 0 1

XTHL Exchange top of stack H and L 16 1 1 1 1 0 0 0 1 1

SPHL H and L to stack pointer 6 1 1 1 1 1 1 0 0 1

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

EI Enable interrupts 4 1 1 1 1 1 1 0 1 1

DI Disable interrupts 4 1 1 1 1 1 0 0 1 1

NOP No-operation 4 1 0 0 0 0 0 0 0 0

HLT Halt(Power Down) 5 1 0 1 1 1 0 1 1 0

RIM Read interrupt mask 4 1 0 0 1 0 0 0 0 0

SIM Set interrupt musk 4 1 0 0 1 1 0 0 0 0

IN Input 10 1 1 1 0 1 1 0 1 1

OUT output 10 1 1 1 0 1 0 0 1 1

Opcode Operand Mnemonics Symbolic Operation Comments

MOV destination, source MOV AX, BX AX BX Register to register

 MOV AL, BL AL BL Register to register

 MOV AX, MEMW AL [0100H]; Memory to register

 AH [0101H]

 MOV AL, MEMB AL [0100H] Memory to register

 MOV MEMW, AX [0100H] AL; Register to memory

 [0101H] AH

 MOV MEMB, BL [0100H] BL Register to memory

 MOV MEMW, 2244H [0100H] 44H; Immediate data to memory

 [0101H] 22H

 MOV MEMB, 44H [0100H] 44H Immediate data to memory

 MOV AL, 22H AL 22H Immediate data to register

 MOV AX, 2000H AL 00H; AH 20H Immediate data to register

 MOV DS, AX DS AX General register to

 segment register

 MOV DX, ES DX ES Segment register to

 general register

 MOV ES, MEMW ES [0101H : 0100H] Memory to segment

 register

 MOV MEMW, CS [0101H: 0100H] CS Segment register to

 memory

XCHG destination, source XCHG AX, BX AX BX Exchange the contents of

 XCHG AL, BL AL BL the word or byte source

 XCHG [SI], BX [SI] BL; operand with the destina-

 [SI+1] BH tion operand; none of the

flags are affected.

LAHF LAHF AH FlagsL Copy the low order flag

byte into AH

SAHF SAHF FlagsL AH Copy AH into the low

order flag byte

 IN Accumulator, port IN AL, 01H AL Port 01H Input a byte or word from

 IN AX, 02H AL Port 02H; AH 03H direct I/O ports 00H to

FFH.

 IN AL, DX AL Port DX Input a byte or word from

 IN AX, DX AL Port DX; indirect I/O ports 0000H

Contd.

 AH Port DX + 1 to FFFFH; the port address

 is in DX; None of the flags

 are affected

OUT Port, accumulator OUT 01H, AL Port 01H AL Output a byte or word to

 OUT 02H, AX Port 02H AL; direct I/O ports 00H to

 Port 03H AH FFH

 OUT DX, AL Port DX AL Output a byte or word to

 OUT DX, AX Port DX AL; indirect I/O ports 0000H

 Port DX+1 AH to FFFFH; the port address

 is in DX; The flags are not

affected.

Opcode Operand Mnemonics Symbolic Operation Comments

LEA destination, source LEA DX, MEMB BL 00; BH 01H The effective address

of the source operand is

transferred to the destina-

tion operand; the flags are

not affected

LDS destination, source LDS BX, DWORD BL [SI]; BH[SI+1]; Transferred 32-bit pointer

 PTR[SI] DS [SI+3:SI+2] variable from the source

LES destination, source LES BX, DWORD BL [SI]; operand in memory to the

 PTR[SI] BH [SI+1]; destination register and

 ES [SI+3:SI+2] register DS or ES; none of

 the flags are affected

 XLAT AL [BX+AL] Replace the byte in Al

 with the byte from the 256

 byte lookup table begin-

 ning at [BX]; AL is used

as an offset into this table;

The flags are not affected

MEMB = 0100 is used to locate a byte in data segment, MEMW= 0100 is used to locate a word in data segment

Opcode Operand Mnemonics Symbolic Operation Comments

PUSH Source PUSH BX SP SP – 2; Decrement SP by 2 and

 [SP + 1] BH; transfer the word from the

 [SP] BL source operand to the top

 PUSH DS SP SP – 2; of the stack pointed by SP

 [SP + 1: SP] DS; and SS

 PUSH [DI + 5] SP SP – 2;

 [SP + 1] [DI + 6];

 [SP] [DI + 5]

POP Destination POP BX BL [SP]; BH [SP + 1]; Increment SP by 2 and

 SP SP + 2 transfer the word from the

 POP DS DS [SP + 1: SP]; top of the stack pointed by

 SP SP + 2 SP and SS to the destina-

Contd.

 POP [DI + 5] [DI + 6] [SP + 1]; tion operand

 [DI + 5] [SP];

 SP SP + 2

PUSHF None PUSHF SP SP – 2; Push the 16-bit flag word

 [SP + 1: SP] Flags; onto the top of stack

POPF None POPF Flags [SP + 1: SP]; Pop the top of the stack

 SP SP + 2 into the 16-bit flag word

Opcode Operand Mnemonics Symbolic Operation Comments

ADD destination, source ADD SI, AX SI SI+AX Substitute the destination

 ADD [BX], CL [BX] [BX]+CH byte or word with the sum

 ADD DI, 4000H DI DI+4000H of the source and destina-

 ADD MEMW, 4000H [0101H:0100H] tion operands; all flags are

 [0101H:0100H]+ 4000H updated

ADC destination, source ADC SI, AX SI SI +AX+ CF Replace the destination

 ADC [BX], CL BX] [BX]+CL+ CF byte or word with the sum

 ADC DI, 4000H DI DI+4000H+ CF of the source and destina-

 ADC MEMW, 4000H [0101H:0100H] tion operands plus the

 [0101H:0100H]+4000H +CF carry; all flags are updated

SUB destination, source SUB SI, AX SI SI-AX Substitute the destination

 SUB [BX], CL [BX] [BX]-CL byte or word with the

 SUB DI, 4000H DI DI-4000H difference between of

 SUB MEMW, 8000H [0101H:0100H] destination operands and

 [0101H:0100H]-4000H source operand; all flags

 are updated

SBB destination, source SBB SI, AX SI SI-AX-CF Replace the destination

 SBB [BX], CL [BX] [BX]-CL-CF byte or word with the diff-

 SBB DI, 4000H DI DI-4000H-CF erence between of destina-

 SBB MEMW, 8000H [0101H:0100H] tion operands and source

 [0101H:0100H]-4000H-CF operand plus the carry; all

 flags are updated

INC destination INC CL CL CL +1 Increment by one or Add

 INC WORD [DI] [DI+ 1:DI] [DI+1:DI]+1 one the byte or word des

 INC MEMBS [0100H] [0100H]+1 tination operand; store the

 result in the destination

 operand; all flags except

 CF are updated.

DEC destination DEC CL CL CL -1 Subtract one from byte or

 DEC WORD [DI] [DI+ 1:DI] [DI+1:DI]-1 word destination operand;

 DEC MEMB [0100H] [0100H]-1 store the result in the des-

 tination operand; all flags

 except CF are updated.

NEG destination NEG AL AL 0 - AL Find the 2’s complement

 NEG WORD [DI] [DI+ 1:DI] 0 -[DI+1:DI] of the byte or word desti-

 NEG MEMB [0100H] 0- [0100H] nation operand; all flags

 except CF are updated.

Contd.

CMP destination CMP AL, BL AL-BL; update flags Subtract the byte or word

 CMP [DI],BX [DI+1:DI]-BX; update flags source operand from the

 CMP MEMW, 4000H [0101H:0100H]-4000H; similar destination oper-

 update flags and; the operands remain

 CMP DI,4000H DI-4000H; update flags unchanged; all flags are

 updated.

Opcode Operand Mnemonics Symbolic Operation Comments

MUL source MUL BL AX AL × BL Unsigned multiplication

 (Unsigned multiplication) of the source operand byte

 MUL BX DX: AX AX × BX or word and the accumu

 (Unsigned multiplication) lator; results are stored in

 MUL [BX] AX AL × [BX] AX; Double word results

 (Unsigned multiplication) are stored in DX: AX, if

 MUL MEMW DX:AX AX × [0101H:0100H] the result cannot be stored

 (Unsigned multiplication) in a single word CF and

 OF are set; all other flag

 are undefined

IMUL source IMUL BL AX AL × BL Its operation is same as

 (signed multiplication) MUL. The source operand

 IMUL BX DX: AX AX × BX is limited to –128 to +127

 (signed multiplication) for byte multiplication

 IMUL [BX] AX AL × [BX] and –32768 to +32767

 (signed multiplication) for word multiplication.

 IMUL MEMW DX:AX AX × [0101H:0100H] The CF and OF are set if

 (signed multiplication) the result cannot be rep-

 resented in the low order

 register; then the sign bit is

 extended to the high order

 register and the other flags

 are undefined

 DIV source DIV BL AX AL / BL Unsigned division of

 (Unsigned division) the accumulator and the

 DIV BX DX: AX AX / BX source operand byte or

 (Unsigned division) word; the result is stored

 DIV [BX] AX AL / [BX] in AL and the remainder

 (Unsigned division) is stored in AH; for word

 DIVL MEMW DX:AX AX / [0101H:0100H] divisors the result is stored

 (Unsigned division) in AX with remainder in

DX; when the quotient

exceeds the capacity of its

destination register (AL or

AX), a type 0 interrupt is

generated; and all flags are

not affected.

Contd.

IDIV source DIV BL AX AL / BL Its operation is same as

 (signed division) DIV; the source operand

 DIV BX DX: AX AX / BX is limited to –128 to + 127

 (signed division) for byte division and

 DIV [BX] AX AL / [BX] –32768 to +32767 for

 (signed division) word division

 DIVL MEMW DX:AX AX / [0101H:0100H]

 (signed division)

Opcode Operand Mnemonics Symbolic Operation Comments

DAA none DAA If AL.0F >09 or AF = 1, Adjust the content of AL

 then AL AL + 6; AF 1 to a pair of valid packed

 If AL.F0 > 90 or CF= 1, decimal digits though

 then AL AL + 60H; the addition of two valid

 CF 1 packed or unpacked deci-

 mal operands; all flags

 except of are affected

DAS none DAS If AL . 0F > 9 or AF = 1, Adjust the content of AL

 then AL AL - 6; AF 1 to a pair of valid packed

 If AL. F0 > 90 or CF= 1, decimal digits after the

 then AL AL - 60H; subtraction of two valid

 CF 1 packed or unpacked deci-

 mal operands; all flags

 except OF are affected

AAA none AAA If AL. 0F > 9 or AF = 1, then Adjust the content of AL

 AL AL + 6; AF AH + 1 to a single unpacked deci-

 AF 1; CF AF; mal number following

 AL AL. 0F the addition of two valid

unpacked decimal oper-

ands. The high order half-

byte of AL is zeroed and

AH is incremented by 1;

all flags except AF and CF

are not affected

AAS none AAS If AL . 0F > 9 or AF = 1, Adjust the content of AL

 then AL AL - 6; AF to a single unpacked deci-

 AH -1 AF 1; CF AF; mal number following the

 AL AL . 0F subtraction of two valid

unpacked decimal oper-

ands. The high order half-

byte of AL is zeroed and

AH is decremented by 1;

all flags except AF and CF

are not affected

Contd.

AAM None AAM AH AL/0AH After the multiplication

 AL Remainder of two valid unpacked

 decimal operands, AAM

converts the result in AL

to two valid unpacked dec-

imal digits in AH and AL.

PF, SF, and ZF are affected

AAD None AAD AL (AH × 0AH) + AL Before dividing AX by

 AL 0 a single-digit unpacked,

decimal operand, AAD

converts the two-digit

unpacked decimal number

in AX to a binary number

in AL and 0 in AH. The

quotient will be a valid

unpacked decimal number

in AL and remainder in

AH. PF, SF, and ZF flags

are affected

CBW None CBW If AL > 80H , Before dividing AX by

 then AH 0 a byte operand, CBW

 If AL 7F, then extends the sign of a byte

 AH FFH dividend in AL into AH,

thus converting AL into a

valid signed word in AX;

flags are not affected

CWD None CWD If AX < 8000H, It works as CBW but

 then DX 0 extends the sign of a word

 If AX > 7FFFH, then dividend in AX into double

 DX FFFFH word in DX:AX; flags are

not affected

Opcode Operand Mnemonics Symbolic Operation Comments

NOT Destination NOT AX AX AX Complement all bits of

 NOT [SI] [SI] [SI] the byte or word operand;

flags are not affected

AND Destination, AND AX, BX AX AX. BX Perform logical AND

 source AND AL, [SI] AL AL. [SI] operation of the source

 AND AX,0200H AX AX. 0200H and destination byte or

 word operands bit by bit;

the result is stored in the

destination operand; AF is

undefined, all other flags

are updated

Contd.

OR Destination, OR AX, BX AX AX + BX Perform logical OR opera

 source OR AL,[SI] AL AL + [SI] tion of the source and des

 OR AX,0200H AX AX+0200H tination byte or word oper

 ands bit by bit; the result

is stored in the destination

operand. AF is undefined,

all other flags are updated

XOR Destination, XOR AX, BX AX AX BX Perform logical exclusive-

 source XOR AL, [SI] AL AL [SI] OR operation of the source

 XOR AX,0200H AX AX 0200H and destination byte or

 word operands bit by bit;

the result is stored in the

destination operand. AF is

undefined, all other flags

are updated

TEST Destination, TEST AX,BX AX. BX; update flags Perform logical AND

 source operation of the source

 TEST AL,[SI] AL. [SI]; update flags and destination byte or

 TEST AX,0200H AX. 0200H; update flags word operands bit by bit:

 the operands remain unch-

 anged; AF is undefined, all

other flags are updated

Opcode Operand Mnemonics Symbolic Operation Comments

SAL/SHL Destination, count SAL AX,1 A
n+1 A

n
, A15 A14, Shift word or byte operand

 SAL AX,CL A0 0 CF A15 left or right once or CL

times

SAR Destination, count SAR AX,1 A
n

A
n+1, CF A0, A15 A15 AF is undefined, all other

 SAR AX,CL flags are updated;

SHR Destination, count SHR AX,1 A
n
 A

n+1, CF A0, A15 0 For single-bit shift opera

 SHR AX,CL tion, OF is set if the sign

 of the operand changes

RCL Destination, count RCL AX,1 A
n+1 A

n
, CF A15, A0 CF Rotate word or byte oper

 RCL AX,CL and left or right once or

 CL times; CF and OF are

 affected; For single-bit

 shift operation, OF is set

 if the sign of the operand

 changes.

RCR Destination, count RCR AX,1 A
n

A
n+1, A15 CF, CF A0

 RCR AX,CL

ROL Destination, count ROL AX,1 A
n+1 A

n
, A0 A15, CF A15

 ROL AX,CL

ROR Destination, count ROR AX,1 A
n
 A

n+1, A15 A0, CF A0

 ROR AX,CL

Opcode Operand Mnemonics Symbolic Operation Comments

JMP Near target JMP MEM IP MEM After execution of JMP

 JMP [MEMW] IP [MEMW+1:MEMW] instruction, transfer con

 JMP [BX] IP [BX+1:BX] trol to near target location

 JMP AX IP AX within the segment; the

 addressing mode will be

 direct, memory indirect or

 register indirect

JMP Short target JMP SHORT MEM IP MEM After execution of this

instruction transfer control

to short target location; the

addressing mode will be

direct only

JMP Far target JMP FAR MEMF IP 0003H; CS 9000H After execution of this

 JMP[MEMW] IP [0102H:1001H]; instruction transfer control

 CS [0104H:0103H] to far target location within

 JMP DWORD IP [BX+1:BX]; the segment

 [BX] CS [BX+3:BX+2]

Jcond Short target JNC MEM If CF=0, then IP MEMS After execution of this

instruction transfer con-

trol to the short target

address if the condition is

true. Conditional jumps

are possible only for short

targets

JCXZ Short target JCXZ MEM If CX=0, then If CX=0, transfer control

 IP MEMS to the short target address

Opcode Operand Mnemonics Symbolic Operation Comments

LOOP Short target LOOP MEM CX CX – 1 Decrement CX register

 If CX 0 , then IP MEM and transfer control to the

short target address if CX

 0

LOOPE/ Short target LOOPZ MEM CX CX – 1 Decrement CX register

LOOPZ If (CX 0) . (ZF = 1) , and transfer control to the

 then IP MEM short target address if (CX

 0). (ZF=1; this instruc-

tion affect the flag ZF = 1

LOOPNE/ Short target LOOPNZ CX CX – 1 Decrement CX register

LOOPNZ MEM If (CX 0) . (ZF = 0), and transfer control to the

 then IP MEM short target address if (CX

 0). (ZF = 0); this instruc-

tion affect the flag ZF = 0

Contd.

Opcode Operand Mnemonics Symbolic Operation Comments

Call Near target CALL MEM SP SP – 2; IP is pushed onto the top

 [SP + 1: SP] IP; of the stack and control

 IP MEM is transferred within the

 CALL SP SP – 2; segment to the near target

 [MEMW] [SP + 1: SP] IP; address

 IP [0101H; 0100H]

 CALL [DI] SP SP – 2;

 [SP + 1: SP] IP;

 IP [DI+ 1: DI]

 CALL DI SP SP – 2;

 [SP + 1: SP] IP;

 IP DI

CALL Far target CALL FAR SP SP – 2; CS and IP are pushed onto

 MEMF [SP + 1: SP] CS; the top of the stack and

 SP SP- 2; control is transferred to the

 [SP+ 1:SP] IP; new segment and far target

 IP 0100H address

 CALL Same as above except:

 [MEMW] CS [0103H : 0102H];

 IP [0101H;0100H]

 CALL Same as above except:

 DWORD [DI] CS [DI +3:DI +2];

 IP [DI + 1: DI]

RET n(near) RET IP [SP + 1: SP]; The word at the top of the

 SP SP+2 stack is popped into IP

 RET 8 IP [SP + 1: SP]; transferring control to

 SP SP+2+8 this new address; RET

 normally used to return

 control to the instruction

 following a near subrou-

tine call; if included, the

optional pop value (n) is

added to SP

RET n(far) RET IP [SP + 1: SP]; As the above except that

 SP SP+2; double word at the top of

 CS [SP + 1: SP]; the stack is popped into IP

 SP SP+ 2; and CS transferring con-

 RET 8 IP [SP + 1: SP]; trol to this new far address

 SP SP+2;

 CS [SP + 1: SP];

 SP SP+ 2 + 8 ;

Opcode Operand Mnemonics Symbolic Operation Comments

STOSB None STOSB ES:[DI] AL Transfer a byte or word

 If DF = 0, DI DI+1. from register AL to the

 If DF = 1, DI DI-1. string element addressed

by DI in the extra segment;

When DF = 0, increment

DI, otherwise decrement

DI; Flags are not affected

STOSW None STOSW ES:[DI] AL Transfer a word from

 ES:[DI+1] AH. register AX to the string

 If DF = 0, DI DI+2. element addressed by DI

 If DF = 1, DI DI-2. in the extra segment; If

DF = 0, increment DI, else

decrement DI; Flags are

not affected

STOS Destination STOS MEMB ES:[MEMB] AL Transfer a byte from regis-

 If DF=0, ter AL to the string element

 MEMB MEMB + 1. addressed by DI in the

 If DF=1, MEMB MEMB -1. extra segment; when DF =

 0, increment MEMB, oth-

 erwise decrement MEMB.

 Flags are not affected

 STOS MEMW ES:[MEMW] AL Transfer a word from

 ES:[MEMW +1] AH. register AX to the string

 If DF=0, element addressed by DI

 MEMW MEMW +2. in the extra segment; if

 If DF=1, MEMW MEMW -2. DF = 0, increment MEMW,

else decrement MEMW.

Flags are not affected

LODSB LODSB AL DS:[SI]. Transfer a byte from the

 If DF=0, SI SI+1. string element addressed

 If DF=1, SI SI-1. by DS:SI to register AL; If

DF = 0, increment SI, else

decrement SI. Flags are

not affected

LODSW LODSW AL DS:[SI]. Transfer a word from the

 AH DS:[SI+1]. string element addressed

 If DF=0, SI SI+2. by DS:SI to register AX; If

 If DF=1, SI SI-2. DF = 0, increment SI, else

decrement SI; Flags are

not affected

LODS Source LODS MEMB AL DS:[MEMB]. Transfer a byte from the

 If DF=0, MEMB MEMB+1. string element addressed

 If DF=1, MEMB MEMB-1. by DS:MEMB to register

AL; When DF=0, incre-

ment MEMB, else decre-

ment MEMB; flags are not

affected

Contd.

 LODS MEMW AL DS:[MEMW]. Transfer a word from the

 AH DS:[MEMW+1]. string element addressed

 If DF=0, MEMWDS MEMW+2. by DS: MEMW to register

 If DF=1, MEMW MEMW-2. AX. when DF = 0, incre-

ment MEMW, otherwise

decrement MEMW; flags

are not affected

MOVSB None MOVSB ES:[DI] DS:[SI]. Transfer a byte from the

 If DF=0, string element addressed

 DI DI+1, SI SI+1. by DS:SI to the string ele-

 If DF=1, DI DI-1, SI SI-1. ment addressed by ES:

DI; if DF = 0, increment

SI and DI, else decrement

SI and DI. Flags are not

affected

MOVSW None MOVSW ES:[DI] DS:[SI] Transfer a word from the

 ES:[DI+1] DS:[SI+1] string element addressed

 If DF=0, DI DI+2 by DS:SI to the string ele-

 SI SI+2 ment addressed by ES:DI;

 If DF=1, DI DI-2 if DF = 0, increment SI

 SI SI-2. and DI, else decrement

SI and DI. Flags are not

affected

Opcode Operand Mnemonics Symbolic Operation Comments

MOVS Destination,Source MOVS ES:[MEMBE] DS:[MEMBD]. Transfer a byte from the

 MEMBES If DF=0, string element addressed

 ,MEMBDS MEMBE MEMBE+1 by DS:MEMBD to the

 MEMBD MEMBD+1. string element addressed

 If DF=1, by ES:MEMBE; if DF=0,

 MEMBE MEMBE-1 increment MEMBD and

 MEMBD MEMBD-1. MEMBE, else decrement

MEMBD and MEMBE.

Flags are not affected

MOVS ES:[MEMWE] DS:[MEMWD] Transfer a word from the

 MEMWE, ES:[MEMWE +1] DS: string element addressed

 MEMWD [MEMWD +1] If DF=0, by DS: MEMWD to the

 MEMWE MEMWE +2 string element addressed

 MEMWD MEMWD +2 by ES: MEMWE in the

 If DF=1, extra segment; if DF=0,

 MEMWE MEMWE -2 increment MEMWD and

 MEMWD MEMWD -2. MEMWE, else decrement

MEMWD and MEMWE;

flags are not affected

Contd.

SCASB SCASB AL - ES:[DI]; Subtract the byte of the

 If DF=0, DI DI+1. string element addressed

 If DF=1, DI DI-1. by ES:DI from AL. if

DF=0, increment DI, else

decrement DI; flags are

updated

SCASW SCASW AX - ES:[DI+1:DI]; Subtract the word of the

 If DF = 0, DI DI+2 string element addressed

 If DF = 1, DI DI-2. by ES:DI from AX; if

DF=0, increment DI, else

decrement DI; flags are

updated

SCAS Destination SCAS MEMBE AL - ES:[MEMBE]; Subtract the byte of the

 If DF = 0, string element addressed

 MEMBE MEMBE +1. by ES: MEMBE from

 If DF=1, MEMBE MEMBE -1. AL; if DF=0, increment

MEMBE, else decre-

ment MEMBE. Flags are

updated

SCAS MEMWE AX - ES:[MEMWE +1: MEMWE]; Subtract the word of the

 If DF=0, MEMWE I MEMWE +2 string element addressed

 If DF=1, MEMWE MEMWE -2. by ES: MEMWES from

AX; if DF=0, increment

MEMWE, else decre-

ment MEMWE; flags are

updated

CMPSB CMPSB DS:[SI] – ES:[DI]; Subtract the byte of the

 If DF=0, DI DI+1 destination string element

 SI SI+1 addressed by ES:DI in the

 If DF=1, DI DI-1 extra segment from byte

 SI SI-1. of the source string ele-

ment addressed by DS:SI;

if DF = 0, increment DI

and SI, else decrement SI

and DI. Flags are updated

CMPSW CMPSW DS:[SI+1:SI] – ES:[DI+1 :DI] Subtract the word of the

 If DF=0, DI DI+2 destination string ele

 SI SI+2. ment addressed by ES:DI

 If DF=1, DI DI-2 SI SI-2 from word of the source

string element addressed

by DS:SI; if DF = 0, incre-

ment DI and SI, else dec-

rement SI and DI; flags are

updated

Opcode Operand Mnemonics Symbolic Operation Comments

CMPS Dest, source CMPS MEMBE, DS:[MEMBD] – ES: Subtract the byte of the

 MEMBD [MEMBDS]; destination string element

 If DF=0 addressed by ES:MEMBE

 MEMBE MEMBE +1 from byte of the source

 MEMBD MEMBD +1 string element addressed

 If DF=1, by DS:MEMBD; if DF=0,

 MEMBE MEMBE -1 increment MEMBE and

 MEMBD MEMBD -1. MEMBD, else decrement

MEMBD and MEMBE;

flags are updated

 CMPS DS:[MEMWD+1: Subtract the word of the

 MEMWES, MEMWD] – ES: destination string element

 MEMWDS [MEMWE+1 : MEMWE]; addressed by ES:MEMBE

 If DF=0, from word of the source

 MEMWE MEMWE +2 string element addressed

 MEMWD MEMWDS +2. by DS:MEMBD; if DF=0,

 If DF=1, increment MEMBES and

 MEMWE MEMWE -2 MEMBDS, else decrement

 MEMWD MEMWDS MEMBDS and MEMBES;

flags are updated

REP REP STOSB CX CX-1. The string instruction foll-

 Repeat until CX=0 owing the REP prefix is

repeated until CX becomes

to 0

 REP STOSW CX CX-1.

 Repeat until CX=0

 REP MOVSB CX CX-1.

 Repeat until CX=0

 REP MOVSW CX CX-1.

 Repeat until CX=0

REPE/ REPZ SCASB CX CX-1. Repeat the string operation

REPZ Repeat if (ZF=1) and CX 0 if (ZF = 1) and CX 0

 REPZ SCASW CX CX-1. Repeat

 if ZF=1 and CX 0.

 REPZ CMPSB CX CX-1. Repeat

 if ZF=1 and CX 0.

 REPZ CMPSW CX CX-1. Repeat

 if ZF=1 and CX 0

REPNE/ REPNE SCASB CX CX-1. Repeat the string operation

EPNZ Repeat if ZF=0 and CX 0. if (ZF=0) and CX 0

 REPNE SCASW CX CX-1. . Repeat

 if ZF=0 and CX 0

 REPNE CMPSB CX CX-1. . Repeat

 if ZF=0 and CX 0

 REPNE CMPSW CX CX-1. Repeat

 if ZF=0 and CX 0

Opcode Operand Mnemonics Symbolic Operation Comments

STC None STC CF 1 Set carry flag

CLC None CLC CF 0 Clear carry flag

CMC None CMC CF CF Complement carry flag

STD None STD DF 1 Set direction flag

CLD None CLD DF 0 Clear direction flag

STI None STI IF 1 Set interrupt flag

CLI None CLI IF 0 Clear interrupt flag

HLT None HLT None Halt

WAIT None WAIT None Wait state when TEST = 1
LOCK Instruction LOCK MOV AX,BX None LOCK = 0 used to prevent

coprocessors from access-

ing the bus during execu-

tion of instruction

NOP None NOP None No operation

ESC Number, source ESC FF, MEMW Data bus [MEMW] Put the contents of the

memory source operand

on the data bus and exe-

cute NOP instruction

1. Choose the appropriate answer for the following questions from the given options.

(20×1=20)

 (i) The 64-bit processor is

 (a) Pentium (b) Pentium II (c) Pentium III (d) Pentium 4

 (ii) The program counter (PC) in a microprocessor

 (a) keeps the address of the next instruction to be fetched

 (b) counts the number of instructions being executed on the microprocessor

 (c) counts the number of programs being executed on the microprocessor

 (d) counts the number of interrupts handled by the microprocessor

 (iii) CALL 8000H is an instruction of

 (a) direct addressing mode (b) indirect addressing mode

 (c) register addressing mode (d) immediate addressing mode

 (iv) OUT 02H is executed by

 (a) one machine cycle (b) two machine cycles

 (c) three machine cycles (d) Four machine cycles

 (v) When the RET instruction is executed at the end of a subroutine,

 (a) the memory address of the RET instruction is transferred to the program counter

 (b) two data bytes stored in the top locations of the stack are transferred to the stack pointer

 (c) the data where the stack is initialized is transferred to the stack pointer

 (d) two data bytes stored in the top two locations of the stack are transferred to the program

 counter

 (vi) The number of address lines required to access 2 Mbytes of data from the microprocessor

 (a) 16-bit address lines (b) 8-bit address lines

 (c) 20-bit address lines (d) 21-bit address lines

 (vii) The RIM instruction is used to

 (a) enable RST 7.5, 6.5 and 5.5 (b) disable RST 7.5, 6.5 and 5.5

 (c) enable or disable RST 7.5, 6.5 and 5.5 (d) none of these

 (viii) When Port A is used as input, Port B and Port C are used as output, the control word of 8255

is

 (a) 80H (b) 90H (c) 85H (d) 86H

 (ix) Which pin is used to control the output of counters 2 of 8253 in Mode 2?

 (a) GATE 0 (b) GATE 1 (c) GATE 2 (d) GATE 3

 (x) The UART performs

 (a) a serial-to-parallel conversion (b) a parallel-to serial conversion

 (c) control and monitoring functions (d) all

 (xi) 8279 is known as

 (a) DMA controller (b) programmable keyboard display interface

 (c) counter (d) interrupt controller

 (xii) The resolution of a D/A converter is 0.4 per cent of full scale range. It is a/an

 (a) 8-bit converter (b) 10-bit converter

 (c) 12-bit converter (d) 16-bit converter

 (xiii) 80386 can be operated in

 (a) real mode only (b) protected virtual mode only

 (c) real and protected virtual mode only

 (d) real, protected virtual mode and virtual 8086 mode

 (xiv) 80486 is the combination of

 (a) 80386 and 80387 (b) 80386 and 80287

 (c) 80286 and 80387 (d) 80286 and 80287

 (xv) Physical memory of 8086 is (a) 1 MB (b) 64 KB (c) 2 MB (d) 4 MB

 (xvi) What are the control signals of the 8085 microprocessor used to interface I/O devices?

 (a) IO / M, RD, WR (b) IO / M (c) RD (d) WR

 (xvii) Which of the following instructions is indirect addressing?

 (a) MOV A, R0 (b) MOV A,40H (c) MOV R7,#55 (d) MOV A,@R0

 (xviii) Which of the following signals indicates a/an upper 8-bit data transfer?

 (a) A0 = 0 and BHE = 0 (b) A0 = 1 and BHE = 1

 (c) A0 = 0 and BHE = 1 (d) A0 = 1 and BHE = 0

 (xix) SSE2 instructions are compatible with

 (a) Pentium processor (b) Pentium Pro processor

 (c) Pentium 4 processor (d) Pentium II processor

 (xx) The Pentium processor is a

 (a) net burst architecture (b) superscalar super-pipelined architecture

 (c) P6 architecture (d) 64-bit core architecture

 Answer any four questions. (4×5=20)

2. Draw and explain the time multiplexing of AD0–AD7 in the 8085 microprocessor.

3. What are the different addressing modes of 80286? Discuss any one addressing mode with examples.

4. Write the difference between Real Address Mode and Protected Virtual Address Mode (PVAM).

5. Define interrupt. Discuss the different interrupts available in the 8085 microprocessor.

6. What are the different operating modes of 8253? Write a program to use Counter 1 of 8253 in Mode

2 operation or rate generator.

7. Explain the functions of the following instructions:

 (i) LDA 4000H (ii) ADC D (iii) STA 9000H (iv) MUL BX

8. What are the control signals used for memory and I/O read and writes operations?

 Answer any four questions (4×15=60)

9. (a) What is the difference between a microprocessor and a microcontroller? Describe how data can

flow between the microprocessor, memory and I/O devices.

 (b) An 8085 program adds the two hex numbers 56 H and FFH and places the result in its accu-

mulator. What would be the status of the 8085 flags CY, P, AC, Z, S on completion of addition?

 (c) Data byte 67H is stored in Register B and data byte AFH is stored in the accumulator. Show the

contents of registers B, C, and the accumulator after the execution of the following instructions:

 (a) MOV C, A (b) MOV A, B (c) ADD B

 (d) Calculate the square root of the contents of the memory location 8000H using lookup table and

place the result in the memory location 9000H.

10. (a) Explain memory interfacing with the 8085 microprocessor. Design a memory interfacing circuit

to interface the following memory ICs:

 (i) 2Kx 8-bit EPROM 2716. Assume starting address is 8000H

 (ii) 2Kx 4-bit RAM 6116. Consider starting address is 9000H

 Write the memory map.

 (b) Define logical address and physical address in the 8086 microprocessor.

 (c) Determine physical address for the following instructions as given below:

 (i) MOV AX, [SI+33] (ii) MOV AL, CS:[BX+0400]

 (iii) MOV AX, [2000] (iv) MOV AL, [BX+SI+FF]

 Assume CS = 4000H, IP = 2300, SI = 02300 and DS = 5000.

 (d) Write the differences between the following instructions:

 (i) CBW and CWD (ii) DEC AX and SUB AX, 1 (iii) RCL and ROL

11. (a) Write an assembly language program to arrange a string of bytes in descending order.

 (b) Write an assembly-language program to find the transpose of a 3 × 3 matrix.

 A =

a

a

a

a

a

a

a

a

a

A

a

a

a

a

a

a

a

a

a

and
T

11

21

31

12

22

32

13

23

33

11

12

13

21

22

23

31

32

33

=> >H H
 (c) Write an assembly-language program to convert a binary number to its equivalent BCD number.

 (d) What will be the contents of the accumulator after the following instruction sequence is executed?

 LXI H, C490H; XCHG; MVI A,40H; ADD E; HLT

12. (a) Explain how data can be transferred using 8251 USART at different baud rates. Write the features

of 8251.

 (b) What are the software interrupts of the 8085 microprocessor? Mention interrupts instructions with

their hex code and vector address. How is the vector address for a software interrupt determined?

 (c) Write the control word format for I/O mode operation of 8255.

 (d) Write a program to read the count value of the counter while counting is going on. Assume

Counter 0 in Mode 0 with a count value of 80FFH.

13. (a) How is the physical address computed in real address mode 80286.

 (b) Explain the concept of virtual memory.

 (c) What do you mean by a descriptor? Discuss different types of descriptor supported by the 80286

and their applications.

 (d) What are the different cache memories in microprocessors?

 Explain the advantages of separate code and data caches of the Pentium processor.

14. (a) Draw the block diagram of the 8051 microcontroller and explain the operation of each block

briefly.

 (b) Explain the operation of the following pins of the 8051 microcontroller:

 (i) RST (ii) T × D (iii) R × D (iv) EA

 (v) PSEN

 (c) What is the difference between internal and external program memory? Why is external pro-(c) What is the difference between internal and external program memory? Why is external pro-

gram memory used in the microcontroller? How can EA be used to access internal and external

program memory?

 (d) Explain a microcontroller-based traffic-light control system with an assembly-language program.

1. Choose the appropriate answer for the following questions from the given options.
(20×1=20)

 (i) If a microprocessor is capable of addressing 64K bytes of memory, its address bus width is

 (a) 16 bits (b) 20 bits (c) 8 bits (d) none of these

 (ii) Which of the following processors has in-built math processor?

 (a) 8086 (b) Pentium-4 (c) 8085 (d) 8088

 (iii) Three-byte instructions should have

 (a) opcode and an operand (b) opcode only

 (c) opcode and two operand (d) operand only

 (iv) The number of flags of the 8086 microprocessor is

 (a) 7 (b) 8 (c) 9 (d)10

 (v) The SUB A instruction in 8085 microprocessor

 (a) resets the carry and sign flag (b) sets the zero and parity flag
 (c) sets the zero and carry flag (d) resets the zero and sign flag

 (vi) Opcode is

 (a) the part of the construction which tells the computer what operation to perform

 (b) an auxiliary register that stores the data to be added or subtracted from the accumulator

 (c) the register that receives the constructions from memory

 (d) the data which will be used in data manipulation of instruction

 (vii) To design a 4 KB RAM with 1024-byte RAM ICs, how many ICs are required?

 (a) 4 (b) 8 (c)2 (d) none of these

 (viii) 8237 is a
 (a) DMA controller (b) programmable keyboard display interface
 (c) counter (d) interrupt controller

 (ix) The concept of memory management, privilege and protection are incorporated in

 (a) 8088 (b) 8086 (c) 80186 (d) 80286

 (x) 80386 has

 (a) 24-bit address bus and 16-bit data bus

 (b) 32-bit address bus and 32-bit data bus

 (c) 24-bit address bus and 32-bit data bus

 (d) 16-bit address bus and 32-bit data bus.

 (xi) The N-bit successive approximation ADC requires

 (a) 2N–1 clock pulses (b) 2N clock pulses

 (c) N clock pulses (d) none of these

 (xii) The physical address when DS = 2345H and IP = 1000H is

 (a) 23450H (b) 24450H (c) 12345H (d) 2345H

 (xiii) 2’s complement instruction is (a) NEG (b) NOT (c) CMP (d) CMC

 (xiv) Pentium MMX processor has

 (a) 57 MMX instructions (b) 56 MMX instructions

 (c) 55 MMX instructions (d) 54 MMX instructions

 (xv) 8251 is a

 (a) USART IC (b) counter

 (c) interrupt controller (d) programmable peripheral interface

 (xvi) What will be the output of A after execution of the following instructions?

 MOV A, #55 ANL A, #67

 (a) 54 (b) 45 (c) 55 (d) 67

 (xvii) The resolution of a 12-bit D/A converter with a full scale output of 10 V is

 (a)
2 1

10
12

-
 (b)

2 1

10
12

+
 (c)

2

10
12

 (d) none of these

 (xviii) In 8259, which is the lowest priority interrupt?

 (a) IR0 (b) IR3 (c) IR4 (d) IR7

 (xix) The bit set reset mode in 8255 is used with which one of the following?

 (a) Port A (b) Port B (c) Port C (d) none of these

 (xx) The 8051 microcontroller has

 (a) 4K bytes of on-chip ROM (b) 8K bytes of on-chip ROM

 (c) 16K bytes of on-chip ROM (d) 32K bytes of on-chip ROM

 Answer any four questions. (4 × 5 = 20)

2. What is hyper-threading technology? What is the difference between Core 2 dual and Quad core?

3. Mention the purpose of SID and SOD lines. Explain the functions of SIM and RIM instructions in
8088 μP.

4. Explain memory mapped I/O and peripheral mapped I/O. Compare the memory mapped I/O with
peripheral mapped I/O.

5. What are the new features of 80486 over 80386?

6. What is translation look-aside buffer? How can it increase the speed of execution of programs?

7. Define stack. Explain function of PUSH and POP instructions.

8. What do you mean by paging? What are the advantages of paging in Pentium?

 Answer any four questions. (4×15 = 60)

9. (a) Draw the schematic diagram of all the functional blocks of the 8085 microprocessor and explain
the 8085 microprocessor architecture briefly.

 (b) Explain the generation of MEMR, MEMW, IOR and IOW control signals from IO / M, RD, WR
signals.

 (c) Explain time-delay loop using register and register pair. Write some applications of time-delay
loop.

 (d) Calculate the time required to execute the following two instructions if the system clock frequency
is 1 MHz.

 LOOP: MOV A, B 4 T-states
 DEC B 4 T-states
 JMP LOOP 10 T-states

10. (a) Draw the timing diagram for execution of the instruction LXI H,8000H.

 (b) Specify the contents of registers A and B and the status of flags S, Z and CY as the following
instructions are executed.

 XRA A; MVI B, 4BH; SUI 42; ANA B; HLT

 (c) Write an assembly-language program in 8085 to add two sixteen-bit data. Store the result and
carry in two different register pairs.

 (d) Write a BSR control word to set bits PC7 and PC0 and to reset them after a 1-second delay.

11. (a) Explain memory organization of 80C51 microcontroller.
 (b) What is a SFR? How you can identify the bit addressable SFRs from their addresses?
 (c) What are the ports used for external memory access? How can an I/O pin be used as both input

and output?
 (d) Draw a circuit diagram for keyboard interface with 8051 microcontroller and write a program

for reading any key.
12. (a) Draw a circuit diagram of ZCD and discuss its operating principle with waveforms.
 (b) Discuss a microprocessor-based frequency measurement and display scheme. Draw the flowchart

for frequency measurement. Give the assembly language program for frequency measurement.
 (c) Determine the control word for the following configuration of the ports of 8255.
 (i) Port A-output and mode of port A is mode 1
 (ii) Port B-output and mode of port B is mode 1
 (iii) Remaining pins of Port C are used as input
 (d) Write the interfacing procedure to interface 8253 with the 8085 microprocessor.
13. (a) Define physical address, linear address and logical address.
 What are the differences between physical address, linear address and logical address?
 (b) Draw the internal architecture of Pentium microprocessor and explain its operation.
 (c) Write the architectural difference between 80486 and Pentium processors.
 (d) Enlist the special features of CISC and RISC processors.
14. Write short notes on of the following (any three)
 (a) Power PC 601 microprocessor
 (b) Pentium MMX processor
 (c) Superscalar organization of Pentium processor
 (d) MESI protocol

1. Choose the appropriate answer for the following questions from the given options. (20×1=20)

 (i) The 16-bit processor is

 (a) 8085 (b) 8086 (c) 80486 (d) Pentium
 (ii) Address bus of a microprocessor is

 (a) unidirectional (b) bi-directional (c) unidirectional as well as bi-directional

 (d) none-of these

 (iii) The number of flags of the 8085 microprocessor is

 (a) 6 (b) 5 (c) 4 (d) 3

 (iv) MOV A, C is executed by

 (a) 1 machine cycle (b) 2 machine cycle (c) 3 machine cycle (d) 4 machine cycle

 (v) When a CALL instruction is executed, the stack pointer register is

 (a) decremented by two (b) incremented by two

 (c) decremented by one (d) incremented by one

 (vi) The PC contains 8452H and SP contains 88D6H. What will be the content of PC and SP fol-
lowing a CALL to subroutine at the location 82AFH?

 (a) 82AF, 88D4 (b) 82AF, 8450 (c) 8450, 88D4 (d) 82AF, 8452

 (vii) Which is the highest priority interrupt in the 8085 microprocessor?

 (a) TRAP (b) RST 6.5 (c) RST 5.5 (d) RST 7.5

 (viii) 8259 is a

 (a) programmable interrupt controller (b) DMA controller

 (c) programmable keyboard display interface (d) programmable counter

 (ix) If A0 and A1 pins of 8255 are 00, which port will be selected?

 (a) Port A (b) Port B (c) Port C (d) None of these

 (x) 8253 has

 (a) 6 modes of operation (b) 5 modes of operation

 (c) 4 modes of operation (d) 3 modes of operation

 (xi) 8279 displays can operate in

 (a) 8 8-bit character display-left entry only

 (b) 16 16-bit character display-left entry only

 (c) 8 8-bit character display-right entry only

 (d) 8 8-bit character display-left and right entry and 16 16-bit character display-left and

 right entry

 (xii) The signals used for DMA operation are

 (a) HRQ (b) HLDA (c) HRQ and HLDA (d) none of these

 (xiii) In hyper-threading technology

 (a) a single processor appears as one logical processors

 (b) a single processor appears as four logical processors

 (c) a single processor appears as three logical processors

 (d) a single processor appears as two logical processors

 (xiv) 8086 has

 (a) 16-bit data bus and 20 bit address bus

 (b) 8-bit data bus and 20 bit address bus

 (c) 16-bit data bus and 16 bit address bus

 (d) 8-bit data bus and 16 bit address bus

 (xv) What is the addressing mode of instruction MOV AX, [BX + SI + 06]?

 (a) Index addressing (b) Base addressing

 (c) Base index addressing (d) Base index displacement addressing

 (xvi) The difference between the 80386 and 80486 flag register is

 (a) alignment check flag (b) virtual mode flag

 (c) resume flag (d) trap flag

 (xvii) The instruction prefetcher of 80386 processor consists of

 (a) 16-byte instruction code queue (b) 12-byte instruction code queue

 (c) 10-byte instruction code queue (d) 6-byte instruction code queue

 (xviii) P6 family Pentium processor has

 (a) 36-bit address bus (b) 32-bit address bus

 (c) 24-bit address bus (d) 20-bit address bus

 (xix) Pentium processor consists of

 (a) two independent integer pipelines and a floating-point pipeline

 (b) one integer pipeline and a floating-point pipeline

 (c) two integer pipelines

 (d) one floating-point pipeline

 (xx) The 80C51 microcontroller family has

 (a) 32 pins for I/O (b) 24 pins for I/O

 (c) 16 pins for I/O (d) 8 pins for I/O

 Answer any four questions. (4 × 5 = 25)

2. What do you mean by paging? What are the advantages of paging?

3. Draw the schematic diagram to generate Read/Write control signals for memory and I/O devices in
the 8085 microprocessor.

4. What are RISC and CISC? Write the difference between RISC and CISC. Give a list of examples
of RISC and CISC.

5. Mention the different modes of operation of 8253 IC. Explain rate generator mode of 8253.

6. Write the functions of the following pins of 8259A:

 (i) T × D (ii) R × D (iii) T × RDY (iv) C / D

 (v) DSR

7. What is serial data transfer? Write the difference between synchronous and asynchronous data transfer.

8. What are the advantages of DMA controlled data transfer over interrupt driven data transfer?

 Write the difference between 8057 and 8037 DMA controllers.

 Answer any four questions. (4 × 15 = 60)

9. (a) What are the flags in 8085? Discuss the flag register of 8085 with some examples.

 (b) An 8085 program subtracts the hex number 22H from FFH and places the result in its ac-
cumulator. What would be the status of the 8085 flags CY, P, AC, Z, S on completion of this
subtraction?

 (c) A block of 10 bytes of data is stored at the memory location starting from 9000H. Write a
program to move this block to the memory location starting from 9050H.

 (d) Draw the RIM instruction format and discuss with an example. “A RIM instruction should be
performed immediately after TRAP occurs”. Why?

10. (a) What are the advantages and disadvantages of I/O mapped I/O over CPU initiated data trans-
fer? Explain why I/O mapped I/O data transfer technique is limited to 256 input and 256 out
peripherals.

 (b) What do you mean by priority interrupts? Explain the operation of different interrupts available
in 8085 and 8086 microprocessors.

 (c) Draw an interface circuit of an A/D converter with 8085 μP and write a program to convert
the analog input signal to digital output signal.

 (d) Explain the seven-segment display interfacing with 8279. How are sixteen-digit display inter-
faced with 8279?

11. (a) What are the different operating modes of 8255? Explain any one operating mode of 8255.

 (b) Write the control word in Mode 0 operation for the following cases:

 (i) Port A = Input port, Port B = output port, Port C = output port

 (ii) Port A = Input port, Port B = output port, Port CU = output port, Port CL = input port

 (c) Write a program to generate a square wave using 8255.

 (d) Describe the flowchart of DMA mode of data transfer. What do you mean by DMA cycle?

12. (a) What are the different addressing modes of 8086 microprocessors? Explain each addressing
mode with examples.

 (b) Write the procedure to determine physical address for the following instructions as given below:

 (i) MOV AX, [SI+00FF]

 (ii) MOV AL, CS:[BX+0200]

 (iii) MOV AX, [3000]

 (iv) MOV AL, [BX+SI+2F]

 Assume CS =5000H, IP =3000, SI=1000 and DS =6000.

 (c) Write the difference between the following instructions:

 (i) MUL and IMUL (ii) DIV and IDIV

 (iii) JUMP and LOOP (iv) Shift and Rotate

 (d) Write instructions to perform the following operations:

 (i) Copy content of BX to a memory location in the data segment with offset 0100H

 (ii) Increment content of CX by 2

 (iii) Multiply AX with 16 bit data 4000H

 (iv) Rotate left the content of AL by two bits

13. (a) What are the electrical quantities measured by the microprocessor? Draw the schematic block
diagram of dc voltage (5 V) measurement and discuss briefly. Write an assembly-language
program for this measurement. What modification is required in hardware and software to
measure very high voltage ac and dc?

 (b) Draw the schematic pin diagram of Pentium processor. Write the function of the following pins
of the Pentium processor.

 (i) ADS# (ii) BE7#–BE0# (iii)APCHK# (iv) DP7–DP0 (v) EADS#

 (c) Draw a circuit diagram for keyboard interface with the 8051 microcontroller and write a pro-
gram for reading any key.

 (d) Write an assembly-language program for 2 ms time delay. Assume the system clock time period
is equal to 0.33 μs.

14. Write short notes on the following (any three):

 (a) 8259 Interrupt Controller

 (b) Minimum/Maximum mode operation of 8086 μP

 (c) Segment memory

 (d) Architecture of 8051 microcontroller

Input devices 1, 20

Output devices 1, 2, 5

Memory 1, 5

Primary memory 2

Secondary memory 2

CPU 2

ALU 2, 3, 5

Registers 2,5

Timing and control unit 2…,3,5

Control unit 3

Microprocessor 3,6

Microcomputer 4,5

System bus 6

Address bus 6,7

Data bus 6,7

Control Bus 6

Von-Neumann architecture 6,7

Harvard architecture 6,7

Super Harvard architecture 6,7

ENIAC 8

EDSAC 8

EDVAC 8

SSI 9

MSI 9

LSI 9

VLSI 9

4004 9

8085 9

8080 9

8086 9

80386 10

80486 10

Pentium 10

Comparisons of

microprocessors 11

Evolution of

microprocessors 12

Microprocessor applications 12

Evolution of

microcontrollers 13

Applications of

microcontrollers 15

8085 Microprocessor 18

8085 features 18

Architecture of 8085

Microprocessor 19

Bus Architecture of 8085 20

Input devices 20

Memory 20

Output devices 20

Operation of 8085 20

Memory read 21

Data flow 21

ALU 22

Accumulator 22,23

Temporary register 22

Flags 22

Timing and Control unit 23

Registers 23

Program counter 23,24

Stack pointer 23,24

PSW 23,25

General purpose registers 23

Special purpose registers 24

Status register 24

Parity flag 24,25

Carry flag 24

Auxiliary carry flag 24,25

Zero flag 24,25

Sign flag 24,25

Flag register 24

Instruction register 26

Memory address register 26

Temporary register 26

System bus 26

Address bus 26

Data bus 26,27

Control Bus 26,28

Multiplexing of address

bus 27,28

Pin diagram of 8085 29

A15-A8 30

AD7-AD0 30

ALE 30

READY 31

HOLD 31

HLDA 31

INTR 31

Memory and I/O read/write con-

trol signals 31

RST 5.5, RST 6.5 RST 7.5 31,32

TRAP 32

RESET 32

SID 32

SOD 32

Comparisons of 8085 and

8080 32

Addressing modes 37

Direct addressing 38

Register addressing 38

Register indirect addressing 38

Immediate addressing 39

Implicit addressing 39

Instruction set 37,40

Operation code 37

Operand 37

Data transfer group 40

Arithmetic group 41

Logical group 41

Branch control group 42

Stack 43

Machine control group 43

Instruction format 43

One byte Instruction 44

Two byte Instruction 44

Three byte Instruction 44,45

Symbol and abbreviations 45

MOV 46,47

MVI 47

LDA 47

LDAX 47

LXI 47

LHLD 48

STA 48

SHLD 48

XCHG 48

ADD 48

ADC 49

ADI 49

ACI

DAD 49

SUB 49

SBB 50

SUI 50

SBI 50

INR 50

INX 51

DCR 51

DCX 51

DAA 51

CMP 51,52

CPI 52

ANA 52

ANI 52

ORA 52,53

ORI 53

XRA 53

XRI 53

RLC 53,54

RRC 54

RAL 54

RAR 54,55

CMA 55

CMC 55

STC 55

JMP 55

JC 56

JNC 56

JP 56

JNZ 57

JZ 56

CALL 57

RET 58

PCHL 58

RST 0-7 59

TRAP 59

PUSH 59,60

POP 60, 61

XTHL 61

SPHL 61

EI 62

DI 62

NOP 62

HLT 62

SIM 62

RIM 62

IN 63

OUT 63

Timing Diagram 63,66

Fetch operation 63

Execute operation 64

Machine cycle 64

Instruction cycle 63,64

Fetch cycle 64,66

Memory read 67

I/O read 69,70

Memory write 71,72

I/O write 72

Flow of opcode and data 65

Memory data register 65

Instruction decoder 65

Program 81

Machine language 82

Assembly language 82

Assembler 83

High level language 83,84

Translator 83

Compiler 83

Interpreter 83

Fortran 84

Basic 85

Cobol 85

Pascal 85

C 86

C++ and OOP 86

LISP 86

APL 86

ADA 86

PROLOG 87

Stack 87

Subroutines 89

Nested Subroutines 90

Time delay loop 91,93

Modular programming 94,95

Macro 95

Instruction format 96

Memory address 96

Machine codes 96

Labels 96

Mnemonics 96

Operands 97

Comments 97

Addition 98-103

Decimal Addition 104-107

Subtraction 107-111

Decimal Subtraction 110

One’s complement 111

Two’s complement 112

Shift 113,114

Largest 114-117

Smallest 117-120

Descending order 120

Ascending order 123

Look-up table 126

Square root 126

Square 136

Multiplication 127-129

Division 130-132

Hexadecimal to Binary 132

Transfer block of data 135

BCD to Binary 138

Binary to Decimal 139

Architecture of 8086 147, 149

8086 147

8088 147

Compare 8085 and 8086 148

Compare 8086 and 8088 148

Bus interface unit 150

Execution unit 150

Fetch and Execute 150

Process of fetching 151

Instruction fetch 151

Instruction queue 152

Registers 152

Data registers 153

AX register 153

BX register 153

CX register 153

DX register 154

Segment registers 154

Code segment 154

Data segment 154

Stack segment 154

Extra segment 154

Pointer and index registers 154

Stack pointer 155

Base pointer 155

Source index 155

Destination index 155

Instruction pointer 155

Flag register 155

Carry flag, CF 155,156

Parity flag, PF 155,156

Auxiliary Carry flag,

AF 155,156

Zero flag, ZF 155,156

Sign Flag, SF 155,156

Overflow flag, OF 155,156

Direction flag, DF 155,156

Interrupt flag, IF 155,156

Trap flag, TF 155,156

Logical address 156,157

Physical address 156,157

Effective address 157

Segment address 157

Address bus 158,161-164

Data bus 158,161-164

Control bus 158

Memory segmentation 158

Memory addressing 160

Memory map 160

Odd address bank 161-164

Even address bank 161-164

Pin description of 8086 164

AD15-AD0 Address/data

bus 164

BHE Bus high enable 165

Ready 166

INTR 166

NMI 166

RESET 167

CLK 166A

MN/MX 166

Operating modes of 8086 167

Maximum mode 167, 174

Minimum mode 167, 171

HLDA 169

HOLD 169

QS1-QS0 Instruction queue

status 169

S2,S1,S0 status signals 169

Lock 170

Memory read and write 170

Timing diagram of 8086 171

Memory read bus cycle 172,

175

Memory write bus cycle 173,

176

I/O read and write bus

cycle 174, 176

8088 processor 176-180

AD7-AD0 Address/data

bus 178

A15-A8 Address bus 178

Timing diagram of 8088 179

Demultiplexing of system

bus 180

8284A Clock generator 183

8286 Bi-directional bus 186

8287 Bi-directional bus 186

8282 input-output port 186

8283 input-output port 186

8288 bus controller 187

Opcode 192

Operand 192

Assembly language 192

Addressing modes 192

Instruction format 192

Immediate addressing 193

Register addressing 193

Memory addressing 193

Direct addressing 194

Register indirect

addressing 194

Based addressing 195

Indexed addressing 195

Based indexed addressing 196

Based indexed and displacement

addressing 197

String addressing 197

Branch addressing 199

Intrasegment direct 200

Intrasegment indirect 200

Intersegment direct 201

Intersegment indirect 201

8086 Instruction set 203

Classification of

instructions 204

Instruction format 192

One byte instruction 204

Two byte instruction 205

Three and Four byte

instruction 205

Five and Six byte

instruction 206

Data transfer instructions 206

Arithmetic and logical

instructions 206,216

Branch instructions 206

Loop instructions 206

Processor control

instructions 206,238

Flag manipulation

instructions 206

Shift and rotate instructions 206

String instructions 206,235

MOV 206-210

XCHG 211

LAHF 211

SAHF 211

IN 212

OUT 212

LEA 213

LDS 213

LES 214

XLAT 214

PUSH, PUSHF 214,215

POP, POPF 214,216

ADD 216

ADC 217

SUB 217

SBB 218

INC 218

DEC 219

NEG 219

CMP 220

Multiplication 220

Division 220

MUL, IMUL 220,221

DIV, IDIV 221,222

DAA 223

DAS 223

AAA 223

AAS 224

AAM 224

CBW 224

CWD 224

NOT 225

AND 225

OR 225

XOR 226

TEST 226

SHL 226

SAL 227

SHR 227

SAR 228

ROR 229

ROL 229

RCR 230

RCL 230

JMP 231

JCXZ 231

JCOND 231

LOOP 232, 233

CALL 233

RETURN 233

RET 234

INT, IRET, INTO 236

MOVSB, MOVSW 236

STOSB, STOSW 236

LODSB, LODSW 236

CMPSB, CMPSW 236

SCASB, SCASW 237

REPEAT, REP 237

CLC 238

CMC 238

STC 238

CLD 238

STD 238

CLI 238

STI 239

HLT 239

WAIT 239

LOCK 239

NOP 239

TEST 239

ESC 239

Machine language 243

Assembly language 243

Assembler 244

Directives 244

Norton’s editor 244

MASM Editor 245

LINK 246

Assembly language

commands 246

A Assemble command 246

U Un-assemble command 247

R Register command 248

Status flags 249

G Go command 250

T Trace command 251

D display command 252

E enter command 253

F Fill command 254

M Move command 254

S Search command 254

Addition 255-257

Subtraction 257

2’s complement 258,259

Multiply 260, 271

Divide 261, 272

Decimal addition 261-262

Rotating 264, 265

Shift left 266

Largest number 266-268

Transfer a block of data 269

ASCII 270, 271

Descending order 272

Ascending order 274

Square of a number 277

Look-up table 277

Square root of a number 287

Addition of matrix 278

Multiplication of matrix 280

Gray code 282

BCD 282

Factorial 283

Positive and negative

number 284

Even and odd number 286

Binary to BCD 288

8087 289

80287 289

80387 289

Numeric Data Processors 289

Numeric Execution Unit 290

Registers of 8087 291

Floating Point Data

Registers 291

Registers 292

Control Word Register 292

Status register 293

Tag word 294

Tag Register 294

Instruction and Data

Pointer 294

Pin Description of 8087 295

INT 296

BUSY 296

RESET 296

S2, S1 and S0 296

Interfacing of 8087 with

8086 297

Data format of 8087 297

Instruction Set of 8087 298

Floating Point Data Transfer

Instructions 299

Integer Point Data Transfer

Instructions 299

BCD Data Transfer

Instructions 300

FADD, FADDP 300

FSUB, FSUBP, FSUBR 300

FMUL, FMULP 300

FDIV, FDIVP, FDIVR and

FDIVRP 300

FSQRT 301

FABS 301

Comparison Instruction 301

Transcendental Instruction 301

FPTAN 301

FPATAN 301

FLY2X 301

FLY2XP1 301

Co-processor control

instructions 301

FINT 301

FENI 301

FDISI 302

FWAIT 302

Volume of sphere 302

80287 303

Bus Control Logic 303

Data Interface and Control

Unit 303

Floating point unit 304

Status word 304

B Flag 304

TOP 304

ES 305

SF 305

Exception Flags 305

Control word 305

Masking Bits 305

Precision control bits 306

Rounding control bits 306

Infinity control bit 306

Pin description of 80287 306

80387 307

Memory interfacing 313

Types of memory 313

ROM 314

RAM 314

Static RAM 315

Dynamic RAM 315

Memory organisation 316, 318

Address lines 317

Data lines 317

Chip select signal 317

Read or write 317

Output enable 317

Memory map 321

Address decoding 322

Memory interfacing to

microprocessor 323

Memory mapped I/O 325,326

I/O mapped I/O 324,326

EPROM interfacing with

8086 328, 329

Timing diagram 330

Memory read cycle 330

Memory write cycle 331

I/O read cycle 331

I/O write cycle 334

Interrupts 335

data transfer 335

Interrupt Service Routine

(ISR) 335,336

8259 interrupt controller

Classification of interrupts 336

8085 interrupts 336

INTR 336,337,338

RST 5.5, RST 6.5, RST

7.5 336,337,338

TRAP 337

Interrupt vector 339

Vectored interrupts 339

Non-Vectored Interrupt 340

Triggering levels 343

Interrupt instructions 343

Enable interrupts (EI) 343

Disable interrupts (DI) 343

Read Interrupt Mask

(RIM) 344, 345

Set Interrupt Mask (SIM) 344

Serial Input Data (SID) 344

Serial Output Data (SOD) 344

Pending interrupts 348

Interrupts of 8086 348

Interrupts of 8088 348

Software interrupts 349

Non-maskable interrupts 349

Internal interrupts 349

Hardware interrupts 349, 352

Reset 349

INT 00H 349

INT 01H 350

INT 02H 351

INT 03H 351

INT 04H 351

INTR interrupts 351

8259A 352

Programmable Interrupt

Controller (PIC) 355

Priority of 8086/8088

interrupts 353

Interrupt cycle of

8086/8088 353

Interrupt operation 354

Pin diagram of 8259A 356

IR0-IR7 (interrupt

requests) 356, 357

Interrupt Request Register

(IRR) 357

In-Service register (ISR). 358

Priority resolver 358

Interrupt mask register

(IMR) 358

358

358

358

358

Interrupt sequence 359

Interfacing of 8259 with

8085 359

Programming of 8259A 360

Initialization Command Word 1

(ICW1) 360, 361

Initialization Command Word 2

(ICW2) 361

Initialization Command Word 3

(ICW3) 362

Initialization Command Word 4

(ICW4) 362

Fully nested mode (FNM) 363

Operation command words

(OCWs) 364

Programming Sequence of

8259 363

Operation command words

OCW1, OCW2 and

OCW3 364

Non-specific EOI

command 365

Specific EOI Command 365

Automatic EOI Mode

(AEOI) 365

Automatic Rotation Equal

Priority 366

Rotate on non-specific EOI

Command 366

Rotate on automatic EOI

Mode 367

Set priority command 367

Rotate on specific EOI

command 367

Pull Mode 368

Special Mask Mode

(SMM) 368

8255A 368

Architecture of 8255A 369

Pin diagram of 8255A 371

Group A and Group B

controls 372

Control word 379

Operating modes 373

Mode 0 Basic input/output 373,

375

Mode 1 Strobed input/out-

put 373, 375

Mode 2 Bidirectional 373, 377

Input Control Signals 375

Input Control Signals 377

Bit set/reset (BSR) mode 379

Applications of 8255 381

Programmable interval timer/

counter 382

8253 382

Operating modes 388

Mode 0 Interrupt on terminal

count. 382, 389

Mode 1 Programmable one-

shot 382, 391

Mode 2 Rate generator 382,

392

Mode 3 Square wave genera-

tor 382, 393

Mode 4 Software triggered

mode 382, 395

Mode 5 Hardware triggered

mode 382, 396

Pin diagram of 8253 383

Read/write logic 384

CLK 385

GATE 385

OUT 385

Counter section 385

Systems Interface 385

Control word register 386

Control word format 386

Serial communication

interface 404

Interfacing 404

simplex 404

half-duplex 404

full-duplex 404

8251 404

Serial data transfer 404

Asynchronous data

transfer 405

Synchronous data transfer 405

Transmitter 407,411

Receiver 407, 411

Modem control 408

Pin diagram of 8251 409

Read/Write Control Logic 409

TXD (Transmit Data

Output) 410,411

 (Transmitter Clock

Input) 410,411

TXRDY (Transmitter

Ready) 410, 411

TXE (Transmitter Empty) 410,

411

Control logic and registers 410

Modem Control pins 411

SYNDET/BD 412

8251 interface with

microprocessor 412

Operating modes of 8251 412

Mode Instruction Control

word 413

Command Instruction Control

word 413, 416

Asynchronous

mode 413,414,415

Synchronous mode 415

Instruction format 413

Status Word Register

Format 417

Direct memory access

(DMA) 417

DMA operation 417, 418,425

DMA controller 417,418

DMA request (DRQ) 418

Hold acknowledge(HLDA) 418,

420

Hold request(HRQ) 418, 420

Pin diagram of 8257 418

Data bus buffer 421

DMA address register 421

MARK 420

READY 420

AEN (Address Enable) 420

ADSTB (Address Strobe) 420

TC(Terminal Count) 420

Architecture of 8257 420

Read/write logic 421

Priority Resolver 425

8257 register selection 422

Terminal count register 422

Mode set register 423

Priority of DMA channels 423

Status register 424

Data bus buffer 424

Read/write logic 424

Control unit 424

Single byte Data transfer 425

Reset 425

Burst mode 426

Control override mode 426

Not ready mode 426

Interfacing 8257 427

Slave mode operation 427

Master mode operation 428

Disk controller using 8257 429

Programmable key board 430

8279 430

Display I/O interface 430

Features of 8279 431

Keyboard section 430

Display section 430

Scanned keyboard 431

Scanned sensor 431

Pin diagram of 8279 431

Scan Lines 432

Blank display

I/O control and Data buffer 433

Control and timing

registers 433

Scan Counter 433

Return buffers and Keyboard

debounce and control 434

Display address registers 434

Display RAM 434

Strobed input 434

Scanned Keyboard 434

Scanned Sensor matrix 434

Display scan 435

Display entry 435

Display modes 435

Keyboard modes 434

Software operation 435

Program clock 435

Read Display RAM 436

Write Display RAM 436

Display write inhibit/

Blanking 436

Clear display RAM 437

End Interrupt/Error Mode

Set 437

Data format 437

Display 438

Left Entry 438

Right Entry 438

Interfacing 8279 439

Keyboard interface 439

Sixteen digit display interface

with 8279 439

CRT Controller 441

8275 441

Data Bus Buffer 441

Character Counter 441

Line Counter 442, 443

Row Counter 442

Light Pen register 442

Raster Timing and Video

control 442

ROW Buffers 443

FIFOs 443

Buffer Input/Output

Controllers 443

DMA Request, DRQ 443

DMA Acknowledge,

DACK 443

Horizontal Retrace, HRTC 443

Vertical Retrace, VRTC 443

Light Pen 443

Video Suppression, VSP 444

Reverse Video, RVV 444

Light Enable 444

Character Clock, CCLK 444

Highlight, HLGT 444

Attribute Codes 444

Line Attribute Codes 444

System operation 444

Interfacing 8275 with 8257 445

Display of Characters 445

Analog to Digital (ADC)

conversion 445

Digital to Analog (DAC) conver-

sion 445, 458

Counting type ADC 446

Single slope serial ADC 446

Successive approximation

ADC 447

Parallel converter 449

Flash converter 449

Specification of ADC 449

Input impedance 449

Quantisation Error 450

Accuracy 450, 463

Resolution 450, 463

Conversion Time 450

Temperature Stability 450

ADC ICs 450

ADC0800 451

ADC80 452

Interfacing of ADC 453, 456

Binary weighted or R/2N R

DAC 458

R-2R ladder circuit 460

Specification of DAC 463

Linearity 463

Settling time 464

Temperature Sensitivity 464

Interfacing of DAC ICs 464

DAC0800 465

Bus interface 467

System Bus 467

CPU 468

Memory 468

Input and output signals 468

Bus structure 468

Data lines 468

Address lines 468

Chip set 469

PCI slots 469

AGP slots 469

Mother Board 469

Cache bus 469, 470

Memory bus 469, 470

Expansion Bus 469

ISA 469, 471

EISA 469, 472

MCA 469, 472

PCI bus 469, 472

VL bus 469

USB 469

SCSI bus 470, 473

PC card bus 470

USB bus 470

Bus architecture 470

CPU Bus 470

Processor Bus 470

Local I/O bus 470

Standard I/O bus 471

Expansion Bus 471

VESA 472

Single processor system 473

AGP 473

Parallel Printer Interface 474,

475

Daisy chain 474

RS-232C 475, 477, 478, 479,

480

Data Packet 476

TTL interfacing 478

DTE, DCE 479

RS-422A, RS-423A 479

IEEE-488 bus 479, 480

Computer network 479

8250 UART 480, 481

16550 481, 485

Registers 481

Line status registers 482

Interrupt Enable register 482

Interrupt identification

register 483

Modem control register 483

Modem status register 483

Divisor Register 483

Baud rate 483

Transmitter 484

Receiver 484

UART application 484

FIFO control register 486

Line control register 486

Line status register 487

Programmable baud rate

generator 487

8089 I/O processor 487

Peripheral devices 488

Pin description of 8989 488

8089 architecture 490

Register model 492

Seven segment display 500

Single digit display 502

Two digit display 502

For digit display 503

Measurement of voltage 504

Half wave precision

rectifier 509

Full wave precision

rectifier 509

Measurement of current 509

Frequency measurement 511,

514

ZCD 513

Phase angle measurement 516,

517

Power factor measurement 518

Impedance measurement 520

VA measurement 523

Power measurement 526

VAR measurement 526

Energy measurement 527

Displacement

measurement 529-534

Strain measurement 534-537

Force measure 537

Torque measurement 539

Pressure measurement 541

Temperature

measurement 541-545

Water level measurement 545

Measurement and display of

speed 547

Microprocessor based

protection 549

Over voltage protection 549

Microprocessor based traffic light

control 552

Microprocessor based firing cir-

cuit of a thyristor 558

Speed control 562

DC motor 562

Stepper motor 569

80186 581

80186 microprocessor

architecture 581

Clock generator 580

Bus interface unit 580

Programmable timer 580

Programmable interrupt

controller 580

Chip select unit 580

Register set 581

General Registers 581

Base and index registers 581

Status and Control Registers 581

Status word 582

Carry flag 582

Parity flag 582

Auxiliary Flag 582

Sign Flag 582

Zero Flag 582

Sign Flag 582

Single step flag 582

Interrupt enable flag 582

Direction Flag 582

Overflow flag 583

Clock generator 583

Oscillator 583

DMA Channels 583

DMA operation 583

DMA control 584

DMA channel control word

register 585

DMA control word bit

descriptions 585

Timers 586

Timer operation 587

Timer mode/ control

register 587

Interrupt controller 589

Non-iRMX(Master) Mode

operation 590

Fully Nested Mode 590

Cascade Mode 590

Special Fully Nested Mode 590

Interrupt Controller

Registers 590

iRMX 86 mode 591

Interrupt control register 591

Memory organization 592

Memory chip select 592

Peripheral chip selects 593

Pin description of 80186 594

RESET 594

CLKOUT 594

TEST 595

TMR IN0, TMR IN1 595

TMR OUT0, TMR OUT1 595

ARDY 596

SRDY 596

Addressing modes of

80186 598

Register operand addressing

mode 598

Immediate operand addressing

mode 598

Direct addressing mode 598

Register indirect addressing

mode 598

Based addressing mode 598

Indexed addressing mode 598

Based indexed addressing

mode 598

Based indexed with displacement

addressing mode 598

Data types of 80186 599

Instruction set of 80186 599

Data transfer Instructions 599

Arithmetic instructions 599

Logical instructions 600

String Instructions 600

PUSHA 599

POPA 599

PUSH immediate 599

IMUL 599

INS 600

OUTS 600

BOUND 600

ENTER 600

Comparison between 8086 and

80186 601

80286 601

Architecture of 80286 602

Address unit 603

Bus unit 603

Instruction unit 603

Execution Unit 604

General-purpose registers 604

Segment registers 605

Base and Index registers 605

Status and control registers 605

Flags word description 605

Flag registers 605

Task switch(TS) 605

Machine status word 606

Pin diagram of 80286 606

PEREQ 608

PEACK 608

BUSY 609

ERROR 609

CAP 609

RESET 609

Addressing modes of

80286 609

Data types of 80286 610

80286 instruction set 610

ARPL 611

CLTS 611

LAR 611

LGDT 611

LIDT 611

LLDT 612

LMSW 612

LSL 612

LTR 612

SGDT 612

SIDT 612

SMSW 612

STR 612

VERR 612

VERW 612

ENTER 613

LEAVE 613

BOUND 613

LAHF 613

PUSH IMD 613

PUSH A 613

POP A 613

IMUL 613

Rotate source, count 614

INS 614

OUTS 614

80286 addressing modes 614

Real addressing modes 614

Protected virtual Address

mode(PVAM) 615

Physical address

calculations 615

Descriptors 616

Code and Data Segment

Descriptors 616

System Segment

Descriptors 616

Gate Descriptors 617

Segment Descriptor Cache

Registers 618

Selector fields 618

Local and Global Descriptor

Tables 618

GDT 618

LDT 618

LGDT 619

LLDT 619

Interrupt description

table(IDT) 619, 620

Privilege 619

Four level privilege 620

Comparison 8086 and

80286 620

Comparison 80186 and

80286 621

80386 622

Architecture of 80386 623

CPU 623

Memory management unit 623

Segmentation unit 623

Paging unit 623

Bus interface unit 624

Registers of 80386 624

32-bit EIP 625

Stack Segment and Stack

Pointer 625

General purpose registers 625

Segment registers 625

Control register 626

Debugging registers 626

Test Registers 626

System Address Registers 626

Flag Registers 626

RF (Resume Flag) 627

VM(Virtual Mode Flag) 628

Pin description of 80386 628

Addressing modes of

80386 630

Scaled indexed mode 630

Based scaled indexed mode 630

Based scaled indexed mode with

displacement 630

Data type of 80386 631

Operating modes of 80386 631

Real addressing mode 631

Protected mode addressing 632

Memory management 633

Segmentation 633

Descriptors 634

Paging 635

Paging operation 635, 637

Paging unit 635

Page descriptor base

register 635

Page directory 635

Page table 636

Linear address 636

Physical address 636

Virtual 8086 mode 637

Instruction set of 80386 638

Bit scan instructions 638

Bit test instructions 638

Conditional set byte

instructions 638

Shift double instructions 639

Control transfer

instructions 639

Comparison 80286 and

80386 639

80486 640

Architecture of 80486 640

Bus interface unit 641

Execution unit 641

Control unit 641

Floating point unit(FPU) 641

Registers of 80486 643

Pin description of 80486 643

Data Bus 644

Data parity group 644

Bus cycle definition group 645

Burst Control group 646

Bus Arbitration Group 646

Interrupts 646

Cache Invalidation group 646

Page cache ability group 647

Bus size control group 647

FPU Error group 647

Test Access Port Group 647

Comparison 80386 and

80486 648

Pentium 653

RISC processors 653

Code and data cache 653

Pentium architecture 653

Branch prediction 654

Branch trace buffer 654

Control unit 654

Integer pipelines U and V 655

Prefetch(PF) 655, 656

Decode-1(D1) 655, 656

Decode-2(D2) 655, 657

Execute(E) 656

Write back 656

Superscalar 656

Floating –Point unit 656

Operand fetch 657

Floating point

execute-1(X1) 657

Floating point

execute-2(X2) 657

Write Float(WF) 657

Error Reporting(ER) 657

FADD 658

FMUL 658

FDIV 658

FEXP 658

FRD 658

Floating point exceptions 658

Instruction pairing 659

Pentium register set 660

Registers of Pentium

peocessor 661

Pentium operating modes 662

Protected mode 662

Real address mode 662

System management

mode(SMM) 662

Virtual -8086 mode 662

Real mode 662

Protected mode 663

Memory management of

Pentium 663

Segmentation 663, 665

Paging 663

Basic flat model 665

Protected flat model 666

Multi segment model 666

Physical address 666

Linear address 666, 667

Logical address 666, 667

Segment registers 668

Segment selectors 668

Segment descriptors 668

Global and Local Descriptor

tables 669

Cache registers 669

Interrupts in Protected

Mode 669

Task stat segment(TSS) 670

Virtual 8086 mode 670

Page tables and directories 671

Translation look-aside

buffers 672

Pin description of Pentium 673

Addressing modes of

Pentium 676

Register mode 676

Register direct mode 676

Immediate mode 676

Direct mode 676

Base displacement mode 676

PC relative mode 676

Pentium bus interfacing 677

Single transfer cycles 677

Burst cycles 679

Burst read cycles 680

Burst read cycles 681

Pentium address pipelining 681

Special cycles 682

Inquiry cycles 683

System management mode 684

Dual processing 684

Bus arbitration 684

On chip advanced programmable

interrupt controllers 685

Performance of Pentium 686

Cache memories 686

SRM cache 686

Write through strategy 688

Write back strategy 688

Write allocate 689

Cache organization 689

Direct mapped cache 689

Two-way set associative

cache 690

Cache consistency 691

Bus snooping 692

MESI 692

L2 caches 694

MESI protocol 694

Pentium on chip caches 695

Physical address 696

Cache operating modes 696

Page cache ability 696

Pentium L2 cache 697

Pentium MMX 697

Pentium pro 698

Pentium II 698

Pentium III 699

Architecture of P6 699

Bus interface unit 700

L1 data cache 700

L1 code cache 700

Instruction fetch and

decoder 700

Branch target buffer 701

Internal registers 701

Reservation station 701

Retire unit 701

Instruction pool 701

Instruction fetch 701

Decode unit 701

Dispatch unit 702

Execution unit 702

Instruction pool 702

Retire unit 702

P6 family processors 702

36-bit address bus 702

Comparison Pentium and

Pentium-pro 704

Pentium 4 processors 705

Architecture of Pentium 4 705

Bus interface unit 706

Instruction decoder 706

Trace cache 706

Microcode ROM 706

Branch Prediction 706

ITLB 707

Execution unit 707

Allocator 708

Register rename 708

Instruction schedulers 708

Rapid Execution Module 708

Memory Subsystem 708

Hyper-threading technol-

ogy 708, 711

Time sliced multi-threading 710

Switch on event

multi-threading 710

Simultaneous

multi-threading 710

Architecture state(AS) 710

Replicated resources 710, 711

Shared resources 710, 711

Streaming SIMD extension

(SSE) 712

SSE2, SSE3 712

Comparison Pentium III and

Pentium 4 713

RISC processors 713, 714

CISC 713

Comparison RISC and

CISC 715

Power PC 601 715

MIPS 717

Sun Ultra Sparc 717

Core processor 717

Core 2 dual processor 718

Microcontroller 722, 723

Microprocessor 723

Microcontroller

applications 724

4-bit Microcontroller 723, 724

8-bit Microcontroller 723, 724

16-bit Microcontroller 723, 724

8051 724, 725

Features of 8051 725

Accumulator ACC 726

B register 726

Program status word PSW 726,

727

Stack pointer(SP) 728

Data pointer(DPTR) 728

Port 0, Port 1, Port 2, Port

3 728

Serial port data buffer 729

Timing registers 729

Control registers 729

Capture registers 729

Timing and control unit 729

Oscillator 729

Instruction register 730

Program address register 730

ALU 730

SFR (Special function

registers) 730

Memory organisation 730

Data memory 731, 732

Program memory 730, 731

Register Banks 0-3 733

Bit addressable area 733

Scratch pad area 734

RST 376

ALE Address latch enable 376

Pin diagram of 8051 375

External Access 739

Program Store Enable 739

XTAL1 , XTAL2 739

Instruction cycle 739

Timers 744

Counters 744

Oscillator frequency 744

Operating modes 745

Timer mode 0 745

Timer mode 1 746

Timer mode 2 746

Timer mode 3 747

Control registers 747

TCON register 748

TCON register 748

Timer operating modes 749

Serial communication 749

Transmitter half 749

Receiver half 750

UART transmitter 750

UART receiver 751

MAX232 751

SBUF 752

SCON 752

PCON 752

Serial communication

modes 753

Multiprocessor

communication 755

Interrupts in 8051 756

Interrupt control register 757

Interrupt Enable Register 758

Execution of Interrupts 759

Addressing modes 763

Immediate addressing 764

Register addressing 764

Direct addressing 765

Indirect addressing 765

Indexed addressing 766

Relative addressing 766

Absolute addressing 767

Long addressing 767

8051 Instruction set 767

Arithmetic instructions 769

Logical instructions 774

Data transfer instructions 780

Boolean instructions 784

Branch group instructions 787

PUSH, POP instructions 791

Exchange instructions 791

ADD 769

ADDC 769, 770

SUBB 770

INC 771

DEC 772

MUL 773

DIV 773

DAA 773

ANL 774

ORL 775

XRL 776

CLR 778

CPL 778

RL 778

RLC 778

RR 779

RRC 779

SWAP 779

MOV 780

MOVC 783

MOVX 783

CLR 784

SETB 785

CPL 785

ANL 785

ORL 786

JC 786

JNC 787

JB 787

JNB 787

ACALL 787

LCALL 788

RET 788

RETI 788

AJMP 788

LJMP 789

SJMP 789

JMP 789

JZ 789

JNZ 790

CJNE 790

DJNZ 791

NOP 791

PUSH 791

POP 791

XCH 792

XCHD 792

Addition 795-798

Decimal addition 799

ASCII 800

Subtraction 800

One’s complement 800

Two’s complement 801

Shift 801

Swap 801

Largest 802

Smallest 803

Descending order 804

Ascending order 804

Square 805

Multiplication 806

Division 806

Time delay 807

Key board interfacing 808

A/D converter interfacing 810

Traffic control 811

Stepper motor control 817

Washing machine control 820

	Title
	Contents
	01 Introduction to Microprocessors and Microcontrollers
	02 Architecture of the 8085 Microprocessor
	03 Instruction Set and Addressing Modes of 8085 Microprocessor
	04 Assembly-Language Programs of the 8085 Microprocessor
	05 Architecture of 8086 and 8088 Microprocessors
	06 Instruction Set and Addressing Modes of 8086 Microprocessor
	07 Assembly-Langauge Programs of the 8086 Microprocessor and 8088, 80287 and 80387 Numeric Data Processors
	08 I/O and Memory Interfacing Using 8085/8086
	09 Communnication and Bus Interfacing with the 8085/8086 Microprocessor
	10 Applications of 8085/8086 Microprocessors
	11 80186, 80286, 80386 and 80486 Microprocessors
	12 Pentium and RISC Processors
	13 Introduction to 8051 Microcontroller
	14 Instruction Set and Programming of the 8051 Microcontroller
	Appendix A OPCODE of the 8085 Instruction Set
	Appendix B Some Important Tables of 8051
	Appendix C Some Important Tables of 8085
	Appendix D some Important Tables of 8086
	Model Question Paper-1.pdf
	Model Question Paper-2.pdf
	Model Question Paper-3.pdf
	Index.pdf

